• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios*

    2019-11-06 00:44:34JiaYeWu吳嘉野XuHangWu吳栩航XiangBoYang楊湘波andHaiYingLi李海盈
    Chinese Physics B 2019年10期

    Jia-Ye Wu(吳嘉野), Xu-Hang Wu(吳栩航), Xiang-Bo Yang(楊湘波), and Hai-Ying Li(李海盈)

    1Guangzhou Key Laboratory for Special Fiber Photonic Devices,School of Information and Optoelectronic Science and Engineering,South China Normal University,Guangzhou 510006,China

    2Laboratory of Nonlinear Fiber Optics,School of Electronic and Computer Engineering,Peking University,Shenzhen 518055,China

    Keywords:parity-time symmetry,optical waveguide network,integer broken ratios

    1.Introduction

    In the recent two decades,a kind of absorbing artificial optical structures to control and confine the propagation of electromagnetic(EM)waves,the-symmetric systems,have been widely investigated. In quantum mechanics,the eigenvalues of observable mechanical quantities must be real numbers,therefore their operator matrices should be Hermitian ones. Bender et al.[1–4]found in the year 1998 that for a-symmetric system,even if its Hamiltonian is non-Hermitian,when the potential function is smaller than a certain threshold,all energy eigenvalues are still real numbers.When the potential function is larger than this threshold,its energy eigenvalues appear complex numbers.This threshold is called spontaneous-symmetric breaking point.In 2007,El-Ganainy et al.[5–9]introduced the concept of-symmetry into optical system through paraxial approximation.Similar to the-symmetric mechanical system,-symmetric optical systems can produce extraordinary optical features and phenomena near the spontaneous-symmetric breaking point.Subsequently,-symmetric optical systems,such as-symmetric optical lattices,[6–10]optical waveguides,[11–29]inhomogeneous nonlinear optical media,[30]and graphene,[31,32]have been widely investigated and some extraordinary optical characteristics,for instance,birefringence,[6]unidirectional invisibility,[8,9]ultrastrong absorption,[31]and singlemode lasing,[33,34]have been found.

    Optical waveguide networks(OWNs)[35–52]are another type of novel artificial optical structures to manipulate the propagation of EM waves.It is found that they can produce ultrastrong photonic localization,[31]extreme wide photonic bandgap(PBG),[38,41,44]interesting comb-like optical transmission spectrum,[45,46]rich photonic attenuation mode,[49]and so on.However,studies that combine the idea of opticalsymmetry and OWNs are quite rare.

    Recently,our research group designed a-symmetric aperiodic Thue–Morse optical waveguide network[53]and asymmetric periodic ring waveguide network,[54]whose waveguide length ratios are perfect integer ratios(i.e.,1:1,1:2,1:3,...).Although seemingly similar,the difference betweensymmetric optical lattices[6–10]andsymmetric optical waveguide networks are fundamental.The former possesses a pair of gain and loss waveguides which are coupled perpendicularly to the directional of light propagation;the latter arranges the gain and loss profiles alternately along the length,whose waveguide segments and unit cells are all physically linked and connected.

    In this study,we investigate the propagation properties of EM waves in one-dimensionalsymmetric two-segmentconnected triangular optical waveguide networks with perfect and broken integer waveguide length ratios.It is found that the number and the corresponding frequencies of the extremum spontaneoussymmetric breaking points are dependent on the degree of brokenness δ. Near the extremum breaking points,ultrastrong extraordinary transmissions are created and the maxima can arrive at 2.4079×1014and 4.3555×1013in the two kinds of networks,respectively,which are several orders of magnitude larger than those in thesymmetric Thue–Mose waveguide networks[53]andsymmetric periodic waveguide-ring networks.[54]However,bidirectional invisibility can only be produced by the networks with broken integer waveguide length ratios,whose mechanism is explained in detail from the perspective of photonic band structure. The findings of this work can be useful optical characteristic control in the fabrication ofsymmetric optical waveguide networks,which possesses great potential in designing optical amplifiers,optical energy saver devices,and special optical filters.

    This paper is organized as follows.In Section 2,our designed model,the main theory,and the methods for analytical deduction and numerical calculation are demonstrated and introduced.In Section 3,we show the distribution of photonic modes. The numerical and analytical discussions of the extremum breaking points,the transmission and reflection characteristics of the networks with perfect and broken integer waveguide length ratios are demonstrated.Section 4 gives the conclusion of this work.

    2.Model and methods

    2.1.The optical structure

    In this article,the schematic diagram of our designed structure is plotted in Fig.1. In this model,every two adjacent nodes of the same unit cell are connected by the two waveguide segments with the lengths of d1and d2,respectively,with the shortest segment d1defined as a unit length“1”,and the lengths of the other segments are expressed as a normalized value relative to d1.Hence the waveguide length ratio is expressed as d1:d2=1:t,where it is called perfect integer ratio when 1:t=1:z and z itself is a small integer;broken integer ratio when a small positive number δ is subtracted and 1:t=1:z ?δ. For example,the waveguide length ratios of d1:d2=1:1,1:2 are perfect integer ratios and d1:d2=1:0.999,1:1.99 are broken integer ratios with corresponding degrees of brokenness δ=10?3and 10?2,respectively. In this study,without loss of generality,the simplest form,the smallest odd and even numbers,z=1,2 are used to investigate the transmission and reflection behaviors in our designed model. In order to measure conveniently,d1is set to be related to the communication wavelength λC=1550 nm.In Subsection 3.2,from Fig.2 one can see that νGBP≈0.693=c/d1,where νGBPis the frequency of the spontaneoussymmetric generalized breaking point(GBP)of the networks with d1:d2=1:1,therefore we set νGBP=c/λC,and consequently,d1=0.693λC≈1074 nm.Each waveguide is composed of three subsegments whose lengths m are all the same for simplicity,as shown in Fig.1(b),and the refractive index of each waveguide segment is defined as follows:where nR=nSiO2=1.4430,[55,56]the optimal nIvalue is determined by the extremum spontaneoussymmetric breaking point in Subsection 3.2,and silicon dioxide(SiO2)is chosen to be the material of the three subsegments.aij,bij?aij,and lijare,respectively,the lengths of the first sub-segment,the second sub-segment,and the whole waveguide segment between nodes i and j.

    Fig.1. Schematic diagram of the optical structure. (a)The optical waveguide network with three unit cells,one entrance,and one exit,where EI,ER,and EO are,respectively,the input,reflected,and output EM waves.Each black thick dashed line represents two segments of symmetric waveguides with the lengths of d1 and d2,respectively,and the black thick solid curves at the entrance and exit representsymmetric waveguides with the length of d1.(b)symmetric waveguide composed of three subsegments,where the lengths of the three subsegments are the same.

    2.2.Network equation

    In this research,each waveguide in the networks is composed of three materials,therefore,a three-material network equation is needed to study their photonic modes,transmissions,and reflections.As is known to all,the EM wave function in 1D waveguide segment between nodes i and j can be regarded as a linear combination of two opposite traveling plane waves

    with the wave vector ku=ωnu/c(u=1,2,3).By means of the continuities of the wave function,its differential quotient and energy flux conservation,one can deduce the following three-material network equation:[53]

    where ψiand ψjare the wave functions at nodes i and j,respectively,

    In the next section,by use of three-material network equations(3)and(4),the distribution of photonic modes,transmissions,and reflections of the networks are calculated and plotted.

    3.Results and discussion

    3.1.Photonic mode distribution

    The generalized Floquet–Bloch theorem,[39]can be used to assess the photonic mode distribution. In a periodic optical waveguide network,the difference between the wave functions of the N-th and the(N+T)-th unit cell is a phase factor ofWhenis real,is also real.Therefore,the amplitude of the wave function is kept constant,while the phase changes by a factor of.This mode is called ordinary propagation mode(OPM).[49]Whenis a complex number,is also complex.Subsequently,not only the phase changes by a factor of,but also the amplitude changes by a factor ofWhenthe amplitude of the wave function attenuates;when,the amplitude gains.These two photonic modes are called,respectively,attenuation propagation mode(APM)and gain propagation mode(GPM),which are the non-propagation modes.

    For infinite-unit-cell networks, based on the threematerial network equations(3)and(4),and the generalized Floquet–Bloch theorem,the following dispersion relation can be deduced:

    where

    From Eq.(5),it can be found that,for 1D vacuum or dielectric triangular optical waveguide networks,[47,48]where the refractive indices of the materials are all real,the dispersion function f(ν)must be real. Therefore,for f(ν)being real and|f(ν)|<1,from Eqs.(5)and(6)it can be deduced that the Bloch wavevector K of the structure possesses real solutions,EM waves with the corresponding frequencies propagate as OPM and form passbands.For|f(ν)|>1,it can be deduced that K possesses a pair of complex conjugate solutions.Mathematically,EM waves within this frequency range operate simultaneously as APM and GPM.However,in vacuum or dielectric optical waveguide networks,there exists only attenuation but no gain mechanism.Consequently,from a physical perspective,the corresponding EM waves will propagate only as APM and create stopbands.This shows that|f(ν)|=1 is a critical point for the transition of the photonic modes in vacuum or dielectric optical waveguide networks.

    Recent research found that|f(ν)|=1 can be chosen to be the critical value for different photonic modes insymmetric networks. The reason is that from Eqs.(5)and(6),when|f(ν)|is small,Im()might also be small,and extraordinary transmission with T>1.0 can not be created.Only when f(ν)is sufficiently large,can Im()be very large and the extraordinary transmission with T>1.0 be produced.Moreover,we define both APM and GPM produced by thesymmetric waveguide network corresponding to|f(ν)|≤1 as weak propagation modes(WPMs),and those corresponding to|f(ν)|>1 as strong propagation modes(SPMs). By this condition,spontaneoussymmetric breaking points of the networks are defined as the imaginary part of the refractive index,nI,located between WPM and SPM.

    3.2.Extremum spontaneous symmetric breaking point

    Generally,extraordinary optical characteristics of the system can be found near the spontaneous breaking points,the boundary between WPM and SPM.We define the extremum spontaneous breaking points as follows: (i)when|f(ν)|=1;(ii)the dispersion function f(ν)is continuous and nondifferentiable.From numerical results,the systems will produce increasing extraordinary transmissions and reflections at the extremum breaking points,so the optical propagation characteristics near the extremum breaking points are mainly studied here.

    Fig.2.Distribution of photonic modes in the network with d1:d2=1:1,where SPM represents strong propagation mode,and WPM denotes weak propagation mode.(a)Overall figure;(b)enlarged figure of(a),where GBP indicates generalized breaking point.

    By use of dispersion relation Eqs.(5)and(6),we can determine the photonic modes in the networks with perfect and broken integer waveguide length ratios.Since there are infinite configurations of networks with integer waveguide length ratios,for simplicity and without loss of generality,as a representative of the minimal odd number and the minimal even one,we study the networks with,respectively,d1:d2=1:1 and 1:2,whose photonic mode distributions are plotted in Figs.2 and 3,where the yellow and red areas represent WPM and SPM,respectively. It can be seen from Fig.2 that at the frequency of ν=0.693000694c/d1,there exists one extremum spontaneous breaking point,where nI=1.32×10?8.From Fig.3, at the frequencies of ν=0.57750053c/d1,0.693000694c/d1,and 0.80850075c/d1,there exist three extremum spontaneous breaking points,where nI=1.02×10?6,1.25×10?8,1.34×10?6,respectively.

    Fig.3.Distribution of photonic modes in the network with d1:d2=1:2:(a)overall figure;(b)–(d)enlarged figures of(a).

    Through the previous study,[39]it is found that,for vacuum or dielectric OWNs,the width of the narrow band is proportional to the degree of brokenness δ in the broken integer waveguide length ratio.When δ decreases,the width of the narrow band will shrink and the characteristics of the networks will change dramatically.Therefore,in this work,we concentrate on the networks with δ<10?2as an example.However,there are infinite configurations of networks with broken integer waveguide length ratios.As an extension of the above two examples of perfect integer ratios,we study the networks with,respectively,d1:d2=1:0.99 and 1:1.99(indicating δ=10?2),whose photonic mode distributions are plotted in Fig.4.

    When d1:d2=1:1 changes to 1:0.99,the result is plotted in Fig.4(a).From Fig.4(a),one can see that the extremum breaking point near ν=0.6930c/d1disappears. When d1:d2=1:2 changes to 1:1.99,the result is plotted in Fig.4(b).From Fig.4(b),one can see that the extremum breaking point near ν=0.6930c/d1also disappears. The extremum breaking points originally located at ν=0.57750053c/d1and 0.80850075c/d1are right-shifted,where ν becomes,respectively,0.57942376c/d1and 0.81120487c/d1. Besides,the values of nIof the extremum breaking points also change from 1.02×10?6and 1.34×10?6to 7.20×10?7and 1.82×10?6,respectively.

    Fig.4.Distribution of photonic modes in the networks with(a)d1:d2=1:0.99,δ=10?2;and(b)d1:d2=1:1.99,δ=10?2;(c)and(d)enlarged figures of(b).

    Comparing Figs.2–4,it is known that within the same frequency range,when the waveguide length ratios change from perfect to broken integer ratio,not only the number of the extremum breaking points reduces,but also the frequencies and the corresponding nIof the extremum breaking points change.In Subsection 3.3,we will determine the optimal nIaccording to the positions of the extremum breaking points,and then calculate the transmission and reflection near the corresponding frequency.

    3.3.Extraordinary transmission and reflection in network with perfect integer waveguide length ratio

    When d1:d2=1:1,the results are shown in Fig.5(a).From Fig.5(a),one can see that(i)at the frequency of ν=0.693000691c/d1,for the left-incident EM waves,the maximal transmission arrives at 2.4079×1014;(ii)at the frequency of ν=0.693000695c/d1,for the right-incident EM waves,the maximal transmission arrives at 1.2074×1013;(iii)at the frequency of ν=0.693000693c/d1,for both left-and right-incident EM waves,the minimal transmission arrives at 9.0025×10?10.

    Fig.5.Transmission and reflection spectra of the networks with perfect integer waveguide length ratios at extraordinary point,where the blue solid line,thin red dotted line,thick green dotted line,and brown dashed line represent the left-incident transmission and reflection and the rightincident transmission and reflection,respectively:(a)d1:d2=1:1 and nI=1.32×10?8;(b)d1:d2=1:2 and nI=1.25×10?8.

    When d1:d2=1:2,the results are shown in Fig.5(b).From Fig.5(b),one can see that(i)at the frequency of ν=0.693000685c/d1,for the left-incident EM waves,the maximal transmission arrives at 5.2412×1013;(ii)at the frequency of ν=0.693000701c/d1,for the right-incident EM waves,the maximal transmission arrives at 4.2044×1013;(iii)at the frequency of ν=0.693000693c/d1,for both left-and right-incident EM waves,the minimal transmission arrives at 9.0036×10?10.It means that the networks possess ultrastrong extraordinary transmissions and ultrastrong PBG attenuation characteristics. Obviously,these networks may possess potential in designing optical filters,optical amplifiers,optical energy saver devices,and so on.

    Similar to transmission,for both left-and right-incident EM waves,the transmission and reflection peaks totally overlap,no matter whether d1:d2=1:1 or 1:2.The difference between transmission and reflection is that the networks produce transmission valleys,but no reflection valley.These characteristics are completely different from those in the networks with broken integer waveguide length ratios shown in Subsection 3.4.Besides,for both transmission and reflection spectra,the left-incident curves do not coincide with the right-incident ones,these networks show typical nonreciprocity of EM wave propagation.

    Regarding the reason why this structure can generate the extraordinary transmission and reflection,we believe it is a result of the extraordinary photonic modes mentioned in Section 3 and the gain-and-loss coupling resonant effect.(i)From the analysis on the photonic modes in Subsection 3.2,it is known that in our designed models,there exists no OPM,but two simultaneous non-propagation modes APM and GPM.These two modes are different from not only the OPM but also the non-propagation modes in normal dielectric waveguide networks.Therefore,in our models,neither passband nor stopband can be created,leading to completely different transmission and reflection spectra from those of dielectric ones.(ii)Insymmetric networks,the pure gain and loss effects on photons of both gain and loss materials are all trivial and in subordinate roles,which means that they will neither cancel nor weaken one another,but strengthen and couple with each other. The gain and loss materials in such structure can be regarded as that they form a coupling resonant cavity and exhibit strong coupling resonant effect on APM and GPM photons,which,results in sharp transmission and reflection peak and valley,whose frequencies are determined inherently by the network structure as discussed in Section 3.

    3.4.Extraordinary transmission and reflection in network with broken integer waveguide length ratio

    In the above subsection,it is found that the networks with perfect integer waveguide length ratios can produce ultrastrong extraordinary transmission and reflection. Do the networks with broken integer waveguide length ratios possess the same characteristics?In this section,we discuss and analyze the propagation behavior of the networks with broken integer waveguide length ratios. In order to obtain increasing extraordinary transmission and reflection,we further reduce the degree of brokenness δ to produce an ultra-narrow photonic band.Without loss of generality,in this section we choose a very small δ=10?8to indicate a situation that the ratios are near-perfect,and design one-unit-cell networks with waveguide length ratios of d1:d2=1:1 ?δ and 1:2 ?δ,(δ=10?8),with nI=1.35×10?8and 1.26×10?8,respectively.

    When d1:d2=1:1 ?δ,δ=10?8,the result is shown in Fig.6.From Fig.6,one can see that(i)at the frequencies of ν=0.693000689c/d1and 0.693000703c/d1,for the leftincident EM waves,the transmissions arrive at,respectively,2.3127×1013and 4.3555×1013;(ii)for the right-incident EM waves,there is no transmission peak.

    Fig.6. Transmission and reflection spectra of the network with d1:d2=1:1?δ,δ=10?8 at extraordinary point,with nI=1.35×10?8,where the blue solid line,green dot line,yellow dot line,and red solid line indicate the left-incident transmission and reflection and the rightincident transmission and reflection,respectively.

    When d1:d2=1:2 ?δ,δ=10?8,the result is shown in Fig.7.From Fig.7,one can see that(i)at the frequencies of ν=0.6930006892079c/d1and 0.6930006935281c/d1,for the left-incident EM waves,the transmissions arrive at,respectively,3.77056×1013and 3.29120×1012;(ii)at the frequencies of ν=0.6930006935961c/d1and 0.693000696363c/d1,for the right-incident EM waves,the transmissions arrive at,respectively,3.88015×1012and 6.86564×1013.Obviously,the networks with broken integer waveguide length ratios also produce ultrastrong transmission and reflection,which also possess the potential in designing high efficiency optical filters,optical amplifiers,optical energy saver devices,and so on.

    For both left-and right-incident EM waves,the transmission and reflection peaks totally overlap,no matter whether d1:d2=1:1 ?δ or 1:2 ?δ. The networks with broken integer waveguide length ratios not only generate transmission and reflection peaks,but also produce reflection valleys which are absent in networks with perfect integer length ratios. From Fig.6,one can see that there exists a reflection valley at the frequency of ν=0.693000721c/d1,for leftand right-incident EM waves,where the reflections arrive at 3.5966×10?13and 4.0859×10?13and the transmissions arrive at 0.99995 and 1.00005,respectively.From Fig.7,one can see that there exists a reflection valley at the frequency of ν=0.6930006935551c/d1,for left-and right-incident EM waves,where the reflections arrive at 3.31537×10?11and 1.59481×10?13and the transmissions arrive at 0.99995 and 1.00005,respectively.It means that this kind of networks have bidirectional invisibility characteristics,which may be useful in designing structures that are invisible to certain frequencies of EM waves.

    Fig.7.Transmission and reflection spectra of the network with d1:d2=1:2?δ,δ=10?8 at extraordinary point,with nI=1.26×10?8,where the blue solid line,green dot line,yellow dot line,and red solid line donate the left-incident transmission and reflection and the right-incident transmission and reflection,respectively.

    Comparing Figs.5–7,it is found that the networks with perfect integer length ratios can produce reflection valleys while those with perfect integer length ratios cannot.By use of dispersion relation Eqs.(5)and(6),we plot the band structure diagram of one dimensional two-segment connected triangular optical waveguide networks with uniform SiO2waveguide segments in Fig.8,where d1:d2=1:1,1:0.99(δ=10?2),1:2,and 1:1.99(δ=10?2),respectively,to aid the explanation in the case of δ=10?8.Based on the band structure diagram,the reflection valleys of the broken integer length ratio networks can be explained.

    From Figs.8(a)and 8(c),one can see that there exists a wide passband near the point of ν=0.693c/d1when d1:d2=1:1 and 1:2. When the networks are composed of uniform SiO2,at the wide passbands,the transmission generally satisfies 0.01 ≤T ≤1 and changes slightly;the reflection commonly satisfies 0.01 ≤R+T ≤1 and also changes slightly. Consequently,the network can not produce a deep reflection valley. Therefore,when the uniform SiO2is replaced by thesymmetric materials,the networks possess no enormously deep reflection valley as well.From Figs.8(b)and 8(d),one can see that there exist a narrow stopband near the point of ν=0.693c/d1when δ=10?2.The previous research[39,48]found that the width of the stopband is proportional to the degree of brokenness δ. Therefore,when δ=10?8,we speculate that there exists an ultranarrow stopband near the frequency of ν=0.693c/d1. The boundary between ultra-narrow stopband and wide passband can be regarded as ultra-narrow passband for the reason that their transmission spectra are similar. When the networks are composed of uniform SiO2,the propagation behaviors of extremely narrow passband and wide passband are different.Although the transmissions in wide and ultra-narrow passbands are both in the range of 0.01–1,with the variation from the ultra-narrow stopband to the ultra-narrow passband,the transmission changes enormously,therefore,the reflection also changes greatly. When the networks are composed ofsymmetric materials,the resonance coupling effect of the gain and loss materials cause these changes in reflection to be magnified.This magnifying effect leads the reflection within the ultra-narrow passband to be exceedingly small,which results in an enormously deep reflection valley.It can be seen that the band structure is not only suitable for the optical waveguide network of vacuum/ordinary dielectric material,but also suitable for thesymmetric optical waveguide network.Due to the same mechanism,similar transmission and reflection behaviors can be found in networks with a negative degree of brokenness δ,with the same number of transmission peaks and valleys and the same amount of spectral shift in opposite directions.

    Fig.8.The frequency band structure of one-dimensional two-segment connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios:(a)d1:d2=1:1;(b)d1:d2=1:0.99(δ=10?2);(c)d1:d2=1:2;(d)d1:d2=1:1.99(δ=10?2);(e)–(h)enlarged figures of(a)–(d).

    4.Conclusion

    In this paper, we design the one-dimensionalsymmetric two-segment-connected triangular optical waveguide network and investigate its extraordinary optical characteristics.We obtain the network equation of the general threematerial OWN and then thoroughly investigate the photonic modes in our designed networks with perfect and broken integer waveguide length ratios based on this network equation and the generalized Floquet–Bloch theorem.According to the photonic modes redivided as WPM and SPM,we find the extremumsymmetric breaking points in periodic networks and study the transmissions and reflections near the extremumsymmetric breaking points.

    It is found that: (i)no matter whether the waveguide length ratios are perfect or broken integer ratios,the networks possess extremumsymmetric breaking points.When the waveguide length ratios change from perfect or broken integer ratio,somesymmetric extremum breaking points disappear,the frequencies and nIof thesymmetric extremum breaking points change as well.(ii)The maximal transmission in the waveguide network with integer waveguide length ratio reaches 2.4079×1014and the maximal reflection reaches 1.2074×1013.These networks can produce extraordinary ultrastrong transmissions and reflections and they may possess potential application in the designing of all-optical devices,such as efficient photonic energy storages,optical amplifiers,optical filters,and so on.(iii)The networks with broken integer waveguide length ratios can not only produce extraordinary ultrastrong transmissions and reflections,but also generate reflection valleys,where the maximal transmission and reflection reach,respectively,3.77056×1013and 6.86564×1013,and the minimal reflection reaches 4.0859×10?13. It may be useful in designing structures that are invisible to certain frequencies of EM waves.

    Finally,we explain the phenomena that reflection valleys appear in networks with broken integer waveguide length ratios based on the band structure diagram of one dimensional two-segment connected triangular optical waveguide networks with uniform SiO2. It may deepen the community’s understanding onsymmetric optical waveguide networks.

    美女高潮到喷水免费观看| 黑人操中国人逼视频| www.av在线官网国产| 久热爱精品视频在线9| 黄片播放在线免费| 久久精品亚洲av国产电影网| 亚洲中文av在线| 午夜影院在线不卡| 国产精品99久久99久久久不卡| 中国国产av一级| 亚洲人成电影免费在线| 大陆偷拍与自拍| 久久精品国产亚洲av香蕉五月 | 另类精品久久| 制服人妻中文乱码| 各种免费的搞黄视频| 香蕉国产在线看| 久久精品aⅴ一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 日韩人妻精品一区2区三区| 中文字幕精品免费在线观看视频| 日日摸夜夜添夜夜添小说| 看免费av毛片| 一级片'在线观看视频| 99久久精品国产亚洲精品| 1024视频免费在线观看| 在线精品无人区一区二区三| 少妇被粗大的猛进出69影院| 国产亚洲av片在线观看秒播厂| 黄色 视频免费看| 亚洲avbb在线观看| 欧美人与性动交α欧美精品济南到| 男女下面插进去视频免费观看| 最近中文字幕2019免费版| 日本91视频免费播放| 亚洲专区国产一区二区| 国产成人a∨麻豆精品| 久久久久精品国产欧美久久久 | 波多野结衣一区麻豆| 最近最新中文字幕大全免费视频| 女性生殖器流出的白浆| 亚洲专区中文字幕在线| 婷婷色av中文字幕| 色播在线永久视频| 老司机福利观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美一区二区三区黑人| 久久毛片免费看一区二区三区| 久久人人97超碰香蕉20202| 在线 av 中文字幕| 国产1区2区3区精品| 国产男人的电影天堂91| 伊人亚洲综合成人网| www.999成人在线观看| 80岁老熟妇乱子伦牲交| 亚洲伊人色综图| 在线观看舔阴道视频| 久久久国产成人免费| 最近最新免费中文字幕在线| 日韩人妻精品一区2区三区| 国产免费福利视频在线观看| 精品人妻熟女毛片av久久网站| 18禁国产床啪视频网站| 精品乱码久久久久久99久播| 亚洲视频免费观看视频| 亚洲国产精品成人久久小说| 国产av又大| 亚洲中文av在线| 一个人免费在线观看的高清视频 | 69av精品久久久久久 | 免费黄频网站在线观看国产| 悠悠久久av| 搡老熟女国产l中国老女人| 久久 成人 亚洲| 久久 成人 亚洲| 国产在视频线精品| 丰满迷人的少妇在线观看| 大片免费播放器 马上看| 成人亚洲精品一区在线观看| 国产真人三级小视频在线观看| 韩国高清视频一区二区三区| 欧美人与性动交α欧美软件| 久久精品国产综合久久久| 国产免费视频播放在线视频| 欧美大码av| 大码成人一级视频| 男人爽女人下面视频在线观看| 在线精品无人区一区二区三| 天堂俺去俺来也www色官网| 亚洲欧美日韩另类电影网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧洲日产国产| 性少妇av在线| 69精品国产乱码久久久| 亚洲人成电影观看| 一级片免费观看大全| 国产成人精品无人区| 91av网站免费观看| 天天添夜夜摸| cao死你这个sao货| 最近最新中文字幕大全免费视频| 精品人妻在线不人妻| 免费黄频网站在线观看国产| 亚洲精品国产av蜜桃| 老司机影院成人| 99国产精品99久久久久| 国产精品 欧美亚洲| 日韩制服骚丝袜av| 男女免费视频国产| 少妇精品久久久久久久| 王馨瑶露胸无遮挡在线观看| 搡老乐熟女国产| 中文字幕色久视频| tocl精华| 汤姆久久久久久久影院中文字幕| 亚洲av电影在线进入| 好男人电影高清在线观看| 美女国产高潮福利片在线看| 欧美日韩精品网址| 老熟妇乱子伦视频在线观看 | 日韩制服骚丝袜av| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美精品济南到| 99热国产这里只有精品6| 在线观看一区二区三区激情| 亚洲欧美精品综合一区二区三区| 一区二区三区激情视频| 另类精品久久| 成人av一区二区三区在线看 | 18禁国产床啪视频网站| 欧美老熟妇乱子伦牲交| 亚洲精品一二三| 啦啦啦 在线观看视频| 亚洲中文av在线| 肉色欧美久久久久久久蜜桃| av超薄肉色丝袜交足视频| 黄片大片在线免费观看| 又大又爽又粗| 丝袜人妻中文字幕| 欧美亚洲 丝袜 人妻 在线| 欧美人与性动交α欧美精品济南到| 久久久久久久久久久久大奶| 久久九九热精品免费| 日韩制服骚丝袜av| 高清在线国产一区| 青春草亚洲视频在线观看| 精品第一国产精品| 真人做人爱边吃奶动态| 亚洲国产精品一区三区| 久久久久久久精品精品| 黑人操中国人逼视频| 水蜜桃什么品种好| 性色av一级| 国产视频一区二区在线看| 国产免费一区二区三区四区乱码| 日日夜夜操网爽| 日日摸夜夜添夜夜添小说| 在线 av 中文字幕| 午夜福利视频精品| 国产99久久九九免费精品| 国产精品 欧美亚洲| 国产精品欧美亚洲77777| 多毛熟女@视频| 国产精品 欧美亚洲| svipshipincom国产片| 99久久精品国产亚洲精品| av超薄肉色丝袜交足视频| 汤姆久久久久久久影院中文字幕| 国产成人精品无人区| 久久中文字幕一级| 国产男女超爽视频在线观看| 亚洲av电影在线进入| 成人免费观看视频高清| 久久久水蜜桃国产精品网| 国产欧美日韩精品亚洲av| 亚洲成av片中文字幕在线观看| 亚洲国产精品999| 欧美黄色片欧美黄色片| 欧美黑人欧美精品刺激| 亚洲成人国产一区在线观看| 国产伦理片在线播放av一区| 久久毛片免费看一区二区三区| 国产精品国产av在线观看| 欧美97在线视频| 午夜福利视频在线观看免费| 婷婷色av中文字幕| 丰满饥渴人妻一区二区三| 美女视频免费永久观看网站| 国产日韩欧美亚洲二区| 蜜桃国产av成人99| 亚洲欧美日韩另类电影网站| av免费在线观看网站| 999久久久精品免费观看国产| 亚洲av成人不卡在线观看播放网 | 亚洲欧美精品自产自拍| av网站免费在线观看视频| 最新的欧美精品一区二区| 亚洲伊人久久精品综合| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 黄色怎么调成土黄色| 男女高潮啪啪啪动态图| 亚洲综合色网址| svipshipincom国产片| 日日爽夜夜爽网站| 欧美日韩精品网址| 久久久久久人人人人人| 韩国精品一区二区三区| 美女视频免费永久观看网站| 曰老女人黄片| 欧美激情久久久久久爽电影 | 久久av网站| 美女高潮喷水抽搐中文字幕| 91精品三级在线观看| 成年美女黄网站色视频大全免费| 中国美女看黄片| 波多野结衣一区麻豆| 夜夜夜夜夜久久久久| 久久久久久久精品精品| 女性被躁到高潮视频| 欧美成人午夜精品| 色视频在线一区二区三区| 在线观看免费高清a一片| 亚洲va日本ⅴa欧美va伊人久久 | 国产又爽黄色视频| 青春草视频在线免费观看| 国产亚洲av片在线观看秒播厂| 国产野战对白在线观看| 他把我摸到了高潮在线观看 | 少妇被粗大的猛进出69影院| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品高潮呻吟av久久| 国产免费av片在线观看野外av| 美女高潮到喷水免费观看| 免费观看人在逋| 久久精品国产亚洲av高清一级| 国产黄色免费在线视频| 美女主播在线视频| 99热网站在线观看| 亚洲精品乱久久久久久| 午夜激情久久久久久久| 青春草亚洲视频在线观看| 男男h啪啪无遮挡| 五月天丁香电影| 丰满饥渴人妻一区二区三| 老司机靠b影院| 亚洲国产毛片av蜜桃av| 考比视频在线观看| www.av在线官网国产| 天堂中文最新版在线下载| 十八禁人妻一区二区| 国产精品秋霞免费鲁丝片| 一级片'在线观看视频| 91老司机精品| 91九色精品人成在线观看| 亚洲国产精品成人久久小说| 亚洲精品中文字幕在线视频| 在线观看人妻少妇| 少妇被粗大的猛进出69影院| 亚洲人成77777在线视频| 国产伦人伦偷精品视频| 久久香蕉激情| 成人国产av品久久久| 丁香六月天网| 一二三四社区在线视频社区8| 大型av网站在线播放| 99久久国产精品久久久| 美女扒开内裤让男人捅视频| 日日爽夜夜爽网站| 亚洲专区国产一区二区| 91成人精品电影| 黄色视频不卡| 交换朋友夫妻互换小说| 最新的欧美精品一区二区| 国产精品久久久久久人妻精品电影 | 亚洲国产精品一区三区| 免费日韩欧美在线观看| 午夜视频精品福利| 天天躁狠狠躁夜夜躁狠狠躁| 考比视频在线观看| 99国产综合亚洲精品| 又大又爽又粗| 麻豆国产av国片精品| 欧美黄色淫秽网站| 大片免费播放器 马上看| 999精品在线视频| 久热这里只有精品99| 99精国产麻豆久久婷婷| 亚洲人成电影观看| 国产亚洲午夜精品一区二区久久| 窝窝影院91人妻| 下体分泌物呈黄色| 午夜福利视频在线观看免费| 黄色视频,在线免费观看| 免费在线观看黄色视频的| 9色porny在线观看| 色老头精品视频在线观看| 精品国产超薄肉色丝袜足j| 国产高清视频在线播放一区 | 69精品国产乱码久久久| www.熟女人妻精品国产| 天堂8中文在线网| 99九九在线精品视频| av免费在线观看网站| 国产日韩欧美亚洲二区| 精品少妇黑人巨大在线播放| 国产精品久久久人人做人人爽| 视频区欧美日本亚洲| 性高湖久久久久久久久免费观看| 亚洲精品中文字幕一二三四区 | 日韩欧美免费精品| 这个男人来自地球电影免费观看| av福利片在线| 亚洲精品国产色婷婷电影| 一本综合久久免费| 美女视频免费永久观看网站| 午夜福利乱码中文字幕| 俄罗斯特黄特色一大片| 国产欧美日韩一区二区精品| 欧美另类一区| 亚洲av片天天在线观看| 不卡一级毛片| 18禁国产床啪视频网站| 国产成人精品久久二区二区91| 女人精品久久久久毛片| 一区二区三区四区激情视频| 一区二区三区精品91| 日韩一卡2卡3卡4卡2021年| 精品第一国产精品| 一级黄色大片毛片| 欧美午夜高清在线| 这个男人来自地球电影免费观看| 成年女人毛片免费观看观看9 | 久久久久久免费高清国产稀缺| 久久毛片免费看一区二区三区| 亚洲精品中文字幕一二三四区 | 18在线观看网站| 大片电影免费在线观看免费| 少妇猛男粗大的猛烈进出视频| 九色亚洲精品在线播放| 波多野结衣av一区二区av| 亚洲国产日韩一区二区| 久久香蕉激情| 午夜免费鲁丝| 国产一级毛片在线| 欧美黄色片欧美黄色片| 91av网站免费观看| 一区二区av电影网| 色播在线永久视频| 伊人久久大香线蕉亚洲五| 精品少妇黑人巨大在线播放| 一区二区三区精品91| 中文字幕最新亚洲高清| 一边摸一边做爽爽视频免费| 欧美老熟妇乱子伦牲交| 亚洲一区二区三区欧美精品| 最新在线观看一区二区三区| 91老司机精品| 啦啦啦啦在线视频资源| 精品人妻在线不人妻| 天堂中文最新版在线下载| 亚洲精品乱久久久久久| 王馨瑶露胸无遮挡在线观看| 亚洲精品一区蜜桃| 亚洲国产日韩一区二区| 91国产中文字幕| 欧美黄色淫秽网站| 亚洲av片天天在线观看| 欧美日韩黄片免| 亚洲视频免费观看视频| 交换朋友夫妻互换小说| 日韩制服骚丝袜av| 精品少妇久久久久久888优播| 国产精品免费视频内射| 一个人免费看片子| 国产av精品麻豆| tocl精华| 人人澡人人妻人| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 中国美女看黄片| 国产成人啪精品午夜网站| 国产老妇伦熟女老妇高清| tube8黄色片| 啦啦啦 在线观看视频| 大香蕉久久成人网| 久久久精品94久久精品| 欧美乱码精品一区二区三区| 亚洲av成人不卡在线观看播放网 | 热99re8久久精品国产| 黄色怎么调成土黄色| 韩国高清视频一区二区三区| 两个人免费观看高清视频| 久久精品国产亚洲av高清一级| 亚洲国产av新网站| 中文字幕高清在线视频| 少妇粗大呻吟视频| 十八禁网站网址无遮挡| 视频在线观看一区二区三区| 狂野欧美激情性xxxx| 精品久久久精品久久久| 精品人妻1区二区| 国产有黄有色有爽视频| 中文字幕色久视频| 老司机在亚洲福利影院| tube8黄色片| 少妇裸体淫交视频免费看高清 | 精品国产乱子伦一区二区三区 | videosex国产| 久久性视频一级片| 天堂8中文在线网| 妹子高潮喷水视频| videosex国产| 老司机午夜福利在线观看视频 | 久久精品国产亚洲av高清一级| 久久久久久亚洲精品国产蜜桃av| 啦啦啦视频在线资源免费观看| 久久人人爽人人片av| 亚洲少妇的诱惑av| 免费观看人在逋| 多毛熟女@视频| 一级黄色大片毛片| 在线精品无人区一区二区三| 成人黄色视频免费在线看| 黄色a级毛片大全视频| 999精品在线视频| 日本黄色日本黄色录像| 欧美精品一区二区大全| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 亚洲国产日韩一区二区| 精品久久久久久电影网| netflix在线观看网站| 男人舔女人的私密视频| 美女高潮到喷水免费观看| 日本wwww免费看| 丰满少妇做爰视频| 欧美在线黄色| 精品福利永久在线观看| av在线播放精品| 涩涩av久久男人的天堂| 成在线人永久免费视频| 日韩有码中文字幕| 国产99久久九九免费精品| 每晚都被弄得嗷嗷叫到高潮| 女人久久www免费人成看片| 女人精品久久久久毛片| 五月天丁香电影| 日韩欧美一区视频在线观看| 亚洲五月婷婷丁香| 丁香六月欧美| 巨乳人妻的诱惑在线观看| 在线观看免费日韩欧美大片| 午夜日韩欧美国产| 18禁国产床啪视频网站| 国产欧美日韩综合在线一区二区| 精品久久久精品久久久| 国产精品香港三级国产av潘金莲| 这个男人来自地球电影免费观看| 多毛熟女@视频| 超碰97精品在线观看| 精品免费久久久久久久清纯 | 韩国高清视频一区二区三区| 老司机影院毛片| 夫妻午夜视频| 亚洲精品一区蜜桃| 丝袜美腿诱惑在线| 各种免费的搞黄视频| 秋霞在线观看毛片| 国产精品久久久人人做人人爽| 亚洲天堂av无毛| 在线十欧美十亚洲十日本专区| 欧美激情 高清一区二区三区| 老司机午夜十八禁免费视频| 男人爽女人下面视频在线观看| 人妻一区二区av| 最新在线观看一区二区三区| 麻豆乱淫一区二区| 香蕉丝袜av| 亚洲情色 制服丝袜| 精品亚洲成国产av| 久久精品成人免费网站| 精品国产乱子伦一区二区三区 | 精品福利永久在线观看| 国产99久久九九免费精品| 日本91视频免费播放| 中文欧美无线码| 欧美激情久久久久久爽电影 | 日日爽夜夜爽网站| 日韩欧美一区视频在线观看| 国产麻豆69| 国产精品久久久久久精品古装| 久久天躁狠狠躁夜夜2o2o| 99九九在线精品视频| 他把我摸到了高潮在线观看 | 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区久久| 18禁国产床啪视频网站| 国产男人的电影天堂91| 亚洲少妇的诱惑av| 后天国语完整版免费观看| 岛国在线观看网站| 黄色视频不卡| 亚洲国产精品一区三区| 80岁老熟妇乱子伦牲交| 精品久久蜜臀av无| 午夜免费成人在线视频| 国产欧美日韩综合在线一区二区| 国产精品一二三区在线看| 男女之事视频高清在线观看| 丁香六月欧美| 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 不卡一级毛片| 亚洲精品自拍成人| 女性被躁到高潮视频| 国产精品av久久久久免费| 国产1区2区3区精品| 久久中文看片网| 成年女人毛片免费观看观看9 | 成年女人毛片免费观看观看9 | 国产一卡二卡三卡精品| 色婷婷久久久亚洲欧美| 欧美精品高潮呻吟av久久| 精品视频人人做人人爽| 在线av久久热| 男人舔女人的私密视频| e午夜精品久久久久久久| 在线亚洲精品国产二区图片欧美| 一级片免费观看大全| 美女脱内裤让男人舔精品视频| 丁香六月欧美| 亚洲欧美精品自产自拍| 侵犯人妻中文字幕一二三四区| 天堂中文最新版在线下载| 咕卡用的链子| 十八禁人妻一区二区| 秋霞在线观看毛片| 日本一区二区免费在线视频| 18禁观看日本| 国产亚洲欧美精品永久| 日韩欧美一区视频在线观看| 久久久久久久久免费视频了| 亚洲男人天堂网一区| 精品国产国语对白av| 亚洲中文av在线| av电影中文网址| 纵有疾风起免费观看全集完整版| 免费在线观看影片大全网站| 两性夫妻黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品一区三区| 久久精品人人爽人人爽视色| 欧美大码av| 久热这里只有精品99| 一区二区av电影网| 国产精品麻豆人妻色哟哟久久| 黄片播放在线免费| 国产精品av久久久久免费| 高清欧美精品videossex| 久久性视频一级片| 老司机在亚洲福利影院| 日韩大码丰满熟妇| 日本五十路高清| 中文欧美无线码| 老熟妇乱子伦视频在线观看 | 国产精品久久久人人做人人爽| 日本黄色日本黄色录像| 爱豆传媒免费全集在线观看| 午夜影院在线不卡| 最近最新中文字幕大全免费视频| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 一本—道久久a久久精品蜜桃钙片| 欧美 亚洲 国产 日韩一| 十八禁网站免费在线| 免费一级毛片在线播放高清视频 | 啦啦啦视频在线资源免费观看| 日韩欧美国产一区二区入口| 亚洲熟女精品中文字幕| 精品久久久精品久久久| 国产淫语在线视频| 99久久国产精品久久久| 婷婷色av中文字幕| 最近中文字幕2019免费版| 中文字幕色久视频| 国产视频一区二区在线看| 国产一卡二卡三卡精品| 久久久精品国产亚洲av高清涩受| 国产成+人综合+亚洲专区| 日韩欧美一区二区三区在线观看 | 久久精品国产亚洲av香蕉五月 | 中文字幕人妻丝袜制服| 欧美人与性动交α欧美软件| 国产精品.久久久| 99九九在线精品视频| 黄频高清免费视频| 黄片播放在线免费| 国产精品二区激情视频| 视频区图区小说| 悠悠久久av| 天堂中文最新版在线下载| 国产成人a∨麻豆精品| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻熟女乱码| 男人爽女人下面视频在线观看| 国产在线一区二区三区精| 日本一区二区免费在线视频| 老司机在亚洲福利影院| 欧美激情极品国产一区二区三区| 国产片内射在线| 美女高潮喷水抽搐中文字幕| 色婷婷久久久亚洲欧美|