• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings?

    2019-11-06 00:44:40ChaoWu吳超YingwenLiu劉英文XiaowenGu顧曉文ShichuanXue薛詩川XinxinYu郁鑫鑫YuechanKong孔月嬋XiaogangQiang強曉剛JunjieWu吳俊杰ZhihongZhu朱志宏andPingXu徐平
    Chinese Physics B 2019年10期
    關(guān)鍵詞:徐平俊杰英文

    Chao Wu(吳超), Yingwen Liu(劉英文),Xiaowen Gu(顧曉文),Shichuan Xue(薛詩川) Xinxin Yu(郁鑫鑫),Yuechan Kong(孔月嬋),Xiaogang Qiang(強曉剛),Junjie Wu(吳俊杰),Zhihong Zhu(朱志宏),and Ping Xu(徐平),3,?

    1Institute for Quantum Information and State Key Laboratory of High Performance Computing,College of Computer,College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    2Science and Technology on Monolithic Integrated Circuits and Modules Laboratory,Nanjing Electronic Devices Institute,Nanjing 210016,China

    3National Laboratory of Solid State Microstructures and School of Physics,Nanjing University,Nanjing 210093,China

    Keywords:silicon resonators,four-wave mixing,Mach–Zehnder interferometer

    1.Introduction

    Four-wave mixing (FWM), a typical nonlinear optical frequency conversion process,has applications in alloptical processing,[1,2]such as wavelength conversion,[3]phase conjugation,[4]optical parametric amplification,[5]optical sampling,[6]and entangled photon pair generation.[7]The silicon-on-insulator(SOI)offers an appealing platform for four-wave mixing since it is compatible with electronic manufacturing[8]and it also contains a high refractive index contrast[9]and the significant third-order susceptibility.[10]In particular,silicon microrings that limit both transverse and longitudinal optical modes in micron scale and provide resonant enhancement of the nonlinear parametric process,can drastically increase FWM efficiency under a relatively low pump power of several microwatt.[2,3,9,11–15]

    To produce the strongest resonant enhancement of FWM efficiency,the microrings’coupling conditions for the four interacting wave play a key role.For the continuous wave(CW)pumped FWM,the microring should be operated at the critical point that is the round-trip loss of the microring equals its power coupling coefficient.[16,17]However,the optimal coupling condition of the pulse pumped FWM should be a different case,because there is a tradeoff between the coupled pump power and the enhancement factor since the higher coupled pump power requires a large resonant linewidth while the overall enhancement factor gets maximized with a narrow resonant linewidth at the critically coupling condition.Thus,an overcoupled condition for the pulse pump is expected while for the converted idler beam the coupling condition may differ since the tradeoff lies in the enhancement factor and extraction efficiency from the ring.However,there are lack of theoretical studies that can formulate the pulse pumped FWM.Experimentally,a single bus waveguide coupled microring resonator or dual-bus microring are usually adopted to perform the FWM process study[18,19]and the efficiency is usually optimized by proper design of the coupling gap between the bus waveguide and the ring.However,these designs can not control the coupling condition of the pump and signal/idler beams independently.

    Herein,we derive and formulate the optimal coupling condition for the pulse pumped FWM through the coupledmode equation in frequency domain,which shows the different overcoupling condition of the pump and idler beams should be satisfied for approaching the maximum efficiency.In experiments we design and adopt dual Mach–Zehnder interferometer coupled silicon microrings which allow for the pump and signal/idler beams being operated at specific coupling condition independently.The experimental results agree well with the theoretical predictions.

    2.Theory

    Assuming undepleted pump and signal when generating the idler,the conversion efficiency of resonance enhanced FWM under CW pump follows the model from Ref.[3]

    where the efficiency is defined by the ratio of the on-chip idler power over the signal power,γ is the effective nonlinearity,Ppis the pump power,vgis the microrings’group velocity,Fvis the amplitude enhancement factor with ωvand ?vbeing the beam’frequency and its resonant frequency,the extrinsic and intrinsic decay rates are defined by rext=vgk/2L and rint=vgα/2 with k and α being the power coupling coefficient and round-trip loss,respectively,L is the circumference of the microring,and Leffis the effective length defined by

    where ?β is the phase mismatch defined by ?β=2βp?βs?βi?2γPp.

    Assuming the four waves are at resonance and their intrinsic quality factors defined bykeep invariant,the resonant enhancement for the FWM depends on the ratio between the intrinsic quality factor and extrinsic quality factor of the pump,signal,and idler respectively.As shown in Fig.1(a),the FWM efficiency will maximize at the critical coupling point for both the pump and signal/idler beams,namely,where the subscript p or s/i denotes the independent parameter of the pump or signal/idler and the extrinsic quality factor is given by

    Fig.1.The simulated FWM efficiency versus Qint,p/Qext,p and Qint,s/i/Qext,s/i for both the(a)CW pump and(b)pulse pump.

    The conversion efficiency for the pulse pumped FWM can be solved from the coupled-mode equation in the frequency domain

    where ap,as,and airepresent the pump,signal,and idler amplitudes in the cavity.Assuming the pump pulse has a Gaussian linewidth and the signal is a CW which is set to be on resonance,equation(3)could be solved as

    where

    is the pump line type,and σ is related to the frequency bandwidth as

    Just like the derivation of CW pumped FWM,we assume that the intrinsic quality factors of four interacting beams keep identical and the idler total quality factors are the same as the signal’s.Then,we calculate the conversion efficiency for the pulse pumped FWM with the pulse bandwidth at 0.17 nm,which is our pulse pump laser’s linewidth,as shown in Fig.1(b). Obviously,to obtain the maximum FWM efficiency,the pulse pump should be operated at the very overcoupling regime with Qint,p/Qext,p≈5.25;meanwhile,the converted idler beam should also be operated at the overcoupling regime but with a different condition of Qint,i/Qext,i≈1.75.So the optimal overcoupling points for the pump and idler beams are different. A specific novel design which can control the pump and idler’s coupling condition independently is highly desired.

    Fig.2.(a)Schematic of the dual-interferometer coupled microring.(b)The transmission spectra of the dual-interferometer coupled microring for the in-through side and add-drop side.

    Herein,we design a dual-interferometer coupled silicon microring as shown schematically in Fig.2. In 1995,a single interferometer coupled microring was proposed by Barbarossa et al.to suppress certain resonant mode.[20]Later on,several works have adopted such design for both classical and quantum applications.[21–25]Although the dual-interferometer coupled microrings have four ports like the dual-bus microrings,the difference is that each coupled waveguide forms an interferometer with the microring. Thus,the final operation condition of the ring is determined by the effective coupling coefficient given by the interferometer. If the two arms of the interferometer have a length difference ?L and equals half of the circumference of the microring,the period of interference spectra for the interferometer is twice of the free spectral range(FSR)of the cavity,which allows for every second resonance of the ring to be suppressed by tuning the interferometer’s phase.The transmission spectra of both in-through and add-drop sides are shown in Fig.2,which demonstrates that the resonance allowed by the in-through side will be suppressed by the add-drop side and the resonance allowed by the add-drop side will be suppressed by the in-through side.Then by coupling pump and the signal/idler from different sides,the coupling condition of the pump and signal/idler can be engineered separately. Assuming the two coupling points of the interferometer have the same gap,the effective coupling efficiency of the in-through side(side 1)or add-drop side(side 2)is only decided by this single power point coupling coefficient k1or k2associated with the gap g1or g2. In Fig.2,there are two different transmission spectra for the pump and idler beams under different power point coupling coefficient,respectively.

    3.Experiment

    A series of 12 dual-interferometer coupled silicon microrings were cascaded and fabricated on a single SOI chip,as shown in Fig.3.Each resonator has a radius of 28μm with the cross-section width and height at 500 nm and 220 nm,respectively. The coupling interferometer has the same radius with the ring and characterized by the single coupling gap which is 180 nm,210 nm,240 nm for the in-through side and 120 nm,150 nm,180 nm,210 nm,240 nm for the add-drop side. Totally 12 combinations listed in Table 1 were fabricated. Thermo-optic modulators were integrated on the microring and long arms of the interferometers to tune the resonance and interferometer phase separately,which ensured that only one of the resonator series was at resonance when measuring FWM efficiency.The silicon grating array was fabricated on the chip for coupling in and out the beams through the off-chip fiber array(FA),with a total coupling loss of 7.13 dB.The linear propagation loss was measured to be 4.23 dB/cm.

    Table 1 summarizes the key parameters of the cascaded resonators including the gap combination and quality factors. The quality factors for wavelengths of 1551.0 nm and 1544.6 nm are obtained from the in-through transmission spectra. Meanwhile,the quality factors of resonant wavelengths at 1552.4 nm and 1547.8 nm are obtained from the add-drop transmission spectra.The quality factors are calculated from the scanned transmission spectra using the formula

    where λ is the resonant wavelength,?λ and Γ denote the full width at half-maximum(FWHM)and the extinction ratio of the resonance,respectively.

    The experimental setup is sketched in Fig.3. The CW laser(Agilent 8164B with a tuning range of 1454–1641 nm and a linewidth of 50 MHz)or the pulse laser(PriTel Inc.FFLTW-60 MHz with a wavelength bandwidth of 0.17 nm)serves as the pump beam and another CW laser(Yenista Tunics T100s with a tuning range of 1500–1630 nm and a linewidth of 0.4 MHz)is used as the signal beam.The pump and the signal beam polarizations are controlled by two separate polarization controllers before they could reach the chip.The idler alongside the residual signal from the drop port are separated and filtered by a dense wavelength division multiplexer(DWDM).The resonance of the pump and signal is monitored by two power meters(PM).The average power of the converted idler is recorded by another PM.

    Fig.3.Experimental setup and the photograph of our dual-interferometer coupled silicon microrings.PC,polarization controller;DWDM,dense wavelength division multiplexer;FA,fiber array;PM,power meter.

    Table 1.Key parameters of the 12 dual-interferometer coupled silicon microrings and the raw FWM efficiency alongside the loss-subtracted efficiency,Q,Qext(×104).The column with the subscript ls represents the loss-subtracted conversion efficiency;CE,the conversion efficiency.The column with pulse1 or pulse 2 represents the pump coupled through the in or drop port,respectively.

    For the CW pump FWM experiment,the pump photons with wavelength at 1551.0 nm are input through the in port and the signal photons with wavelength at 1554.2 nm are input though the add port.The raw measured conversion efficiency for the CW pump FWM using the pump power of 268μW and the signal power of 118μW is listed in the sixth column of Table 1.It is unfair to directly compare the FWM efficiency of different resonators,since the on-chip propagation loss is not negligible and the optical path lengths of the pump,signal,and idler beams for the 12 cascaded resonators also differ from each other.By deducting the impact from the on-chip propagation loss,we give the loss-subtracted conversion efficiency,as listed in the seventh column of Table 1.The maximum efficiency of ?44.8 dB is achieved in the resonator with the gap combination of 240 nm of both interferometers. It is worth noted that here the pump power is set to be low so that no obvious two-photon absorption and free-carrier absorption are involved in this four-wave mixing.

    By substituting the quality factor in Table 1 to Eq.(1),we calculate the theoretical conversion efficiency,which agrees well with experimental results as shown in Fig.4(a). In order to analyze the optimal coupling condition for both the pump and signal,we focus on the key parameters of the ratio between the intrinsic and extrinsic quality factors,that is Qint,p/Qext,pand Qint,i/Qext,i. Deducting the contributions from the signal and idler’s enhancement factor and the pump’s intrinsic factor,the conversion efficiency scale withis in the following formwhere A is a constant for each resonator. Figure 4 shows the theoretical curve and experimental results,which demonstrates that when the pump beam approaches the critical coupling point,the FWM efficiency becomes higher. For comparing the conversion efficiency of the 12 dual-interferometer coupled silicon microrings with different idler coupling conditions,we deduct the contributions from the signal and pump’s enhancement factor and the idler’s intrinsic factor.The efficiency versusis given bywhere B is a constant for each resonator. Both theoretical and experimental results are shown in Fig.4,verifying that the idler should also be operated at the critical point for the maximum CW pump FWM efficiency.

    Fig.4. The CW pump FWM experiment. (a)The normalized conversion efficiency of both the experiment and calculation for the 12 resonators. (b)and(c)The normalized conversion efficiency versusand respectively.

    Then we substitute the CW pump laser by a pulse laser for the pulse pumped FWM experiment,as shown in Fig.3,while the seeding signal keeps unchanged.The average power of the pulse pumped is 60μW and the signal power is the same as that in the former experiment. Both the in-through side and add-drop side can be used to couple the pulse pump,thus as shown in Table 1 and Fig.5,each resonator has two FWM efficiencies obtained by coupling the pump through the in and add ports,respectively. The measured results consist with the calculated well,verifying that our deduced theory of pulse pumped FWM is effective and solid.For most resonators of the ensemble,the FWM efficiency using the add port as the pump coupling port is much higher than that using the in port as the coupling port. This is because those resonators have narrow coupling gaps for the add-drop side compared with the in-through side,namely,the resonant mode of the add-drop side is at the more overcoupling regime which is preferable for pulse pumped FWM.

    To demonstrate the overcoupling condition for both the pump and signal/idler more directly,we list the key resonator parameters and the corresponding FWM efficiency in Table 2.All of the data in the table are obtained by coupling the pulse pump through the drop port.The above three resonators have the coupling gaps of the in-through side fixed at 180 nm and the add-drop side fixed at 180 nm,150 nm,and 120 nm respectively to ensure that the signal and idler’s quality factors have the minimal difference when analyzing the FWM efficiency dependence on pump’s coupling conditions.As the ratio of Qint,p/Qext,pincrease from 1.31 to 5.55,the conversion efficiency also increases,which demonstrates that more overcoupled condition of the pump should be satisfied for higher FWM efficiency.The below three resonators with the coupling gap of the add-drop side fixed at 150 nm and the in-through side varying from 240 nm to 180 nm ensure that the coupling conditions for the pump are approximately the same.The conversion efficiency also increases when the idler beam varies from the undercoupling to overcoupling points,as listed in Table 2.We believe it is the first time to both theoretically and experimentally verify that the pump and idler should be operated at different overcoupling conditions for achieving the maximum pulse pumped FWM efficiency.

    Fig.5.The pulse pumped FWM experimental data.

    Table 2. Six groups of pulse pumped FWM efficiency by pumping through the drop port with the pump,signal,and idler wavelengths at 1547.8 nm,1544.6 nm,and 1551.0 nm,respectively.CE is the normalized conversion efficiency.

    4.Discussion and conclusion

    We design and fabricate a series of dual-interferometer coupled silicon microrings for independently controlling the pump and signal/idler’s quality factors. Both the CW and pulse pumped FWM experiments are carried out to verify the optimal coupling conditions for maximizing the FWM efficiency using our design. The critical coupling condition of the pump and signal/idler has been demonstrated for the CW pump FWM in this work.For the first time,we theoretically and experimentally demonstrate that the pulse pumped FWM efficiency can be optimized by independently tuning the pump and signal/idler at their appropriate overcoupling points.Additionally,the dual-interferometer coupled silicon microrings require a low pump power of microwatt scale for efficient FWM and can be integrated with a large density.Thus,it will enable practical use in the research field of on-chip all-optical signal processing.

    猜你喜歡
    徐平俊杰英文
    Improving the spectral purity of single photons by a single-interferometer-coupled microring
    Bandwidth-tunable silicon nitride microring resonators
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    屹立
    悅行(2019年7期)2019-09-10 07:22:44
    表演大師
    我的同桌
    英文摘要
    鄱陽湖學刊(2016年6期)2017-01-16 13:05:41
    英文摘要
    英文摘要
    財經(jīng)(2016年19期)2016-08-11 08:17:03
    徐平 肩負重任的北上
    中國汽車界(2016年1期)2016-07-18 11:13:34
    欧美激情在线99| 亚洲欧美精品综合久久99| 成人18禁在线播放| 一级毛片高清免费大全| www.色视频.com| 小蜜桃在线观看免费完整版高清| 免费av观看视频| 精品人妻一区二区三区麻豆 | 中文字幕人妻丝袜一区二区| 一级毛片高清免费大全| 五月伊人婷婷丁香| 两性午夜刺激爽爽歪歪视频在线观看| 人人妻人人看人人澡| 亚洲最大成人手机在线| 亚洲欧美日韩高清专用| 狂野欧美白嫩少妇大欣赏| 免费在线观看亚洲国产| 在线观看美女被高潮喷水网站 | 国产黄色小视频在线观看| 脱女人内裤的视频| 婷婷丁香在线五月| 亚洲在线观看片| 一级毛片高清免费大全| 色老头精品视频在线观看| 最近最新中文字幕大全电影3| 国产视频内射| 欧美绝顶高潮抽搐喷水| 成人特级av手机在线观看| 国产欧美日韩一区二区三| 每晚都被弄得嗷嗷叫到高潮| 欧美最新免费一区二区三区 | 国产蜜桃级精品一区二区三区| 好男人电影高清在线观看| 悠悠久久av| 在线观看66精品国产| 精品日产1卡2卡| 欧美乱码精品一区二区三区| 窝窝影院91人妻| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | а√天堂www在线а√下载| 亚洲国产精品sss在线观看| av在线蜜桃| 老司机福利观看| 99在线视频只有这里精品首页| a在线观看视频网站| 在线观看一区二区三区| av黄色大香蕉| 色综合婷婷激情| 日本与韩国留学比较| 不卡一级毛片| 此物有八面人人有两片| 国产一区二区三区视频了| 欧美不卡视频在线免费观看| 手机成人av网站| 99久久九九国产精品国产免费| 亚洲成av人片在线播放无| 1024手机看黄色片| 免费在线观看亚洲国产| 国产精品,欧美在线| 日韩有码中文字幕| 亚洲av免费高清在线观看| 嫩草影院精品99| 搡老妇女老女人老熟妇| 成人特级黄色片久久久久久久| 国语自产精品视频在线第100页| 欧美中文综合在线视频| 国产精品免费一区二区三区在线| 一本综合久久免费| 日韩国内少妇激情av| 成人永久免费在线观看视频| 亚洲欧美激情综合另类| 国产久久久一区二区三区| 久久久久免费精品人妻一区二区| 动漫黄色视频在线观看| 亚洲精品日韩av片在线观看 | 深夜精品福利| 少妇的逼好多水| 欧美色欧美亚洲另类二区| 嫩草影院入口| 色播亚洲综合网| 日韩亚洲欧美综合| 亚洲精品乱码久久久v下载方式 | 18禁国产床啪视频网站| 久久久久久久久久黄片| 琪琪午夜伦伦电影理论片6080| 精品国产美女av久久久久小说| 亚洲激情在线av| 国产精品精品国产色婷婷| 五月伊人婷婷丁香| 在线观看美女被高潮喷水网站 | 日韩av在线大香蕉| 嫩草影院精品99| 亚洲五月婷婷丁香| 国产亚洲av嫩草精品影院| 女人被狂操c到高潮| 午夜免费男女啪啪视频观看 | 老汉色av国产亚洲站长工具| 男插女下体视频免费在线播放| 国产黄色小视频在线观看| 三级毛片av免费| 国内精品久久久久精免费| 特级一级黄色大片| 亚洲国产日韩欧美精品在线观看 | 亚洲av电影在线进入| 天美传媒精品一区二区| 午夜激情福利司机影院| 成人亚洲精品av一区二区| 国产亚洲精品综合一区在线观看| 欧美区成人在线视频| 日本与韩国留学比较| 国产黄a三级三级三级人| 欧美性猛交╳xxx乱大交人| 久久6这里有精品| 少妇人妻精品综合一区二区 | 欧美午夜高清在线| 亚洲性夜色夜夜综合| 久久久久国内视频| 亚洲人成网站在线播| 欧美+日韩+精品| 日本五十路高清| 国产国拍精品亚洲av在线观看 | 丰满人妻熟妇乱又伦精品不卡| 91九色精品人成在线观看| 在线播放无遮挡| 精品不卡国产一区二区三区| 精品电影一区二区在线| 亚洲,欧美精品.| 久久6这里有精品| xxxwww97欧美| 亚洲成av人片在线播放无| 午夜福利在线观看免费完整高清在 | aaaaa片日本免费| 欧美一级毛片孕妇| 国产 一区 欧美 日韩| 精品福利观看| 欧美av亚洲av综合av国产av| 亚洲内射少妇av| 极品教师在线免费播放| 欧美色视频一区免费| 国产 一区 欧美 日韩| 757午夜福利合集在线观看| 国产毛片a区久久久久| 色哟哟哟哟哟哟| 久久精品国产亚洲av香蕉五月| 香蕉av资源在线| 久久久久久久久久黄片| 成人午夜高清在线视频| 国产高清有码在线观看视频| 18禁裸乳无遮挡免费网站照片| 亚洲人成伊人成综合网2020| 欧美另类亚洲清纯唯美| 啦啦啦免费观看视频1| 午夜福利高清视频| 国产av不卡久久| 国产精品自产拍在线观看55亚洲| 天天躁日日操中文字幕| svipshipincom国产片| 国产精品亚洲美女久久久| 在线观看av片永久免费下载| 97人妻精品一区二区三区麻豆| 久久久久久大精品| 日韩欧美精品免费久久 | bbb黄色大片| 天堂网av新在线| 在线天堂最新版资源| 色综合亚洲欧美另类图片| 老鸭窝网址在线观看| 国产视频内射| 99热这里只有是精品50| 日本黄大片高清| 国产精品免费一区二区三区在线| 听说在线观看完整版免费高清| 亚洲欧美精品综合久久99| 岛国在线观看网站| 婷婷精品国产亚洲av在线| 琪琪午夜伦伦电影理论片6080| 女警被强在线播放| 成人精品一区二区免费| 97碰自拍视频| 丰满的人妻完整版| 91在线精品国自产拍蜜月 | 亚洲色图av天堂| 全区人妻精品视频| 国产蜜桃级精品一区二区三区| 亚洲av一区综合| 亚洲五月婷婷丁香| 校园春色视频在线观看| 桃色一区二区三区在线观看| 麻豆一二三区av精品| 亚洲人成网站在线播放欧美日韩| 国产99白浆流出| 亚洲av免费在线观看| 91久久精品国产一区二区成人 | 丁香六月欧美| 白带黄色成豆腐渣| eeuss影院久久| 国产私拍福利视频在线观看| 国产精品 国内视频| 两个人视频免费观看高清| 国内精品美女久久久久久| 麻豆久久精品国产亚洲av| 亚洲乱码一区二区免费版| 午夜免费观看网址| 91麻豆精品激情在线观看国产| 欧美日韩中文字幕国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 国产淫片久久久久久久久 | 亚洲精品亚洲一区二区| 长腿黑丝高跟| 日本一二三区视频观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产淫片久久久久久久久 | 香蕉av资源在线| 18禁裸乳无遮挡免费网站照片| 欧美日韩亚洲国产一区二区在线观看| 99国产精品一区二区三区| 村上凉子中文字幕在线| 亚洲av电影在线进入| 听说在线观看完整版免费高清| 亚洲最大成人手机在线| 亚洲男人的天堂狠狠| 国产视频一区二区在线看| 男女下面进入的视频免费午夜| 欧美成人一区二区免费高清观看| 色尼玛亚洲综合影院| 国产精品98久久久久久宅男小说| 午夜福利18| 国产精品久久久人人做人人爽| 国产一区二区三区在线臀色熟女| 在线观看免费午夜福利视频| 禁无遮挡网站| 十八禁人妻一区二区| 国产aⅴ精品一区二区三区波| 亚洲av不卡在线观看| 国产精品野战在线观看| 国内少妇人妻偷人精品xxx网站| 九色成人免费人妻av| 最近在线观看免费完整版| 色尼玛亚洲综合影院| 熟女电影av网| 香蕉av资源在线| 国产久久久一区二区三区| 在线国产一区二区在线| 12—13女人毛片做爰片一| 日本五十路高清| 十八禁网站免费在线| 琪琪午夜伦伦电影理论片6080| 国产精华一区二区三区| 亚洲av不卡在线观看| 午夜视频国产福利| 精品人妻偷拍中文字幕| 人人妻人人看人人澡| 国产午夜精品论理片| 国产视频一区二区在线看| 亚洲乱码一区二区免费版| 国产精品免费一区二区三区在线| 亚洲精品久久国产高清桃花| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 欧美xxxx黑人xx丫x性爽| 一进一出好大好爽视频| 97超级碰碰碰精品色视频在线观看| 成人国产综合亚洲| 一个人免费在线观看的高清视频| 亚洲精品456在线播放app | 国产亚洲av嫩草精品影院| 中文字幕高清在线视频| 国内精品美女久久久久久| 精品久久久久久,| 国产黄色小视频在线观看| 久99久视频精品免费| 在线国产一区二区在线| 日本五十路高清| 亚洲av日韩精品久久久久久密| 日韩亚洲欧美综合| 免费在线观看成人毛片| 窝窝影院91人妻| 成年女人看的毛片在线观看| 男女下面进入的视频免费午夜| 久久6这里有精品| 国产成人啪精品午夜网站| 欧美激情久久久久久爽电影| 日韩人妻高清精品专区| 欧美日韩中文字幕国产精品一区二区三区| 日本 欧美在线| 少妇人妻精品综合一区二区 | 亚洲人成电影免费在线| 欧美最黄视频在线播放免费| 91久久精品电影网| 一个人免费在线观看电影| 又爽又黄无遮挡网站| 免费在线观看日本一区| h日本视频在线播放| www.999成人在线观看| 久久草成人影院| 欧美三级亚洲精品| 夜夜爽天天搞| 中文字幕av在线有码专区| 草草在线视频免费看| 午夜激情欧美在线| 全区人妻精品视频| 两个人视频免费观看高清| 欧洲精品卡2卡3卡4卡5卡区| 日本一二三区视频观看| 欧美激情在线99| 老鸭窝网址在线观看| 久99久视频精品免费| 成熟少妇高潮喷水视频| 欧美大码av| 中文亚洲av片在线观看爽| 亚洲狠狠婷婷综合久久图片| 免费在线观看亚洲国产| h日本视频在线播放| 国产精品香港三级国产av潘金莲| 欧美不卡视频在线免费观看| 手机成人av网站| 午夜免费成人在线视频| 欧美成人a在线观看| 成人一区二区视频在线观看| 国产爱豆传媒在线观看| 岛国视频午夜一区免费看| 黄色片一级片一级黄色片| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 99国产综合亚洲精品| 精品99又大又爽又粗少妇毛片 | 99久久精品国产亚洲精品| 欧美一区二区精品小视频在线| 天天躁日日操中文字幕| 欧美乱色亚洲激情| 亚洲av免费在线观看| 黄色片一级片一级黄色片| 免费av不卡在线播放| 色综合亚洲欧美另类图片| 日韩亚洲欧美综合| 中文亚洲av片在线观看爽| 亚洲欧美一区二区三区黑人| 波多野结衣巨乳人妻| 国产免费av片在线观看野外av| 很黄的视频免费| 1000部很黄的大片| 久久亚洲真实| 国产毛片a区久久久久| 18禁在线播放成人免费| 一区二区三区国产精品乱码| 国产一区二区在线av高清观看| 尤物成人国产欧美一区二区三区| 亚洲精品日韩av片在线观看 | 一区二区三区激情视频| 国产精品久久久久久人妻精品电影| 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 91在线观看av| 极品教师在线免费播放| 韩国av一区二区三区四区| 久久久久久久午夜电影| 看片在线看免费视频| 床上黄色一级片| 国产精品一区二区免费欧美| 长腿黑丝高跟| 一级毛片高清免费大全| 一二三四社区在线视频社区8| 午夜久久久久精精品| 国产不卡一卡二| 操出白浆在线播放| 我的老师免费观看完整版| 欧美成人一区二区免费高清观看| av福利片在线观看| 色播亚洲综合网| 欧美不卡视频在线免费观看| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 最近最新免费中文字幕在线| 一个人看视频在线观看www免费 | 国产免费一级a男人的天堂| 18禁裸乳无遮挡免费网站照片| 白带黄色成豆腐渣| 欧美成人一区二区免费高清观看| 又紧又爽又黄一区二区| 免费人成视频x8x8入口观看| 成年版毛片免费区| 久久天躁狠狠躁夜夜2o2o| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 天堂av国产一区二区熟女人妻| 欧美黄色片欧美黄色片| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 国产午夜精品论理片| 免费看美女性在线毛片视频| 国产成+人综合+亚洲专区| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 我要搜黄色片| 757午夜福利合集在线观看| 欧美zozozo另类| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 色老头精品视频在线观看| 性色av乱码一区二区三区2| 成人欧美大片| avwww免费| 精品久久久久久,| 欧美zozozo另类| 免费人成在线观看视频色| 日韩欧美精品v在线| 母亲3免费完整高清在线观看| 亚洲av成人精品一区久久| 成人国产一区最新在线观看| 天天躁日日操中文字幕| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 悠悠久久av| 哪里可以看免费的av片| 熟女少妇亚洲综合色aaa.| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区在线臀色熟女| 免费看日本二区| 国产极品精品免费视频能看的| 国产高清有码在线观看视频| 久久久国产成人精品二区| 成人性生交大片免费视频hd| 亚洲欧美日韩东京热| 国产男靠女视频免费网站| 19禁男女啪啪无遮挡网站| 国产又黄又爽又无遮挡在线| 国产午夜精品久久久久久一区二区三区 | av女优亚洲男人天堂| 亚洲电影在线观看av| 超碰av人人做人人爽久久 | 黄色丝袜av网址大全| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 午夜激情福利司机影院| 一个人看视频在线观看www免费 | 国产精品 欧美亚洲| 夜夜看夜夜爽夜夜摸| 老熟妇仑乱视频hdxx| 亚洲精品粉嫩美女一区| 精品久久久久久成人av| 午夜福利在线在线| 午夜免费激情av| 欧美日韩精品网址| 免费大片18禁| 日日摸夜夜添夜夜添小说| 一区福利在线观看| 99久国产av精品| 午夜影院日韩av| 午夜激情福利司机影院| 亚洲精品在线美女| 日韩欧美精品免费久久 | 亚洲欧美日韩高清在线视频| 欧美日本亚洲视频在线播放| 久久亚洲真实| 狂野欧美白嫩少妇大欣赏| 久久国产精品影院| 国产高清有码在线观看视频| 国产亚洲精品一区二区www| 成人特级av手机在线观看| 国产av一区在线观看免费| 国产91精品成人一区二区三区| 啦啦啦韩国在线观看视频| 久久久久久大精品| 成年版毛片免费区| 99在线视频只有这里精品首页| 人人妻,人人澡人人爽秒播| 中出人妻视频一区二区| 久久精品国产清高在天天线| 可以在线观看毛片的网站| 国产精品自产拍在线观看55亚洲| 国产精品99久久99久久久不卡| 美女cb高潮喷水在线观看| 此物有八面人人有两片| 国产久久久一区二区三区| 老汉色av国产亚洲站长工具| 内射极品少妇av片p| 亚洲精品影视一区二区三区av| 免费在线观看影片大全网站| 成年免费大片在线观看| 国产主播在线观看一区二区| 窝窝影院91人妻| 69人妻影院| 精品国产亚洲在线| 美女高潮的动态| 精品国产美女av久久久久小说| 美女被艹到高潮喷水动态| 搡老妇女老女人老熟妇| 精品一区二区三区视频在线观看免费| 无人区码免费观看不卡| 国产一区二区在线观看日韩 | 我的老师免费观看完整版| 国产97色在线日韩免费| 一a级毛片在线观看| 日韩欧美在线二视频| 床上黄色一级片| 亚洲最大成人中文| 欧美色视频一区免费| 国产真实伦视频高清在线观看 | 久久精品国产99精品国产亚洲性色| 国产欧美日韩一区二区三| 成人一区二区视频在线观看| 久久6这里有精品| 身体一侧抽搐| 99久国产av精品| 五月玫瑰六月丁香| 在线国产一区二区在线| 亚洲五月天丁香| 国产乱人视频| 欧洲精品卡2卡3卡4卡5卡区| 99在线人妻在线中文字幕| 国产精品亚洲美女久久久| 久久久久九九精品影院| 村上凉子中文字幕在线| 国产在线精品亚洲第一网站| 欧美日韩乱码在线| 国产视频一区二区在线看| 很黄的视频免费| 久久99热这里只有精品18| 成人精品一区二区免费| 午夜福利在线观看吧| 久久久久久九九精品二区国产| 色综合欧美亚洲国产小说| 亚洲av成人av| 久久精品国产亚洲av涩爱 | 国产熟女xx| 免费人成视频x8x8入口观看| 中文字幕av成人在线电影| 女人被狂操c到高潮| 88av欧美| 天天一区二区日本电影三级| 精品一区二区三区视频在线 | 亚洲在线观看片| 午夜亚洲福利在线播放| 色哟哟哟哟哟哟| 精品日产1卡2卡| 麻豆国产97在线/欧美| 成人高潮视频无遮挡免费网站| 欧美色视频一区免费| 久久精品国产自在天天线| 亚洲av成人精品一区久久| 一夜夜www| 精品国产超薄肉色丝袜足j| 少妇的丰满在线观看| 一二三四社区在线视频社区8| 欧美精品啪啪一区二区三区| 1024手机看黄色片| 男人舔女人下体高潮全视频| 午夜视频国产福利| 母亲3免费完整高清在线观看| 亚洲精品亚洲一区二区| 午夜久久久久精精品| 国内毛片毛片毛片毛片毛片| 国产一区二区三区视频了| 午夜精品久久久久久毛片777| 国产一级毛片七仙女欲春2| 午夜免费激情av| 真人做人爱边吃奶动态| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 一个人看的www免费观看视频| 亚洲精品久久国产高清桃花| 一区二区三区激情视频| 亚洲成人久久爱视频| 亚洲自拍偷在线| 国产97色在线日韩免费| 欧美bdsm另类| 久久人妻av系列| 九九热线精品视视频播放| 久久精品国产亚洲av涩爱 | 欧美绝顶高潮抽搐喷水| 狠狠狠狠99中文字幕| 99久久九九国产精品国产免费| 精品久久久久久久末码| 亚洲成人免费电影在线观看| 亚洲五月婷婷丁香| 中文字幕av成人在线电影| 成人鲁丝片一二三区免费| 午夜a级毛片| 中文字幕人妻熟人妻熟丝袜美 | 久久人妻av系列| 成年女人永久免费观看视频| 两个人看的免费小视频| 日韩欧美三级三区| 亚洲在线自拍视频| 中文字幕人妻丝袜一区二区| 国产综合懂色| 露出奶头的视频| 国产毛片a区久久久久| 真人一进一出gif抽搐免费| 村上凉子中文字幕在线| 久久人妻av系列| 超碰av人人做人人爽久久 | www.999成人在线观看| 午夜视频国产福利| 日本a在线网址| 久久香蕉精品热| 国产麻豆成人av免费视频| 国产成人系列免费观看| 一本精品99久久精品77| 19禁男女啪啪无遮挡网站| 免费在线观看成人毛片| 久久精品国产亚洲av涩爱 | 日韩人妻高清精品专区| aaaaa片日本免费| 一a级毛片在线观看| 亚洲在线自拍视频| 亚洲av成人av| 99国产精品一区二区三区| 国模一区二区三区四区视频| 久久精品91蜜桃| 热99re8久久精品国产| 国产真实伦视频高清在线观看 |