• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations?

    2019-11-06 00:44:48JiaXianQin秦嘉賢YaMingChen陳亞銘andXiaoGangDeng鄧小剛
    Chinese Physics B 2019年10期

    Jia-Xian Qin(秦嘉賢), Ya-Ming Chen(陳亞銘),and Xiao-Gang Deng(鄧小剛)

    College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

    Keywords:compact scheme,time stability,simultaneous approximation term,interface treatment

    1.Introduction

    High-order finite difference methods are well suited for simulations of complex physics as they admit high resolution properties and save large amount of computational resources.Typical examples can be found in fluid dynamics.[1,2]Although the derivation of high-order finite difference schemes in the interior of the computational domain is quite straightforward,boundary closures often need special investigation[3–5]to avoid accuracy and stability issues.However,it is not an easy task to construct suitable high-order boundary closures to ensure stability.[3]

    In our previous work,[6]we showed that a globally seventh-order scheme is not time stable when boundary conditions are imposed directly with the traditional injection method.To rectify this issue,we employed simultaneous approximation terms(SATs)[7]to impose boundary conditions weakly for a dissipative compact finite difference scheme,resulting in a time stable method with global accuracy of the seventh order.The method was demonstrated to be effective for solving one-dimensional(1D)problems,including linear advection equations and Euler equations.The aim of this paper is to extend the algorithm to solve two-dimensional(2D)Euler equations.

    To this end,we need to make some modifications to the scheme since SATs involve some subtle issues in the 2D case.As will be seen in Section 2,around each corner of the 2D computational domain,there exists a small region where the boundary schemes involve boundary values from two different directions,which is different from the 1D case.Therefore,it necessitates to specially discuss the SATs in these regions to ensure stability.

    We consider in Section 3 the implementation of the scheme for multi-block problems. In realistic computations the whole computational domain is usually divided into several subdomains with different grid finess to save computational resource considerably(compared with global refinement). For multi-block problems,some interface treatment techniques have to be used.[8–11]Here,the implementation of SATs provides a convenient interface treatment method,[12–14]which has been applied successfully to solve various problems by the summation-by-parts(SBP)community.[15–17]

    Since curvilinear grids are often used in practice,we also discuss in Section 4 the implementation of the scheme to this kind of problems by focussing on two relevant examples.The SATs are still used in this case to ensure stability.Finally,conclusions are drawn in Section 5.

    2.Extension to the 2D case

    Consider the following two-dimensional Euler equations

    where U=[ρ,ρu,ρv,E]Tis the conservative variable,F=[ρu,ρu2+p,ρuv,(E+p)u]Tand G=[ρv,ρuv,ρv2+p,(E+p)v]Tare the fluxes in different directions.Here the total energy is set to be E=ρ(u2+v2)/2+p/(γ ?1)with γ=1.4 for air.

    2.1.Numerical scheme

    To extend the seventh-order scheme considered in Ref.[6](some details can also be found in Appendix A)to solve Eq.(1),it necessitates to consider its quasi-linear form[18]

    where the Jacobian matrices

    Here V2=u2+v2,and H=V2/2+γ p/(γ ?1)ρ is the specific enthalpy. In addition,the Jacobian matrices can be diagonalized as=diag{u ?a,u,u,u+a}and=diag{v ?a,v,v,v+a},whererepresents the sound speed,andread explicitly as

    For a computational domain(x,y)∈[xw,xe]×[ys,yn],we denote the discrete coordinates by xi=xw+(i ?1)hxwith 1 ≤i ≤N and yj=ys+(j ?1)hywith 1 ≤j ≤M,where hx=(xe?xw)/(N ?1)and hy=(yn?ys)/(M?1)are the spacial steps in different directions.Let Ui,jand(Fx)i,jbe the approximations to U(xi,yj)and F(U(xi,yj))x,respectively,and similar notations for other fluxes and matrices.Then the interior semi-discrete scheme for Eq.(1)can be written as

    where the expressions for(Fx)i,jand(Gy)i,jare presented in Appendix A(see also Ref.[6]). For other points near boundaries,boundary values are involved,which are imposed weakly by using SATs.By introducing the notation

    the approximations at the four corner regions read

    For other points,the following semi-discrete approximations are used:

    Here τk(1 ≤k ≤4)are penalty coefficients that can be tuned to stabilize the scheme,andstand for the well-posed west,east,south,and north boundary conditions,respectively. In addition,withwhere the notationrepresents the frozen value ofat the last time step.Similar notations also apply for.It is observed that the added SATs Si,jin Eqs.(7)–(14)vanish when the exact solution is switched into the scheme,meaning that the implementation of SAT method does not contribute to the truncation error and thus does not affect the convergence rate of the original scheme.

    Intuitively,one may simply choose the penalty coefficients to be same values as the one-dimensional case,i.e.,τ1=τ2=τ3=τ4=5.[6]To test this choice,we take as an example the vortex model from Ref.[19],whose solution is given by

    where f(x,y,t)=1 ?[(x ?x0?Ma∞t)2+(y ?y0)2]. Here the parameters(x0,y0)=(5,0),Ma∞=0.5,ε=1.0,and γ=1.4 are used. The computational domain is set to be(x,y)∈[0,10]×[?5,5]and the time step ?t=0.1hxhyis chosen to implement a traditional fourth-order Runge–Kutta scheme.If not stated otherwise,this time scheme will be used for other numerical examples presented in this paper.For simplicity,exact solution values are adopted at the boundaries.One can observe from Fig.1 that at t=4.2 the density solution near the right corners starts to deteriorate,while at t=6.3 the vortex is almost broken.This phenomenon indicates that some modifications for the scheme should be made to dissolve the non-physical error emerging from the corner regions,where the SATs from two boundaries overlap;see Fig.2(a).

    Fig.1. Density contours of the vortex obtained by the scheme of Eqs.(6)–(14)with penalty coefficients τ1=τ2=τ3=τ4=5. Here N×M=41×81,the time step ?t=0.1hx1hy1 is chosen to implement the fourth-order Runge–Kutta scheme.(a)At the moment t=4.2.(b)At the moment t=6.3.

    To show how to improve the scheme,we take as an example the solution point(x1,yM?1)at the west–north corner;see Fig.2(b). The semi-discrete approximation(9)at this point reads

    Here the first penalty term imposes weakly the west boundary condition,whereas the second one imposes the north boundary condition.It is noted that the solution point(x1,yM?1)resides on the west boundary,which means that the second penalty term is not so important here.In this regard,we adjust the coefficient of the first penalty coefficient τ1to weaken the effect of the second one,while other coefficients remain unchanged.The same reasoning applies for other similar points. In this paper,we choose the penalty coefficients to be

    for the scheme of Eqs.(6)–(14),although the choice may be optimized further.

    Fig.2.(a)Illustration of the computational domain.(b)The north–west corner area,where the solution points are affected by SATs from both boundaries.

    2.2.Numerical example

    Using the scheme of Eqs.(6)–(14)with the penalty coefficients(20),we recalculate the vortex solution of Eqs.(15)–(18).The new numerical results are presented in Fig.3,showing good preservation of the vortex.For accuracy test,we introduce the following L∞norm and L2norm:

    The convergence rate is measured by

    where e1and e2are the corresponding errors for different numbers of grid cells N1and N2,respectively.The results shown in Table 1 indicate that the expected seventh-order convergence rate is achieved approximately.

    Fig.3.Density contours obtained by the scheme of Eqs.(6)–(14)with the penalty coefficients(20)on a 41×81 grid.Here the time step?t=0.1hx1hy1 is chosen to implement the fourth-order Runge–Kutta scheme.(a)At the moment t=4.2.(b)At the moment t=6.3.(c)At the moment t=10.

    Table 1. Numerical test for the vortex solution of Eqs.(15)–(18)at t=10. Here the time step ?t=0.1hxhy is chosen to implement the fourth-order Runge–Kutta scheme.

    3.Multi-block problems

    In this section we intend to show that the developed scheme with SATs is well suited for multi-block problems,which are often used for complex configurations.

    3.1.Interface treatment

    For simplicity,the computational domain[xw,xe]×[ys,yn]is only divided into two subdomains with an interface situated at xk=(xe?xw)/2;see Fig.4. Denote the conservative variables in the left and right subdomains by Ui,jwith 1 ≤i ≤N1,1 ≤j ≤M and Vi,jwith 1 ≤i ≤N2,1 ≤j ≤M,respectively.In addition,assume that V1,jare the east boundary values for the left subdomain,and UN1,jare the west boundary values for the right.Then the problem can be solved by using the scheme of Eqs.(6)–(14)separately for each subdomain.

    Fig.4.Density contours of the vortex of Eqs.(15)–(18)on the grid consists of two subdomains with 41×21 and 21×21 points. Here the time step ?t=0.1hx1hy1 is chosen to implement the fourth-order Runge–Kutta scheme.(a)At the moment t=0.(b)At the moment t=10.

    To verify the scheme,we calculate the vortex convection problem of Eqs.(15)–(18)on the computational domain(x,y)∈[2.5,12.5]×[?2.5,2.5]with the split line x=7.5.The grid ratio is set to be 2:1 in the x direction.Figure 4 depicts that the vortex propagates successfully through the interface.One can also see from Table 2 that the convergence rates in both the two subdomains are well preserved.

    Table 2. Numerical test for the vortex solution of Eqs.(15)–(18)on two different subdomains with the grid ratio 2:1. Here the time step ?t=hx1hy1 is chosen to implement the fourth-order Runge–Kutta scheme.

    3.2.Junction point

    Next we demonstrate that by exchanging information through penalty terms,the interface technique can naturally handle grid partition with junction points. This time we divide the computational domain into four subdomains with two interfaces situated at xk=(xe?xw)/2 and yl=(yn?ys)/2,respectively.Here we still apply directly the scheme of Eqs.(6)–(14)to each subdomain with the boundary values at interfaces setting to be those of corresponding adjacent points;see Fig.5.

    Fig.5.Illustration of information permutation at the junction point.

    Fig.6.Density contours on the grid consists of four subdomains with 41×41(U),41×21(V),21×41(W),and 21×21(Z)points.Here the time step ?t=0.1hx1hy1 is chosen to implement the fourth-order Runge–Kutta scheme.(a)At the moment t=0.(b)At the moment t=5.(c)At the moment t=10.(d)At the moment t=15.

    Table 3.Numerical test for the vortex solution of Eqs.(15)–(18)at time t=10 on four different subdomains with the grid ratio set to be the same as that presented in Fig.6.For brevity only the number of solution points in the subdomain U are presented in the table.Here the time step?t=0.1hx1hy1 is chosen to implement the fourth-order Runge–Kutta scheme.

    Once again we consider the vortex convection problem of Eqs.(15)–(18)to verify the scheme.Here the computational domain(x,y)∈[2.5,12.5]×[?5,5]is chosen with interfaces situated at x=10 and y=0.It is observed from Fig.6 that the vortex propagates through the interfaces smoothly.In addition,the accuracy test presented in Table 3 shows that the scheme achieves its design order of accuracy approximately.

    4.Discussions on curvilinear grids

    In this section,we study how to implement the numerical scheme for problems with curvilinear grids,which are often needed in practice for complex configurations. In this case,we need to consider the problem in the computational coordinates(ξ,η),where the Euler equations(1)read where the JacobianHere,we apply the difference scheme presented in Appendix A to calculate numerically the metrics xξ,xη,yξ,yη,and the Jacobian J.To ensure stability,it still necessitates to use SATs similarly to the case for Eq.(1)on Cartesian grids;see e.g.,Eq.(19).For convenience of the reader,some necessary formulae of the Jacobian matrices of the fluxesandare presented in Appendix B to implement the similar scheme as Eqs.(6)–(14).

    4.1.Stationary model

    The first example is a model governed by the following Euler equations with a source term

    where the source term is determined analytically by S=Fx+Gyso that the problem admits the following stationary solution[20]

    The numerical test for the stationary model of Eqs.(23)–(27)is shown in the following Table 4.

    Table 4.Numerical test for the stationary model of Eqs.(23)–(27).Here the time step ?t=0.01hx is chosen to implement the implicit Euler scheme.

    Fig.7.(a)Illustration of a 41×41 curvilinear grid.(b)Final density contour obtained on the 41×41 grid.

    The curvilinear grid[21]considered here(see Fig.7(a))is generated from the standard computational domain(ξ,η)∈[0,1]×[0,1]by

    where the parametersμ=0.02,λ=6,and L=0.5 are chosen.The implicit Euler scheme is implemented for time-marching until the residue reaches machine zero(see Fig.7(b)for the final solution).

    4.2.Nozzle flow

    Consider a channel flow[22,23]governed by the Euler equations(1). The physical domain(Fig.8(a))is bounded between x=?0.75 and x=0.75 in the x direction,and is bounded by

    in the y direction. The grid is produced analytically by the expressions

    with ξ and η being partitioned equally.

    The initial flow field is set to be the free stream with Ma∞=0.3,ρ∞=1,p∞=1,u∞=Ma∞·a∞,v∞=0,whererepresents the sound speed.The left boundary is set to be subsonic inflow while the right is subsonic outflow.Both the top and the bottom are set to be slip-wall boundary conditions.How to impose the slip-wall boundary condition weakly is explained in Appendix C.

    Fig.8.A grid of the channel with 61×41 solution points and the corresponding numerical result of the density.(a)The 61×41 mesh.(b)Final flow field.

    We run the calculation on a grid with 61×41 solution points until the residue reaches the machine zero. It can be observed from Fig.8(b)that the obtained density contour is smooth,showing the effectiveness of the scheme.Similar results can also be obtained on other grids with different finess.As the focus here is just to test whether the scheme is applicable for the case with curvilinear grids and wall boundary conditions,the convergence rate will not be discussed,which depends also on the smoothness of grids and the implementation of boundary conditions.

    In addition,to compare the results obtained by the modified scheme and the scheme with the same penalty coefficients as Ref.[6],we show in Fig.9 the density contours and velocity vectors near the bump at t=0.054.It is observed that while the unmodified scheme starts to break up,the modified one still preserves well,demonstrating again that the modified coefficients are necessary to ensure stability.

    Fig.9.Density solutions and velocity vectors near the bump obtained on the 61×41 grid at t=0.054.(a)The unmodified result.(b)The modified result.

    5.Conclusion

    In this paper,we generalized the globally seventh-order dissipative compact scheme with SATs[6]to the 2D Euler equations. The choice of penalty coefficients for SATs was reconsidered to stabilize the scheme. It was shown that the scheme with SATs is very convenient for dealing with multiblock problems with conformal grids.In addition,the implementation of the scheme for the case with curvilinear grids was also discussed,including the slip-wall boundary condition.Various numerical experiments were performed to verify the proposed scheme.The extension to Navier–Stokes equations may be considered in further work.

    Appendix A:Spacial discretizations

    Here we revisit briefly the spacial schemes presented in Ref.[6].For the one-dimensional conservation law

    partition the computational domain[xl,xr]by using solution pointsand flux points xj+1/2=where N is the number of solution points,andis the spacial step.Let Ujandbe approximations to U(xj,t)and F(U(xj,t))x,respectively.Notations for other variables and matrices introduced in Section 2 are still adopted.The exact left and right boundary values are given by

    Then the derivative of flux can be computed by the following formulae:for 5 ≤j ≤N ?4(i.e.,the interior points),

    For near left boundary points we use the following difference schemes:

    and the schemes for the right can be obtained by symmetry.

    While the values Fjinvolved in the above difference scheme can be computed directly by Fj=F(Uj),the valuesare calculated by any approximate Riemann solver(in this paper Roe’s Riemann solver is adopted). Herestands for the left and the right values obtained by using the seventh-order dissipative compact interpolation scheme[1]: For the interior flux points ξj+1/2(3 ≤j ≤N ?3),

    where the dissipation constant α=?0.3 is used for the left upwind interpolation,and by setting α=0.3 the interpolation becomes right upwind automatically. Due to the limitation of stencil length,the interpolations at near boundary flux points become

    Appendix B:Jacobian matrices of fluxes in Eq.(22)

    where J is defined in Eq.(22),.

    Appendix C:Slip-wall boundary condition

    Here we introduce for the two-dimensional Euler equations the slip-wall boundary condition imposed through SATs proposed in Ref.[24]. Consider a Cartesian grid and suppose that we are considering a point(1,j)situated on the wall boundary.Taking Eq.(11)as an example,i.e.,

    成年版毛片免费区| 色综合站精品国产| 日日啪夜夜撸| av福利片在线观看| 国产伦精品一区二区三区四那| 夜夜爽夜夜爽视频| 亚洲一区高清亚洲精品| 简卡轻食公司| 能在线免费看毛片的网站| 一夜夜www| 国产高清有码在线观看视频| 色哟哟·www| 哪个播放器可以免费观看大片| 日本-黄色视频高清免费观看| 免费少妇av软件| 水蜜桃什么品种好| 美女内射精品一级片tv| 夫妻午夜视频| 日日撸夜夜添| 欧美日韩在线观看h| 亚洲精品aⅴ在线观看| 高清视频免费观看一区二区 | 日日啪夜夜爽| 男插女下体视频免费在线播放| 国产精品三级大全| 在线观看一区二区三区| 大陆偷拍与自拍| 中文字幕久久专区| 狠狠精品人妻久久久久久综合| 国产精品熟女久久久久浪| 一二三四中文在线观看免费高清| 国产精品一及| 深夜a级毛片| 免费观看在线日韩| 亚洲av二区三区四区| 伦精品一区二区三区| 亚洲欧美清纯卡通| 成人av在线播放网站| 免费看日本二区| videos熟女内射| 99久久精品一区二区三区| 精品久久久久久久人妻蜜臀av| av在线亚洲专区| 一级毛片aaaaaa免费看小| 欧美极品一区二区三区四区| 在线观看人妻少妇| 国产又色又爽无遮挡免| www.av在线官网国产| 肉色欧美久久久久久久蜜桃 | 亚洲精品自拍成人| 精华霜和精华液先用哪个| 免费电影在线观看免费观看| 97在线视频观看| 少妇猛男粗大的猛烈进出视频 | 国产精品久久久久久久电影| 国产女主播在线喷水免费视频网站 | 亚洲成人av在线免费| 日本黄大片高清| 自拍偷自拍亚洲精品老妇| 亚洲美女视频黄频| 日韩av免费高清视频| 亚洲av一区综合| 一级毛片我不卡| 一级黄片播放器| 色尼玛亚洲综合影院| 精品久久久久久久人妻蜜臀av| 女人久久www免费人成看片| 亚洲av日韩在线播放| 97人妻精品一区二区三区麻豆| 日韩大片免费观看网站| 深爱激情五月婷婷| 性色avwww在线观看| 国产乱来视频区| 亚洲国产精品国产精品| 少妇的逼水好多| 成人亚洲精品一区在线观看 | 熟女人妻精品中文字幕| 成人亚洲精品av一区二区| 国产免费又黄又爽又色| 熟妇人妻久久中文字幕3abv| 欧美日韩一区二区视频在线观看视频在线 | 日本黄色片子视频| 直男gayav资源| 99久久精品一区二区三区| 99久久九九国产精品国产免费| 国产免费一级a男人的天堂| 美女大奶头视频| 国产精品人妻久久久影院| 少妇裸体淫交视频免费看高清| 日本一二三区视频观看| 亚洲精品中文字幕在线视频 | 麻豆成人av视频| 肉色欧美久久久久久久蜜桃 | 国产精品人妻久久久影院| 最近中文字幕高清免费大全6| 亚洲四区av| 亚洲成人一二三区av| 午夜精品一区二区三区免费看| 精品少妇黑人巨大在线播放| 国产成人精品久久久久久| 婷婷色综合大香蕉| 床上黄色一级片| av在线播放精品| 国产麻豆成人av免费视频| 麻豆精品久久久久久蜜桃| 一级黄片播放器| 久久精品久久久久久久性| 久久久久性生活片| 国产色爽女视频免费观看| 一个人看视频在线观看www免费| 永久网站在线| 日本午夜av视频| 久久久国产一区二区| 少妇猛男粗大的猛烈进出视频 | 亚洲av电影不卡..在线观看| 午夜免费观看性视频| 国产精品一区二区在线观看99 | 深爱激情五月婷婷| av女优亚洲男人天堂| 九九爱精品视频在线观看| 国产精品不卡视频一区二区| 国产熟女欧美一区二区| 少妇人妻一区二区三区视频| 国产一区亚洲一区在线观看| 国精品久久久久久国模美| 国产成人aa在线观看| 亚洲国产精品国产精品| 免费看不卡的av| 日本免费在线观看一区| 国产一区二区在线观看日韩| 男女国产视频网站| 国产亚洲精品久久久com| 欧美 日韩 精品 国产| 亚洲丝袜综合中文字幕| 色综合色国产| 人人妻人人澡欧美一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最新中文字幕久久久久| 有码 亚洲区| 插阴视频在线观看视频| 嘟嘟电影网在线观看| 免费人成在线观看视频色| 成人亚洲精品一区在线观看 | 老司机影院成人| 内地一区二区视频在线| 人妻一区二区av| 日韩欧美 国产精品| 草草在线视频免费看| 免费看美女性在线毛片视频| 男人爽女人下面视频在线观看| 精品人妻一区二区三区麻豆| 不卡视频在线观看欧美| 午夜福利在线在线| 高清av免费在线| 欧美日韩国产mv在线观看视频 | 欧美激情国产日韩精品一区| 寂寞人妻少妇视频99o| 26uuu在线亚洲综合色| 最近视频中文字幕2019在线8| 老司机影院成人| 亚洲国产精品国产精品| 伊人久久精品亚洲午夜| 男女啪啪激烈高潮av片| 免费不卡的大黄色大毛片视频在线观看 | 99热全是精品| 欧美一级a爱片免费观看看| 国产精品一区二区三区四区免费观看| 午夜福利在线在线| 国产国拍精品亚洲av在线观看| 国产成人a∨麻豆精品| 少妇熟女欧美另类| 啦啦啦韩国在线观看视频| 九九在线视频观看精品| 久久精品国产自在天天线| 美女xxoo啪啪120秒动态图| 国产精品一区www在线观看| 最近最新中文字幕大全电影3| 搞女人的毛片| 身体一侧抽搐| 日韩伦理黄色片| 乱人视频在线观看| 午夜激情欧美在线| 国产免费又黄又爽又色| h日本视频在线播放| 久久99精品国语久久久| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 日韩一区二区视频免费看| 国产精品国产三级专区第一集| 久久精品久久精品一区二区三区| 国产亚洲av片在线观看秒播厂 | 美女内射精品一级片tv| 可以在线观看毛片的网站| 日本与韩国留学比较| 亚洲aⅴ乱码一区二区在线播放| 最近最新中文字幕大全电影3| 午夜福利高清视频| 乱人视频在线观看| 最近最新中文字幕大全电影3| 国产永久视频网站| 嫩草影院入口| 欧美+日韩+精品| 亚洲av.av天堂| 三级国产精品片| 久久久久国产网址| 少妇的逼好多水| 建设人人有责人人尽责人人享有的 | 国产精品久久久久久av不卡| 成人欧美大片| 搡女人真爽免费视频火全软件| 国产淫片久久久久久久久| 欧美激情国产日韩精品一区| 亚洲av福利一区| 久久99热6这里只有精品| 亚洲成色77777| 五月玫瑰六月丁香| 免费在线观看成人毛片| 欧美日韩综合久久久久久| 高清av免费在线| 又爽又黄无遮挡网站| 国产老妇女一区| 国产精品日韩av在线免费观看| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 舔av片在线| 直男gayav资源| 在线观看av片永久免费下载| 天天躁日日操中文字幕| 精品久久久久久久人妻蜜臀av| av播播在线观看一区| 好男人视频免费观看在线| 成人欧美大片| 美女国产视频在线观看| 秋霞在线观看毛片| 日本免费在线观看一区| 一区二区三区四区激情视频| 免费观看精品视频网站| 久久这里只有精品中国| 亚洲成人久久爱视频| 国产成人一区二区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品欧美国产一区二区三| 欧美人与善性xxx| 最近最新中文字幕免费大全7| 久久久色成人| 天天一区二区日本电影三级| 成人特级av手机在线观看| 亚洲av不卡在线观看| 国产午夜福利久久久久久| 综合色丁香网| 日韩一区二区视频免费看| 少妇被粗大猛烈的视频| 狂野欧美白嫩少妇大欣赏| 黄色配什么色好看| 嫩草影院精品99| 国产乱人偷精品视频| 久久久午夜欧美精品| av国产久精品久网站免费入址| 欧美97在线视频| 成人国产麻豆网| 欧美xxxx性猛交bbbb| 女人久久www免费人成看片| 国产成人福利小说| 久久久久久久久久久丰满| 日韩av不卡免费在线播放| 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 日韩中字成人| 午夜激情福利司机影院| 欧美日韩一区二区视频在线观看视频在线 | 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 免费观看av网站的网址| 一个人免费在线观看电影| 中文在线观看免费www的网站| 日本黄大片高清| 国产成人freesex在线| 九九久久精品国产亚洲av麻豆| 51国产日韩欧美| 大香蕉久久网| 亚洲最大成人av| 久久精品国产鲁丝片午夜精品| 国产乱人视频| 美女cb高潮喷水在线观看| 国产午夜精品论理片| 国产欧美另类精品又又久久亚洲欧美| 国产久久久一区二区三区| 久久久午夜欧美精品| 亚洲精品国产av成人精品| 亚洲欧美日韩东京热| 日韩欧美三级三区| 午夜福利成人在线免费观看| av播播在线观看一区| 五月天丁香电影| 人人妻人人澡人人爽人人夜夜 | 最近最新中文字幕大全电影3| 中文欧美无线码| 禁无遮挡网站| 久久久久久久久久久免费av| 一级毛片久久久久久久久女| 国产午夜精品一二区理论片| 97超视频在线观看视频| 精品亚洲乱码少妇综合久久| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 日本-黄色视频高清免费观看| 日日干狠狠操夜夜爽| av专区在线播放| 色吧在线观看| 成年av动漫网址| 日韩精品青青久久久久久| 午夜免费激情av| 99re6热这里在线精品视频| 亚洲内射少妇av| 色尼玛亚洲综合影院| 91av网一区二区| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 一区二区三区四区激情视频| 亚洲最大成人中文| 青青草视频在线视频观看| 国产在线男女| 男女边吃奶边做爰视频| 可以在线观看毛片的网站| 国产 亚洲一区二区三区 | 国产精品国产三级国产专区5o| 麻豆久久精品国产亚洲av| av在线播放精品| 精品久久久久久久人妻蜜臀av| 最近最新中文字幕免费大全7| 如何舔出高潮| 日韩欧美精品v在线| 51国产日韩欧美| 国产免费一级a男人的天堂| 插阴视频在线观看视频| 女人久久www免费人成看片| 久久精品久久精品一区二区三区| 国产伦在线观看视频一区| 色哟哟·www| 久久久a久久爽久久v久久| 黄片wwwwww| 人妻系列 视频| 亚洲欧美一区二区三区黑人 | 成人亚洲欧美一区二区av| 日本av手机在线免费观看| 国产精品不卡视频一区二区| 搡老乐熟女国产| 欧美潮喷喷水| 97在线视频观看| 国产欧美日韩精品一区二区| 麻豆国产97在线/欧美| 久久久久久久亚洲中文字幕| 亚洲精品色激情综合| 亚洲天堂国产精品一区在线| 亚洲国产精品专区欧美| 观看免费一级毛片| 七月丁香在线播放| av黄色大香蕉| 美女国产视频在线观看| 内地一区二区视频在线| 亚洲国产av新网站| 精品99又大又爽又粗少妇毛片| 街头女战士在线观看网站| 最近2019中文字幕mv第一页| 亚洲av日韩在线播放| 久久午夜福利片| 国产毛片a区久久久久| 亚洲精品久久午夜乱码| 日本熟妇午夜| 日韩成人av中文字幕在线观看| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 黄色欧美视频在线观看| 五月玫瑰六月丁香| 成人美女网站在线观看视频| 国产精品国产三级国产av玫瑰| 熟妇人妻不卡中文字幕| 精品一区二区免费观看| 久久精品国产鲁丝片午夜精品| 亚洲av成人精品一二三区| 91精品国产九色| 91aial.com中文字幕在线观看| 亚洲精品成人av观看孕妇| 身体一侧抽搐| 乱系列少妇在线播放| 成人毛片a级毛片在线播放| 国产老妇伦熟女老妇高清| 亚洲第一区二区三区不卡| 国产成人a∨麻豆精品| 看十八女毛片水多多多| 欧美成人a在线观看| 亚洲最大成人中文| 日日摸夜夜添夜夜爱| 国产毛片a区久久久久| 搡老妇女老女人老熟妇| 少妇高潮的动态图| 女人十人毛片免费观看3o分钟| 十八禁网站网址无遮挡 | 内射极品少妇av片p| 18禁在线播放成人免费| 久久久久久久久中文| 日韩av免费高清视频| 国产色婷婷99| 免费不卡的大黄色大毛片视频在线观看 | 免费高清在线观看视频在线观看| 午夜激情欧美在线| 免费高清在线观看视频在线观看| 国产精品一二三区在线看| freevideosex欧美| 国产中年淑女户外野战色| 久久精品人妻少妇| 国产精品一二三区在线看| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 91午夜精品亚洲一区二区三区| 非洲黑人性xxxx精品又粗又长| 男女边摸边吃奶| 51国产日韩欧美| 日韩精品青青久久久久久| 久久精品夜色国产| 男人舔奶头视频| 一级黄片播放器| 国产黄频视频在线观看| 国产精品伦人一区二区| 91av网一区二区| 女的被弄到高潮叫床怎么办| 亚洲欧美成人综合另类久久久| 亚洲精品一区蜜桃| 最近最新中文字幕免费大全7| 日本一本二区三区精品| 有码 亚洲区| 久久久久久久久中文| 99九九线精品视频在线观看视频| 国产伦一二天堂av在线观看| 亚洲精品久久午夜乱码| 久久鲁丝午夜福利片| 69av精品久久久久久| 看十八女毛片水多多多| 国产亚洲精品久久久com| 国产午夜福利久久久久久| 午夜精品在线福利| 在线观看av片永久免费下载| 国产乱来视频区| 亚洲熟女精品中文字幕| 熟妇人妻不卡中文字幕| 高清日韩中文字幕在线| 成人美女网站在线观看视频| 亚洲国产欧美人成| 久久久久久久久中文| 中国国产av一级| 麻豆成人av视频| 国产黄片视频在线免费观看| 成人亚洲欧美一区二区av| 毛片女人毛片| 22中文网久久字幕| 一级黄片播放器| 黄片无遮挡物在线观看| 啦啦啦啦在线视频资源| 美女国产视频在线观看| 啦啦啦韩国在线观看视频| 2018国产大陆天天弄谢| 午夜视频国产福利| 日韩成人av中文字幕在线观看| 精品酒店卫生间| 免费观看的影片在线观看| 国产免费一级a男人的天堂| 99久久九九国产精品国产免费| 久久6这里有精品| 大陆偷拍与自拍| 成人性生交大片免费视频hd| 国产午夜精品久久久久久一区二区三区| 蜜桃亚洲精品一区二区三区| 99热网站在线观看| 在线观看人妻少妇| 欧美另类一区| 国产成人freesex在线| 午夜老司机福利剧场| 亚洲av日韩在线播放| 少妇人妻精品综合一区二区| 日韩中字成人| av在线老鸭窝| 91久久精品国产一区二区三区| 十八禁网站网址无遮挡 | 在线观看av片永久免费下载| 一级av片app| 国产 亚洲一区二区三区 | 中文字幕久久专区| 美女xxoo啪啪120秒动态图| 99久久九九国产精品国产免费| 男插女下体视频免费在线播放| 日韩人妻高清精品专区| 免费在线观看成人毛片| 免费播放大片免费观看视频在线观看| 欧美一级a爱片免费观看看| 噜噜噜噜噜久久久久久91| 人妻制服诱惑在线中文字幕| 婷婷色综合www| 男女边摸边吃奶| 亚洲人成网站在线播| 亚洲自偷自拍三级| 尾随美女入室| 亚洲精品国产av成人精品| 男女啪啪激烈高潮av片| 午夜福利成人在线免费观看| 日韩三级伦理在线观看| 免费人成在线观看视频色| 久久99热这里只频精品6学生| 老司机影院毛片| 亚洲国产精品成人久久小说| 亚洲自拍偷在线| 精品久久久久久久久久久久久| 亚洲av成人av| 亚洲性久久影院| 97热精品久久久久久| 欧美精品一区二区大全| 又爽又黄无遮挡网站| 国产成人免费观看mmmm| 午夜免费男女啪啪视频观看| 一个人观看的视频www高清免费观看| 人体艺术视频欧美日本| 老司机影院成人| 亚洲欧美精品专区久久| 乱码一卡2卡4卡精品| 综合色av麻豆| 精品酒店卫生间| 老司机影院成人| 91aial.com中文字幕在线观看| 亚洲久久久久久中文字幕| 国产欧美另类精品又又久久亚洲欧美| 秋霞伦理黄片| 啦啦啦中文免费视频观看日本| 亚洲电影在线观看av| 亚洲精品成人av观看孕妇| 国产精品av视频在线免费观看| 欧美潮喷喷水| 毛片一级片免费看久久久久| 亚洲精品亚洲一区二区| 精品久久久久久成人av| 日韩av免费高清视频| 看免费成人av毛片| 成人性生交大片免费视频hd| 精品国产三级普通话版| 中文字幕av在线有码专区| 午夜福利视频精品| 亚洲精品乱码久久久久久按摩| 高清毛片免费看| 亚洲精品国产成人久久av| 成人亚洲欧美一区二区av| 人妻系列 视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内精品一区二区在线观看| 国产精品嫩草影院av在线观看| 日本午夜av视频| 免费少妇av软件| 一级毛片电影观看| 99re6热这里在线精品视频| 成人无遮挡网站| 日日啪夜夜撸| 高清毛片免费看| 黑人高潮一二区| 赤兔流量卡办理| 好男人视频免费观看在线| 国产av在哪里看| 亚洲人成网站高清观看| 两个人视频免费观看高清| 永久免费av网站大全| 成人亚洲精品av一区二区| 国产精品日韩av在线免费观看| 国产高清不卡午夜福利| 亚洲一区高清亚洲精品| 天堂√8在线中文| 三级经典国产精品| 韩国av在线不卡| 97超视频在线观看视频| 日韩,欧美,国产一区二区三区| 精品一区二区三区视频在线| 草草在线视频免费看| 日韩成人伦理影院| 2021少妇久久久久久久久久久| 黄片wwwwww| 中文字幕av在线有码专区| 久久久久九九精品影院| 亚洲成人中文字幕在线播放| 亚洲av中文字字幕乱码综合| 性色avwww在线观看| 日本色播在线视频| 欧美潮喷喷水| 欧美日韩国产mv在线观看视频 | 男人舔奶头视频| 免费黄频网站在线观看国产| 日本av手机在线免费观看| 22中文网久久字幕| 亚洲天堂国产精品一区在线| 嫩草影院新地址| 久久久亚洲精品成人影院| 直男gayav资源| 视频中文字幕在线观看| av网站免费在线观看视频 | 亚洲欧美日韩无卡精品| 成人欧美大片| 成人无遮挡网站| av免费观看日本| 中文字幕av在线有码专区| 一区二区三区免费毛片| 亚洲精品,欧美精品| 国产免费又黄又爽又色| 日韩成人av中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线 | av线在线观看网站| 搡老乐熟女国产| 我的老师免费观看完整版| 久久99热6这里只有精品| 九色成人免费人妻av| 久久久精品免费免费高清| 亚洲精品久久午夜乱码|