• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single event upset on static random access memory devices due to spallation,reactor,and monoenergetic neutrons?

    2019-11-06 00:44:42XiaoMingJin金曉明WeiChen陳偉JunLinLi李俊霖ChaoQi齊超XiaoQiangGuo郭曉強(qiáng)RuiBinLi李瑞賓andYanLiu劉巖
    Chinese Physics B 2019年10期
    關(guān)鍵詞:劉巖陳偉李俊

    Xiao-Ming Jin(金曉明), Wei Chen(陳偉), Jun-Lin Li(李俊霖), Chao Qi(齊超),Xiao-Qiang Guo(郭曉強(qiáng)), Rui-Bin Li(李瑞賓), and Yan Liu(劉巖)

    State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,Northwest Institute of Nuclear Technology,Xi’an 710024,China

    Keywords:neutron SRAM,SEU,cross-section

    1.Introduction

    Neutron-induced single event upset(SEU)on static random access memory(SRAM)device has become one of the most serious concerns of avionics in terrestrial radiation environment. This effect causes the retaining data of SRAM to degrade and even data corruption functional errors of the digital signals. Due to the scaling down of complementary metal oxide silicon(CMOS)technology and power dissipation in sub-micron and nano-scale technologies,both the transistor area and supply voltage decrease in SRAM devices.This trend comes with a substantial drop of the critical charge required to cause data upset in an individual memory cell.[1,2]Consequently,SRAM devices are very vulnerable to neutroninduced SEU effects.

    Many papers of neutron-induced SEU on SRAM devices have been published. Some researchers utilized the mono-energetic neutrons to investigate the SEU effects on SRAMs. A latest paper by Lambert et al.reported that the SEU cross-section of commercial SRAM can be fitted by a Weibull function for mono-energetic neutrons from 1 MeV to 16.2 MeV.[3]Recent work by Clemente et al.showed that the 130-nm,90-nm,and 65-nm SRAM at very low bias voltage increase the SEU sensitivity to 14-MeV neutrons.[4,5]Moreover,the neutron-induced SEU sensitivity of submicron SRAMs was investigated by using mono-energetic and fission neutron beams.[6]With the scaling down of the technology node,neutron-induced SEU effects on nanometric SRAMs were studied.[7,8]The simulation approaches based on Monte-Carlo method have been widely developed to analyze the neutroninduced SEU effects.[9–13]However,with the development of semiconductor technology,there is some lack of knowledge about the comparison of the SEU effects from the latest SRAM devices to the former generations.Little literature is available about the influence of neutron-induced secondary ion species on the SEU effects.

    This paper presents new neutron-induced SEU data on SRAMs from the latest nanometric technology nodes to submicron technology nodes due to spallation,reactor,2.5-MeV,and 14-MeV neutrons.We thoroughly investigate the dependence of neutron-induced SEU effects on the incident neutron spectrum,technology node,byte pattern and neutron fluence rate. We find that the low energy neutrons have a greater influence on the SEU sensitivity with the technology downscaling. Since the incident neutron spectra and technology nodes were observed to have a strong influence on the SEU effects,Monte–Carlo simulations of nuclear interactions with device architecture have been performed for comparing with the experimental results.We also find that the contributions of neutron-induced light secondary ion species exhibit a significant enhancement of the SEU cross-sections.The influence of the range and the linear energy transfer(LET)on SEU effect are compared among the secondary ion species.These findings allow us to reveal the physical mechanism,i.e.,how the incident neutron spectra influence the SEU sensitivity.

    2.Experimental setup

    The tested devices are six distinct SRAMs without any hardness specification.Table 1 summarizes the main features of the SRAM devices including technology generation,manufacturer,memory capacity,and nominal supply voltage.The SRAMs are manufactured by HITACHI and ISSI companies.The technology nodes cover from 40 nm to 500 nm.The test method involved loading up to the tested SRAM devices with a uniform byte pattern before irradiation and then continuously scanning each of them every five seconds for SEU errors in sequential address logic during neutron irradiation.For a single scan of each SRAM device,the logic states of all the memory cells in the tested SRAM device were monitored within about three seconds for a single scan.Tested data transfer was carried out via a test board to a personal laptop.The software in the laptop allowed periodical data record and SEU detection.

    Table 1.The tested SRAM information.

    The spallation neutron irradiation experiments were performed using the China spallation neutron source(CSNS)at Dongguan,Guangdong Province in China.In this facility utilized is the nuclear spallation reaction by accelerating protons of 1.6 GeV in kinetic energy and 25 Hz in repetition rate towards tungsten target to produce neutron beams.[14]This scientific facility can provide neutron spectrum very close to terrestrial neutron.Compared with the terrestrial neutron radiation experiments,CSNS can generate a high neutron fluence rate and thus provide more efficient approach to accomplishing the SEU testing.The experiments were carried out at the sample position of end station 276 m away from the tungsten target at the beam power of 20 kW.The shutter to switch off neutron beam and the auxiliary positioning frame allow us to allocate the SRAM devices in the beam center. After the shutter opens,the SRAMs are irradiated by neutron with a steady fluence rate.Figure 1 shows the neutron spectrum generated by the CSNS.The maximum neutron energy is about 200 MeV.About 54%of neutrons are less than 1 MeV,41%are in a range from 1 MeV to 20 MeV,and 5%are above 20 MeV.The neutron fluence rate in the experiment was about 1.4×106n/(cm2·s).

    The reactor neutron irradiation experiment was carried out by using the Xi’an pulsed reactor(XAPR)at the northwest institute of nuclear technology(NINT)in China.This scientific facility is a pool-type reactor cooled by natural circulation of water.[15]The reactor neutron spectrum provided by the XAPR is shown in Fig.1 at the power of 500 kW under steadystate operation. Neutrons above 1 MeV account for about 29%.The neutron fluence rate is about 2.7×1010n/(cm2·s).

    Fig.1.Neutron spectrum generated by CSNS and XAPR.

    The mono-energetic neutron irradiation experiments were performed by using the 600-kV ns pulse neutron generator(CPNG)at the China institute of atomic energy(CIAE).In this facility utilized is the nuclear fusion by accelerating deuterons towards a target impregnated with either deuterium(D(d,n)3He)or tritium(T(d,n)4He)to produce mono-energetic neutrons of 2.5 MeV and 14 MeV,respectively. This facility generates 1×107n/(cm2·s)for 2.5-MeV neutron and 1.4×107n/(cm2·s)for 14-MeV neutron in a steady-state mode.

    3.Experimental results and discussion

    Three general features of neutron-induced SEU in SRAM devices are observed in the experiments.First,the total number of SEU increases linearly with neutron fluence increasing.Second,the SEU occurs once the SRAM devices are exposed to neutron irradiation.There is no threshold of neutron fluence for SEU.Third,upset bitmap is distributed uniformly in terms of logical address.The SEU cross-section is finally calculated from the following formula

    where Ntotalis the memory capacity of the SRAM device,φ is the neutron fluence,and Nupsetis the SEU number. The SEU cross-section is equal to the slope of zero-crossing linear fitting of Nupset/Ntotalversus φ.The experimental research mainly focuses on the dependence of SEU cross-section on the technology node,incident neutron energy,byte pattern and neutron fluence rate.For each neutron radiation experiment,we measure four SRAM samples which are located on their respective daughter boards of the main board.The error bar of the SEU cross-section is a combination of standard uncertainty of the experimental standard deviation of the mean value and the uncertainty of the neutron fluence.

    3.1.Technology node

    In Fig.2,the histogram of the SEU cross-section is shown as a function of the technology node of SRAM device due to CSNS,XAPR,2.5-MeV,and 14-MeV neutrons.The experimental results show that the SEU cross-sections of SRAM devices exhibit a strong dependence on the technology node.For the technology nodes from 40 nm to 350 nm,neutron-induced SEU cross-section increases with the technology node increasing.This trend is mainly due to the strong dependence of sensitive volume and probability of ion hitting sensitive zone on the technology node.Due to the scaling down of technology,both the sensitive volume and the probability of ion hitting sensitive zone decrease. Consequently,the neutron-induced energy deposition in the sensitive volume decreases.This effect counteracts the influence of the critical charge reduction and eventually leads to a lower SEU sensitivity. The SEU cross-section of HM628512A(500 nm)is slightly higher for 2.5-MeV neutrons,but much lower for CSNS,14-MeV and XAPR neutrons than that of HM628512B(350 nm).This discrepancy is due to the deviation of the test data and the different neutron sources.

    Fig.2. Neutron-induced SEU cross-section as a function of technology nodes and incident neutron spectrum.

    3.2.Incident neutron spectrum

    As shown in Fig.2,the neutron-induced SEU sensitivity of SRAMs also strongly depends on the incident neutron energy.For each technology node,the maximum SEU crosssection is induced by 14-MeV neutron,followed by CSNS,2.5-MeV,and XAPR neutrons.As we can see in Fig.1,CSNS produces relatively hard neutron spectrum while XAPR generates relatively soft neutron spectrum.This trend can be explained by the dependence on the secondary ions which are highly ionized and contribute to the SEU cross-section.As the energy of incident neutrons is higher,the number of open nuclear reaction channels increases. Because the cross-section of each reaction channel is a function of neutron energy,the increase of nuclear reaction cross-section leads the secondary particles to increase,and thus causing the SEU cross-section to augment.Therefore,the SEU cross-section increases with the energy of incident neutron increasing.

    The experimental data imply that the SEU sensitivity induced by low-energy neutron significantly increases with the technology integration.As shown in Fig.3,with the scaling down of technology node from 350 nm to 40 nm,the SEU cross-section ratio of 2.5-MeV to 14-MeV neutrons increases from 0.05 to 0.13.According to Lambert’s neutron-induced SEU tests at CEA/DIF,these neutron threshold energy values are lower than the neutron threshold energy values obtained from older devices.[3]Both this and figure 3 demonstrate that the more advanced SRAM devices become more sensitive to low-energy neutrons.Therefore,the low energy region of terrestrial neutrons has a greater influence on the SEU crosssection with the technology downscaling. The neutron irradiation tests should offer the characterizations of SEU effects induced by low-energetic neutrons as well as high-energy neutrons.

    Fig.3.SEU cross-section ratio of 2.5-MeV neutron to 14-MeV neutron as a function of technology node.

    To further investigate the relationship of the ionizing dose deposit with the incident neutron energy,the kinetic energy released from material,i.e.,kerma factor,is calculated for each of CSNS,XAPR,14-MeV,and 2.5-MeV neutrons.The kerma factor describes the energy deposition per target mass and the neutron fluence. In Table 2 listed are the total,displacement,and ionization kerma factors in silicon for neutrons. For 14-MeV and 2.5-MeV neutrons,the total kerma factors are cited from Ref.[16]and the displacement kerma factors cited from Ref.[17]. The Geant4 is utilized to calculate the ionizing and non-ionizing energy losses in silicon for CSNS and XAPR neutron spectra. The ionization kerma factor is 1.16×10?9rad·cm2for 14-MeV neutron and 3.30×10?11rad·cm2for XAPR neutron spectrum.Between them the ionization kerma factor is 1.83×10?10rad·cm2for CSNS neutron and 6.00×10?11rad·cm2for 2.5-MeV neutron.Consequently,it could be qualitatively deduced that 14-MeV neutron can induce the highest SEU cross-section followed by CSNS neutron,2.5-MeV neutron,and XAPR neutron in succession.

    Table 2.Total,displacement,and ionization kerma factors in silicon for neutrons.

    3.3.Byte pattern

    The dependence of CSNS neutron-induced SEU crosssection on technology node is investigated with different byte patterns. For different byte patterns,the storage cells in the SRAM device are initialized in different logic states at the beginning of the neutron exposure.As shown in Fig.4,the SEU cross-sections are measured to be almost identical for four types of byte patterns. These results indicate that the upset cross-section from logic 0 to 1 is the same as that from logic 1 to 0.

    Fig.4.CSNS neutron-induced SEU cross-section versus technology node for four types of byte patterns.

    This phenomenon can be explained by the structure of the memory cell.An SRAM device is composed of homogeneous memory cells in the physical structure and operation mode.Figure 5 shows a typical layout of an SRAM cell.Figure 5(a)illustrates a simplified expression of the SRAM cell,in which two inverters are connected as a ring. The circuit is stable when the data in both nodes are reversed,and thus can store data.More specifically,as shown in Fig.5(b),this cell is composed of 4 NMOSFETs(M1,M3,M5,and M6)and 2 PMOSFETs(M2 and M4). Word line(WL)and bit line(BL)are used to write or read the data.Two nodes Q andstore data 1(VDD)or 0.Neutron-induced SEU in the cell reverses the state of the node Q andsimultaneously.Due to the symmetry of the circuit structure and bias state,the SEU cross-section from logic 0 to 1 is completely identical to the cross-section from logic 1 to 0.Consequently,the byte patterns have no influence on neutron-induced SEU cross-section.

    Fig.5.Circuit of SRAM cell:(a)equivalent circuit and(b)circuit of sixtransistors cell.

    3.4.Neutron fluence rate

    Figure 6 shows that the plots of experimental data of SEU cross-section versus neutron fluence rate at XAPR facility.The SEU cross-section of 40-nm SRAM and 65-nm SRAM are both almost constant for neutron fluence rate from 7.7×108n/(cm2·s)to 2.7×1010n/(cm2·s). Similarly,the SEU cross-section of 130 nm SRAM is constant for neutron fluence rate from 7.7×108n/(cm2·s)to 5.8×109n/(cm2·s).The SEU cross-section of 500-nm SRAM is constant for neutron fluence rate from 5.8×109n/(cm2·s)to 5.0×1010n/(cm2·s).The experimental data clearly show that none of the SEU effects of SRAM devices exhibits any dependence on neutron fluence rate from 7.7×108n/(cm2·s)to 5.0×1010n/(cm2·s).This independence could be explained from the meaning of crosssection representing the bit upset probability per unit neutron fluence rate.Therefore,accelerator test at a high neutron fluence rate is applicable for predicting the SEU sensitivity at a low neutron fluence rate,provided that the time resolution of test system is good enough to detect all the upsets.

    Fig.6.Plots of XAPR neutron-induced SEU cross-section versus neutron fluence rate obtained from XAPR equipped separately with four different types of SRAMs.

    4.Simulations

    The simulations of neutron-induced SEU are performed with Monte-Carlo toolkit Geant4.Since the experimental data show that the SEU effect only depends on the technology node and the incident neutron energy spectrum,the simulations are carried out to predict the SEU cross-sections of SRAMs from 40 nm to 500 nm for spallation neutron,reactor neutron,14-MeV,and 2.5-MeV neutrons.

    4.1.Physical model

    The three-dimensional topological structure of an SRAM memory cell is obtained by using the reverse-analysis technique.Figure 7 shows an example of a scanning electron microscope image from the 350-nm bulk CMOS SRAM technology.For single memory cell,the multilayer metal wirings,and passivation films over the sensitive volume are simplified by using multiple layers with equivalent thickness as depicted in Fig.8(a).The whole SRAM model is built as a matrix composed of 9×9 cells as shown in Fig.8(b).

    Fig.7.Scanning electron microscope cross-section by bulk CMOS SRAM technology.

    This model includes the metalizations,passivations,sensitive volume,and the substrate silicon. The incident direction of primary neutron is perpendicular to the top surface of the model. The incident position of the primary neutron is sampled from a uniform distribution at the top surface.The incident energy of the primary neutron is sampled from the neutron spectrum.A comprehensive set of physics lists are established to simulate the transportation and interaction of neutron and secondary particles. The hadronic interactions are described by thethe electromagnetic effect by the G4EmStandardNR,the decay process by the G4DecayPhysics,and the neutron interaction with the

    Fig.8. Geometrical model of Geant4 simulation:(a)single memory cell and(b)multiple memory cells.

    The main parameters in the simulation are listed in Table 3.According to the scaling rule of the CMOS technology,the geometrical sizes of both the over-layers and sensitive volume change proportionally with the technology nodes.Used in the SEU analysis after the Geant4 simulation are two important parameters which are the critical charge and the deposited charge in the sensitive volume. The SEU criterion is based on a comparison between the critical charge quantity and the deposited charge quantity.If the deposited charge quantity exceeds the critical charge quantity,an SEU occurs,otherwise no SEU occurs.For example,a technology with a critical charge quantity of 30 fC is sensitive to every neutron that is able to deposit a charge quantity exceeding 30 fC.The calculation of the cross-section is first made by summing the number of neutrons that have deposited a charge quantity exceeding the critical charge quantity in the sensitive volume.This number is then statistically weighted and normalized with respect to the neutron fluence.

    The deposited charge quantity Qdepcan be calculated from the deposited ionization energy Edepthrough the following formula:

    where the two quantities Qdepand Edepare in unit C and unit eV,respectively,e is the electron charge:1.6×10?19C,the value 3.6 eV is the average energy to generate a hole–electron pair in silicon.

    The critical charge quantities for the simulation models are also listed in Table 3. The critical charge quantity of a memory cell depends on the circuit characteristics.The critical charge quantity can be estimated by the node capacitance multiplied with the critical voltage as shown in formula(3).The critical voltage as shown in formula(4),is assumed to be about half of the supply voltage. The node capacitance as shown in formula(5),depends on the length,width,gateoxide thickness of the MOS transistor.The width and length are proportional to the size of technology node.According to the analysis above,we assume that the critical charge is proportional to the supply voltage multiplied with the square of the technology node.Furthermore,the reasonable range of the critical charge quantity is estimated according to Refs.[9]–[11]by Lambert et al.and Ref.[12]by Baggio et al.Small adjustments of the critical charge quantity have been done in order to fit the experimental results

    where Qcritis the critical charge,Vcritis the critical voltage,C is the node capacitance,VGis the gate voltage which is equal to the supply voltage,εoxis the dielectric constant of the oxide,W is the width of the MOS transistor,L is the length of the MOS transistor,and toxis the thickness of the MOS transistor.

    Table 3.SEU simulation parameters.

    4.2.Comparison between simulation and experiment

    Figure 9 shows that the plots of simulated SEU cross-section versus critical charge quantity for XAPR neutrons,CSNS neutrons,2.5-MeV neutrons,and 14-MeV neutrons. The critical charge quantity is the minimum deposited charge quantity which is needed to cause an upset.According to this figure,as the critical charge quantity increases,the number of particles can deposit a charge quantity more than as the critical charge quantity decreases and the SEU cross-sections will then decrease.

    Fig.9.Plots of simulated SEU cross-section versus critical charge for four types of neutron energy:(a)XARP neutrons,(b)CSNS neutrons,(c)2.5-MeV neutrons,and(d)14-MeV neutrons.

    For different technology nodes,the SEU cross-sections are determined(see red points in Fig.9)by using the critical charge quantity in Table 3. The critical charge quantity depends on not only the technology nodes but also the supply voltage. A supply voltage(3.3 V)is applied to each of the 40-nm to 350-nm SRAM devices and the critical charge quantity decreases only with the number of technology nodes.Meanwhile,the sensitive volume also decreases with the size of technology nodes decreasing,leading the deposited charge quantity to decrease in the sensitive volume.Consequently,the SEU cross-section depends on both the critical charge quantity and the deposited charge quantity in the sensitive volume.According to Fig.9,for the technology nodes from 40 nm to 350 nm,the SEU cross-sections decrease with the size of technology node decreasing.This trend indicates the influence exerted by the deposited charge quantity on the cross-section exceeds the influence by the critical charge quantity.However,the SEU cross-sections of 500 nm becomes lower than that of the 350 nm due to the higher supply voltage of 500-nm SEU(5 V)causing an overlarge critical charge quantity.

    Fig.10. Comparison between simulation and experimental SEU crosssections.

    The comparison between simulation and experimental results of neutron-induced SEU cross-section is shown in Fig.10.The simulated SEU cross-sections are consistent with those obtained experimentally.The deviation between simulation and experiment turns larger with the scaling down of technology nodes for 2.5-MeV neutrons,14-MeV neutrons,and XAPR neutrons.A plausible explanation of this trend is that the geometrical dimensions and the critical charges in Table 3 are not very precise only by the empirical formula,especially for 90-nm,65-nm,and 40-nm SRAM.More precise model parameters for the technology nodes less than 90 nm are needed to further improve the simulation accuracy.Moreover,the uncertainty of CSNS and XAPR neutron spectrum also lead to a discrepancy between the simulation and experiment.Although the deviation does exist,the simulated SEU cross-section decreases with the technology node size decreasing from 350 nm to 40 nm.The 14-MeV neutrons induce the maximum SEU cross-section,followed by CSNS neutron,2.5-MeV neutron,and XAPR neutron in sequence.These variation trends of SEU cross-section with incident neutron energy are in good accordance with the experimental results.

    4.3.Analysis of secondary ion species

    The relative contributions of secondary ion species to the total SEU are shown in Fig.11.It is quite clear that the incident neutron spectrum has a significant influence on the contribution of secondary ion species.The proton,alpha,25Mg,27Al,28Si,and16O make the main contributions to SEU for CSNS neutrons and 14-MeV neutrons,and the28Si and16O for XAPR neutrons and 2.5-MeV neutrons.The 14-MeV neutrons and CSNS neutrons could generate more kinds of secondary particles to cause SEU than the XAPR neutrons and 2.5-MeV neutrons. The simulation and experimental results show that the 14-MeV neutrons and CSNS neutrons can induce very high SEU cross-sections,which implies that the high-energy neutrons(high energy part of CSNS neutrons and 14-MeV neutrons)tend to generate both light particles(proton and alpha)and multiple types of heavy particles(25Mg,27Al,28Si,and16O)to cause ultra-high SEU sensitivity On the contrary,low-energy neutrons(XAPR and 2.5-MeV neutrons)mainly generate heavy secondary particles(28Si and16O)to cause SEU effects. The energy dependence can be further analyzed by the nuclear reaction channels and corresponding neutron threshold energy in Table 4. The high-energy neutrons have more nuclear reaction channels to generate more secondary particles.Secondary alphas and protons can be generated from the reaction between 14-MeV neutrons and all the nuclides(Si,O,N,Al,Ti,W)in the memory cell.However,for 2.5-MeV neutrons,only the reactions with N and Ti nuclides can generate alphas,and the reactions with Al and Ti nuclides can produce protons. As shown in Fig.11,alphas and protons make significant contributions to SEU especially in smallsize SRAMs for 14-MeV neutrons,but few contributions for 2.5-MeV neutrons.Since the proportion of high energy band of CSNS neutron spectrum is much higher than that of XAPR neutron spectrum,the contributions of alphas and protons by CSNS are much greater than those of alphas and protons by XAPR.

    In Fig.11,the technology nodes also have an influence on the contribution of secondary ion species. For 2.5-MeV neutrons,the contribution of28Si particles to SEU tends to decrease with the technology downscaling(0.86 for 500 nm,0.82 for 350 nm,0.79 for 130 nm,0.74 for 90 nm,0.7 for 65 nm,0.63 for 40 nm).Meanwhile,the contribution of16O particles to SEU tends to increase with the technology downscaling(0.08 for 500 nm,0.12 for 350 nm,0.14 for 130 nm,0.2 for 90 nm,0.24 for 65 nm,0.31 for 40 nm).For 14-MeV neutrons,the contribution of both alphas and protons to SEU tend to increase with the technology downscaling. In large size SRAMs,the LET threshold to cause SEU is very large,and the SEU effect is thus mainly caused by heavy particles due to their high LET.In smallsize SRAM,the LET threshold to cause SEU is low,and in this case the protons and alphas can make considerable contribution.

    Fig.11.Contribution of secondary ion species to SEU for different neutron spectra:(a)500-nm SRAM,(b)350-nm SRAM,(c)130-nm SRAM,(d)90-nm SRAM,(e)65-nm SRAM,and(f)40-nm SRAM.

    Table 4. Neutron reaction channels,threshold energy,maximum cross-sections,and corresponding neutron energy.The unit 1 barn=10?24 cm2.

    Table 4. (continued)

    To in depth understand the contributions of secondary ion species to SEU effect,it is helpful to study the range and LET of the neutron-induced secondary particles. The range is an important parameter to determine whether the particle reaches the sensitive region from the position where it has been generated.Figure 12 indicates the range of secondary particles.As shown in this figure,the range of each particle increases with the energy increasing.The light particles(alpha,proton and deuteron)have a larger range than heavy particles(C,O,Mg,Al,and Si). Consequently,the light particles have a higher probability to reach the sensitive region.The LET is another important parameter to describe the energy loss of a particle per unit length and unit target mass.

    Fig.12.Range of secondary ion species versus energy in silicon.

    Figure 13 shows the LET of secondary particles.For each particle,the LET first rises with its energy increasing and then begins to decline after a peak value.Compared with the light particles,the heavy particles can induce great LET in the sensitive volume.

    Fig.13.LET of secondary ion species versus energy in silicon.

    5.Conclusions and perspectives

    Spallation,reactor,and monoenergetic neutrons are utilized to experimentally study the neutron-induced SEU testing on commercial SRAMs with technology nodes from 40 nm to 500 nm.The SEU cross-section strongly depends on both the technology node size and the incident neutron energy.For the SRAMs with the technology nodes from 40 nm to 350 nm,the SEU cross-section decreases with the scaling down of technology node. The higher supply voltage enhances the critical charge quantity of the 500-nm SRAM and thus reduces its SEU cross-section to some extent.The 14-MeV neutron induces the maximum SEU cross-section,followed by CSNS neutron,2.5-MeV neutron and XAPR neutron in sequence.Kerma factors are calculated to compare the SEU sensitivities due to different neutron spectra by their ionization energy deposit.Importantly,the SEU sensitivity induced by low-energy neutron significantly increases with the technology integration.Moreover,the byte patterns of the SRAM devices have no influence on the SEU cross-section due to the symmetry of the two-inverters circuit structure and bias state. The experimental results show that the neutron fluence rate has no influence on the SEU cross-section either.

    The simulation approach with Monte-Carlo toolkit Geant4 is established to analyze the neutron-induced SEU effects.The trend for each of the simulated SEU cross-sections is consistent with that of the experimental data.The geometrical dimensions of the cell area and the sensitive volume are determined by the technology nodes according to the scaling rule of the CMOS technology.The critical charge quantity is estimated by the node capacitance multiplied with the critical voltage.The geometrical dimensions and the critical charge quantity allow us to understand the mechanism of the significant influence of the evolution of technology nodes on the neutron-induced SEU sensitivity.

    The SEU sensitivity difference caused by different neutron spectra can be explained by the contributions of secondary ion species to the SEU.The light particles can be generated only by the high-energy part of the incident neutrons over the threshold energy of the nuclear reactions.Compared with the heavy particles,the light particles have long range but low LET.The simulation data show that high-energy neutrons mainly generate more proton and alpha particles to cause ultrahigh SEU sensitivity,and low-energy neutrons mainly generate28Si and16O particles to cause SEU effect.Meanwhile,the technology nodes also have an influence on the contribution of secondary ion species.

    The experimental and simulation data provide general trends and physical mechanism for SEU sensitivity with respect to the technology downscaling and the incident neutron energy.For hardness assurance,the SEU dependence must be taken into account through a comprehensive technology nodes and neutron spectrum qualification.Neutron irradiation tests should offer the characterizations of SEU effects induced by low-energetic neutrons as well as high-energy neutrons.

    Acknowledgment

    The authors would like to express sincere appreciation to the collaborators for their contributions,particularly Jing-Yu Tang and Zhi-Xin Tan at CSNS and Guang-Ning Zhu and Qiang Zhang at XAPR.

    猜你喜歡
    劉巖陳偉李俊
    劉巖、張楠作品
    航天員是如何選拔訓(xùn)練的?
    軍事文摘(2021年20期)2021-11-10 01:58:52
    吹畫
    陳偉教授簡(jiǎn)介
    李俊彥
    A Brief Analysis On How To Improve Students’ Participation Enthusiasm In Classroom
    陳偉博士簡(jiǎn)介
    李俊邑
    Recent Progress in Heavy Fuel Aviation Piston Engine
    一次難忘的班級(jí)辯論
    国产高清videossex| 丝袜人妻中文字幕| 国产无遮挡羞羞视频在线观看| 1024视频免费在线观看| www.999成人在线观看| 精品一区二区三区视频在线观看免费 | 一级黄色大片毛片| 麻豆国产av国片精品| 日本黄色日本黄色录像| 美女视频免费永久观看网站| 精品少妇久久久久久888优播| 国产欧美日韩综合在线一区二区| 成人国产一区最新在线观看| 91精品国产国语对白视频| 女警被强在线播放| 国产成人精品久久二区二区91| 国产一区二区三区综合在线观看| 亚洲熟妇中文字幕五十中出 | 十八禁高潮呻吟视频| 亚洲欧美精品综合一区二区三区| 黄片播放在线免费| 国产片内射在线| 午夜久久久在线观看| 在线观看免费日韩欧美大片| 午夜免费成人在线视频| 久久精品亚洲熟妇少妇任你| 怎么达到女性高潮| 嫁个100分男人电影在线观看| 在线观看一区二区三区激情| 成人特级黄色片久久久久久久| 一边摸一边抽搐一进一出视频| 亚洲色图综合在线观看| 久久久久国产一级毛片高清牌| 久久久久久久午夜电影 | 最新美女视频免费是黄的| 国产精品美女特级片免费视频播放器 | 香蕉丝袜av| 国产不卡av网站在线观看| 一级a爱片免费观看的视频| 精品少妇一区二区三区视频日本电影| 日韩欧美在线二视频 | 午夜激情av网站| 又黄又粗又硬又大视频| 一级作爱视频免费观看| 欧美日韩黄片免| 国产精华一区二区三区| 最近最新中文字幕大全免费视频| 另类亚洲欧美激情| 在线观看免费高清a一片| 亚洲五月婷婷丁香| 老司机影院毛片| 黄色视频不卡| 日韩三级视频一区二区三区| 国产精品香港三级国产av潘金莲| 嫩草影视91久久| 999精品在线视频| 欧美亚洲日本最大视频资源| 纯流量卡能插随身wifi吗| 在线观看免费视频网站a站| 麻豆乱淫一区二区| 国产精品久久久久成人av| 免费在线观看视频国产中文字幕亚洲| 大片电影免费在线观看免费| 黄片大片在线免费观看| 日韩视频一区二区在线观看| 黄色女人牲交| av天堂在线播放| 侵犯人妻中文字幕一二三四区| 精品高清国产在线一区| 色尼玛亚洲综合影院| 国产区一区二久久| 久久精品91无色码中文字幕| 亚洲精品久久成人aⅴ小说| 欧美在线黄色| 日本欧美视频一区| 国产精品久久电影中文字幕 | 天堂中文最新版在线下载| 久久国产精品大桥未久av| 欧美日韩乱码在线| 天堂动漫精品| 久久国产乱子伦精品免费另类| 免费在线观看影片大全网站| 韩国精品一区二区三区| 免费看a级黄色片| 在线观看免费视频网站a站| 身体一侧抽搐| 国产欧美日韩综合在线一区二区| 国产亚洲欧美在线一区二区| 美女高潮到喷水免费观看| 少妇被粗大的猛进出69影院| 免费日韩欧美在线观看| 久久 成人 亚洲| 高潮久久久久久久久久久不卡| av一本久久久久| 一级毛片女人18水好多| 老鸭窝网址在线观看| 高清视频免费观看一区二区| 亚洲国产毛片av蜜桃av| 人人妻,人人澡人人爽秒播| 国产在线一区二区三区精| 热99国产精品久久久久久7| 一本大道久久a久久精品| 色播在线永久视频| 久久久久久久久免费视频了| av天堂久久9| 亚洲人成电影免费在线| 天天操日日干夜夜撸| 国产精品久久视频播放| 国产精品99久久99久久久不卡| 99热网站在线观看| 一区在线观看完整版| av福利片在线| 久久精品亚洲av国产电影网| 日本a在线网址| 成人免费观看视频高清| 1024香蕉在线观看| 亚洲第一av免费看| 男人舔女人的私密视频| 亚洲成人免费av在线播放| a级片在线免费高清观看视频| 亚洲中文av在线| 高清毛片免费观看视频网站 | 午夜福利欧美成人| 日韩熟女老妇一区二区性免费视频| 捣出白浆h1v1| 久久天堂一区二区三区四区| 成人国产一区最新在线观看| 水蜜桃什么品种好| 无限看片的www在线观看| 看黄色毛片网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产中文字幕在线视频| 精品久久蜜臀av无| 首页视频小说图片口味搜索| 精品久久久久久电影网| 国产区一区二久久| 夜夜夜夜夜久久久久| 亚洲avbb在线观看| 男女高潮啪啪啪动态图| 亚洲熟女精品中文字幕| 亚洲性夜色夜夜综合| 亚洲av美国av| 国产一区有黄有色的免费视频| 国产精品国产av在线观看| 视频区欧美日本亚洲| 国产成人精品无人区| 天天添夜夜摸| 黄色视频不卡| 在线看a的网站| 免费观看a级毛片全部| 可以免费在线观看a视频的电影网站| 99久久精品国产亚洲精品| 十八禁人妻一区二区| 在线看a的网站| 亚洲精品中文字幕一二三四区| 18在线观看网站| 欧美日韩成人在线一区二区| videosex国产| 日韩成人在线观看一区二区三区| 欧美黑人精品巨大| 捣出白浆h1v1| 精品免费久久久久久久清纯 | 女人被狂操c到高潮| 男女高潮啪啪啪动态图| 两个人看的免费小视频| 久久人人爽av亚洲精品天堂| 王馨瑶露胸无遮挡在线观看| 91精品国产国语对白视频| 国产精品一区二区在线不卡| 两个人看的免费小视频| 真人做人爱边吃奶动态| 色综合欧美亚洲国产小说| 正在播放国产对白刺激| 久久午夜综合久久蜜桃| 欧美另类亚洲清纯唯美| 窝窝影院91人妻| 国产乱人伦免费视频| ponron亚洲| 国产精品国产av在线观看| 他把我摸到了高潮在线观看| 男女午夜视频在线观看| 欧美日韩黄片免| 无限看片的www在线观看| 法律面前人人平等表现在哪些方面| 精品国产一区二区久久| 亚洲av欧美aⅴ国产| 久久精品熟女亚洲av麻豆精品| 岛国在线观看网站| 国产精品永久免费网站| 久久久国产成人免费| 两性夫妻黄色片| 国产伦人伦偷精品视频| 亚洲性夜色夜夜综合| 极品少妇高潮喷水抽搐| 不卡一级毛片| 手机成人av网站| 午夜福利影视在线免费观看| 成人18禁在线播放| 成人三级做爰电影| 亚洲黑人精品在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久久久99蜜臀| 一本一本久久a久久精品综合妖精| 国产一卡二卡三卡精品| 亚洲av第一区精品v没综合| 亚洲av欧美aⅴ国产| 黄片大片在线免费观看| 99riav亚洲国产免费| 国产精品久久视频播放| 国产精品成人在线| 波多野结衣一区麻豆| 一进一出抽搐动态| 十分钟在线观看高清视频www| 国产97色在线日韩免费| 高清av免费在线| 一区二区三区国产精品乱码| 又紧又爽又黄一区二区| av线在线观看网站| 亚洲欧美精品综合一区二区三区| 手机成人av网站| 亚洲精品中文字幕在线视频| av欧美777| 岛国毛片在线播放| 精品免费久久久久久久清纯 | x7x7x7水蜜桃| 国产精品久久电影中文字幕 | 国产视频一区二区在线看| 在线观看66精品国产| 在线十欧美十亚洲十日本专区| 国产免费男女视频| 咕卡用的链子| 久久婷婷成人综合色麻豆| 大型黄色视频在线免费观看| 欧美日韩黄片免| 丰满饥渴人妻一区二区三| 欧美乱色亚洲激情| 国产精品国产高清国产av | 欧美日韩福利视频一区二区| 国产成人一区二区三区免费视频网站| 亚洲人成电影免费在线| 亚洲精品国产色婷婷电影| 亚洲色图综合在线观看| 国产精品久久久久成人av| 欧美日韩黄片免| 国产av一区二区精品久久| 亚洲成av片中文字幕在线观看| 91成年电影在线观看| 大香蕉久久成人网| 亚洲免费av在线视频| www.熟女人妻精品国产| 91在线观看av| 亚洲精品中文字幕在线视频| 欧美+亚洲+日韩+国产| 精品视频人人做人人爽| 日本a在线网址| 亚洲人成伊人成综合网2020| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 久久久久久人人人人人| 在线观看www视频免费| 男人舔女人的私密视频| 婷婷精品国产亚洲av在线 | 精品无人区乱码1区二区| 免费av中文字幕在线| 后天国语完整版免费观看| 麻豆国产av国片精品| 欧美成人免费av一区二区三区 | av不卡在线播放| 男人舔女人的私密视频| 欧美日本中文国产一区发布| 狠狠婷婷综合久久久久久88av| 国产黄色免费在线视频| 老司机午夜福利在线观看视频| 精品高清国产在线一区| 999久久久精品免费观看国产| 精品国产美女av久久久久小说| 国产在线精品亚洲第一网站| 窝窝影院91人妻| 亚洲国产欧美日韩在线播放| 午夜福利欧美成人| 日韩三级视频一区二区三区| 久久久久久久久久久久大奶| 欧美日韩一级在线毛片| 亚洲精品久久午夜乱码| 精品国产亚洲在线| 国产午夜精品久久久久久| 这个男人来自地球电影免费观看| 大型av网站在线播放| 久99久视频精品免费| 多毛熟女@视频| 老熟妇乱子伦视频在线观看| 亚洲欧美色中文字幕在线| 岛国毛片在线播放| 视频在线观看一区二区三区| 无人区码免费观看不卡| 成人18禁在线播放| 亚洲av成人一区二区三| 一级黄色大片毛片| 亚洲伊人色综图| 亚洲成人国产一区在线观看| 中文字幕人妻丝袜制服| 国产av又大| 久久久久国产一级毛片高清牌| 人人澡人人妻人| 亚洲午夜精品一区,二区,三区| 亚洲少妇的诱惑av| 国产精品九九99| 嫁个100分男人电影在线观看| 男女高潮啪啪啪动态图| 亚洲三区欧美一区| 欧美黑人欧美精品刺激| 亚洲熟女精品中文字幕| 熟女少妇亚洲综合色aaa.| 99国产精品99久久久久| 麻豆乱淫一区二区| 午夜福利视频在线观看免费| 免费观看人在逋| 欧美成人免费av一区二区三区 | 97人妻天天添夜夜摸| 欧美+亚洲+日韩+国产| 亚洲精品自拍成人| 别揉我奶头~嗯~啊~动态视频| 性少妇av在线| 成年女人毛片免费观看观看9 | 成人18禁在线播放| 精品无人区乱码1区二区| 国产熟女午夜一区二区三区| 国产区一区二久久| 黄色毛片三级朝国网站| 少妇粗大呻吟视频| 亚洲熟妇熟女久久| 99香蕉大伊视频| 久久人妻av系列| 国产精品一区二区精品视频观看| 国产免费av片在线观看野外av| 国产精华一区二区三区| 国产精品 欧美亚洲| 国产亚洲精品一区二区www | 国产午夜精品久久久久久| 国产成人av教育| 午夜91福利影院| 天天影视国产精品| 少妇裸体淫交视频免费看高清 | 最新美女视频免费是黄的| 国产亚洲精品久久久久久毛片 | 亚洲国产中文字幕在线视频| 欧美久久黑人一区二区| 一边摸一边做爽爽视频免费| 他把我摸到了高潮在线观看| 大型av网站在线播放| 少妇的丰满在线观看| 亚洲一区中文字幕在线| 亚洲精品一二三| 久久香蕉激情| 亚洲av成人一区二区三| 飞空精品影院首页| 国产欧美亚洲国产| 精品久久久久久电影网| 欧美 亚洲 国产 日韩一| 国产不卡一卡二| 欧美日韩成人在线一区二区| 91大片在线观看| 精品少妇一区二区三区视频日本电影| 亚洲欧美色中文字幕在线| а√天堂www在线а√下载 | 成人av一区二区三区在线看| 波多野结衣av一区二区av| 久久亚洲精品不卡| 欧美日韩成人在线一区二区| 久久影院123| 亚洲av成人一区二区三| 好看av亚洲va欧美ⅴa在| 久久精品亚洲精品国产色婷小说| av电影中文网址| 麻豆乱淫一区二区| 国产精品影院久久| a级片在线免费高清观看视频| 日韩视频一区二区在线观看| 少妇裸体淫交视频免费看高清 | 午夜福利影视在线免费观看| 欧美性长视频在线观看| 一边摸一边抽搐一进一出视频| 高清欧美精品videossex| 一边摸一边抽搐一进一出视频| 少妇 在线观看| 精品一区二区三区视频在线观看免费 | 看片在线看免费视频| 王馨瑶露胸无遮挡在线观看| 老司机亚洲免费影院| 黑人巨大精品欧美一区二区mp4| 国产日韩欧美亚洲二区| 久久中文字幕人妻熟女| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美网| 在线视频色国产色| 亚洲av熟女| 在线播放国产精品三级| 国产一区二区三区视频了| 香蕉丝袜av| 欧美大码av| 国产成人欧美| 精品国产乱码久久久久久男人| 国产97色在线日韩免费| 亚洲自偷自拍图片 自拍| 嫩草影视91久久| 国产一区二区三区在线臀色熟女 | 国产成人欧美在线观看 | 老鸭窝网址在线观看| 日日摸夜夜添夜夜添小说| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 日韩欧美在线二视频 | 99riav亚洲国产免费| 看黄色毛片网站| 一区二区日韩欧美中文字幕| 亚洲av电影在线进入| 一夜夜www| 欧美一级毛片孕妇| 亚洲五月色婷婷综合| 久久香蕉国产精品| 成人三级做爰电影| 亚洲欧美激情在线| 日韩视频一区二区在线观看| 法律面前人人平等表现在哪些方面| 国产亚洲精品久久久久久毛片 | 亚洲成a人片在线一区二区| 精品福利观看| 天堂√8在线中文| bbb黄色大片| 不卡av一区二区三区| 三上悠亚av全集在线观看| 一个人免费在线观看的高清视频| 久久久久视频综合| 黄色成人免费大全| 五月开心婷婷网| av网站在线播放免费| 又黄又爽又免费观看的视频| 欧美老熟妇乱子伦牲交| 亚洲免费av在线视频| 国产亚洲精品久久久久久毛片 | 成人影院久久| 成人av一区二区三区在线看| 丝袜美腿诱惑在线| 两个人看的免费小视频| 午夜影院日韩av| 久久精品亚洲av国产电影网| 欧美乱码精品一区二区三区| 美女午夜性视频免费| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 老熟妇仑乱视频hdxx| 男人的好看免费观看在线视频 | 丰满人妻熟妇乱又伦精品不卡| 中文字幕精品免费在线观看视频| 高清视频免费观看一区二区| 中出人妻视频一区二区| 欧美日韩黄片免| 国产免费现黄频在线看| 成人国语在线视频| 水蜜桃什么品种好| 成人免费观看视频高清| 成熟少妇高潮喷水视频| 黑人巨大精品欧美一区二区蜜桃| 高清毛片免费观看视频网站 | a级毛片在线看网站| 成人18禁高潮啪啪吃奶动态图| 日韩中文字幕欧美一区二区| 国产亚洲欧美在线一区二区| 色综合欧美亚洲国产小说| 国产视频一区二区在线看| av有码第一页| 亚洲avbb在线观看| 免费在线观看影片大全网站| 日韩欧美免费精品| 黄色丝袜av网址大全| 好男人电影高清在线观看| 99国产精品一区二区蜜桃av | 一区福利在线观看| 午夜精品久久久久久毛片777| 亚洲一区二区三区不卡视频| av视频免费观看在线观看| 免费在线观看亚洲国产| 麻豆成人av在线观看| 黄频高清免费视频| 99精品在免费线老司机午夜| 久久久精品免费免费高清| 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| 69av精品久久久久久| 精品国内亚洲2022精品成人 | 欧美老熟妇乱子伦牲交| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 中亚洲国语对白在线视频| 一本大道久久a久久精品| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美| 人妻 亚洲 视频| 精品久久蜜臀av无| 日韩欧美国产一区二区入口| 免费看十八禁软件| 欧美日韩国产mv在线观看视频| 人人妻人人爽人人添夜夜欢视频| 女人被狂操c到高潮| 精品电影一区二区在线| 在线观看免费日韩欧美大片| 激情在线观看视频在线高清 | 怎么达到女性高潮| 国产一区有黄有色的免费视频| 国产av又大| 欧美日韩瑟瑟在线播放| 啦啦啦 在线观看视频| svipshipincom国产片| 国产一区有黄有色的免费视频| 女警被强在线播放| 久久久久久免费高清国产稀缺| 国产伦人伦偷精品视频| 亚洲精品久久午夜乱码| 欧美在线黄色| 日韩大码丰满熟妇| 又黄又粗又硬又大视频| 一区福利在线观看| 国产精品成人在线| 久久国产亚洲av麻豆专区| 新久久久久国产一级毛片| 51午夜福利影视在线观看| 精品午夜福利视频在线观看一区| 欧美不卡视频在线免费观看 | 亚洲精品在线美女| 岛国毛片在线播放| 可以免费在线观看a视频的电影网站| 在线十欧美十亚洲十日本专区| 在线观看一区二区三区激情| 狠狠狠狠99中文字幕| 在线播放国产精品三级| 午夜视频精品福利| 国产有黄有色有爽视频| 亚洲第一欧美日韩一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久综合精品五月天人人| 一级黄色大片毛片| 久久精品人人爽人人爽视色| 成人18禁高潮啪啪吃奶动态图| 他把我摸到了高潮在线观看| 亚洲avbb在线观看| 国产成人系列免费观看| 免费在线观看亚洲国产| 亚洲专区中文字幕在线| 欧美精品一区二区免费开放| 少妇 在线观看| av网站免费在线观看视频| www日本在线高清视频| 亚洲精品中文字幕一二三四区| 亚洲一区二区三区不卡视频| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| √禁漫天堂资源中文www| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 亚洲少妇的诱惑av| 精品久久久久久电影网| 亚洲精品在线观看二区| x7x7x7水蜜桃| 亚洲伊人色综图| 性少妇av在线| 男女午夜视频在线观看| 精品一区二区三区四区五区乱码| 久久久久久人人人人人| 如日韩欧美国产精品一区二区三区| 亚洲熟女毛片儿| 又大又爽又粗| 一级黄色大片毛片| a在线观看视频网站| 日韩中文字幕欧美一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲熟女毛片儿| 亚洲熟女精品中文字幕| 国产无遮挡羞羞视频在线观看| 亚洲五月婷婷丁香| 麻豆乱淫一区二区| 国产成人影院久久av| 亚洲熟女毛片儿| 国产精华一区二区三区| 丰满饥渴人妻一区二区三| 两性夫妻黄色片| 12—13女人毛片做爰片一| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 久久久国产成人免费| 亚洲精品国产区一区二| 欧美成狂野欧美在线观看| 亚洲中文字幕日韩| 桃红色精品国产亚洲av| 亚洲精品在线美女| 欧美人与性动交α欧美精品济南到| 国产一区二区三区视频了| 别揉我奶头~嗯~啊~动态视频| 老熟妇仑乱视频hdxx| bbb黄色大片| 日韩欧美国产一区二区入口| 美女 人体艺术 gogo| 国产欧美日韩一区二区三区在线| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美日韩在线播放| 激情视频va一区二区三区| 国产精华一区二区三区| 动漫黄色视频在线观看| 制服诱惑二区| 国产高清视频在线播放一区| 国产精品美女特级片免费视频播放器 | 99久久精品国产亚洲精品| 乱人伦中国视频| 国产97色在线日韩免费| 国产一区有黄有色的免费视频|