• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polymer/silica hybrid waveguide Y-branch power splitter with loss compensation based on NaYF4:Er3+,Yb3+nanocrystals?

    2019-11-06 00:44:28YueWuFu符越吾TongHeSun孫潼鶴MeiLingZhang張美玲XuChengZhang張緒成FeiWang王菲andDaMingZhang張大明
    Chinese Physics B 2019年10期
    關(guān)鍵詞:美玲王菲大明

    Yue-Wu Fu(符越吾),Tong-He Sun(孫潼鶴),Mei-Ling Zhang(張美玲),Xu-Cheng Zhang(張緒成), Fei Wang(王菲),?, and Da-Ming Zhang(張大明)

    1State Key Laboratory of Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

    2College of Communication Engineering,Jilin University,Changchun 130012,China

    Keywords:polymer,NaYF4:Er,Yb,loss compensation

    1.Introduction

    In recent years,optical communication technology has received a lot of attention and been rapidly developed due to its fast and effective transmission characterization.[1–3]While chasing the extraordinary performance in optical transmission,the functions of processing signal are also required,which makes many optical devices widely used.[4–6]Optical waveguide Y-branch power splitter,achieving the functionality of an optical power splitter,is one of the important devices in the integrated optical circuits. It can be used as a basic unit in the optical integrated devices,such as switches,couplers,and interferometer or easy integration with other separate optical devices such as lasers,modulators,and wavelength division multiplexers(WDM).It has important application prospects in terms of optical communication,sensors,energy distribution,etc.[7–11]

    To seek a better performance of the Y-branch power splitter,many materials have been used as the core of the waveguide. Li et al.fabricated a single mode Si–Ge Y-branch at 1.55μm in 2002.[12]And in 2010,Jonathan et al.fabricated a lossless optical amplifier and Y-branch power splitter device in Al2O3:Er3+on silicon,which realized the ability to compensate for the loss in optical power splitter device.[13]Two years later,Chen et al.fabricated an Si-based photonic crystal waveguide Y-branch power splitter.The device has a good performance in the capability of good optical transmission and power-splitting.[14]Recently,the polymer waveguide has become a relevant research focus. Compared with traditional inorganic material,polymer material has advantages in easy processing and low transmission loss in the infrared band.The polymer waveguide is fabricated by using the traditional semiconductor technology,thus making it suitable for high density integrated optoelectronic devices.

    With the development of the integrated photoelectronic device industry,higher integration has become a key element.Integrating more optical devices on a chip has been a major trend for a long period. In a highly integrated chip,the losses of individual devices will be superimposed on each other,which may cause a serious influence on the final quality of the photoelectronic chip.Therefore,optical amplifiers[15,16]and optical devices with loss compensation have become key components for photoelectronic device industry.[17–19]

    Rare-earth (RE)-doped polymer, including erbium complex[20]and erbium-doped fluoride matrix nanoparticles,is widely used for fabricating optical waveguide amplifiers.Li et al.synthesized oleic acid(OA)-modified LaF3:Er,Yb nanoparticles,which could be used to synthesize the core material for the waveguide amplifiers.[21]Lei et al.synthesized OA-coated NaYF4:Er,Yb nanocrystals,which were doped into KMBR as the core material.The fabricated polymer waveguide amplifier with the above material achieved a relative gain of 4.7 dB/cm.[22]NaYF4is a fluoride matrix material with low phonon energy and high stability. Erbium and ytterbium co-doped NaYF4nanocrystals can generate photoluminescence around 1530 nm under 980-nm laser excitation,which has become a popular material for waveguide amplifiers and loss compensation devices.[23,24]In 2013,Zhai et al.synthesized NaYF4:Yb3+,Er3+,Ce3+-doped SU-8 2005 polymer waveguide amplifiers and reported a relative gain of 4.0 dB/cm.[25]Two years later,Yin et al.fabricated an optical waveguide amplifier based on erbium–ytterbium co-doped NaYF4nanocrystals doped into SU-8.The gain of the device was 3.42 dB/cm.[26]With NaYF4:Er,Yb nanocrystals,Xing et al.fabricated a polymer waveguide thermo-optical switch with loss compensation.The loss compensation of the device was 3.8 dB at 1530 nm.[18]

    In view of the importance of optical devices with loss compensation in optical fiber communication,in this work we propose,design,and successfully fabricate a Y-branch power splitter device with loss compensation. To achieve a better performance of the Y-branch power splitter,SiO2is chosen as the bottom cladding of the device and therefore making it easy to integrate with other optoelectronic devices.The Y-branch with a structure of rectangular groove is fabricated by etching SiO2,and the core material is filled into the groove to obtain the complete waveguide structure.By this method,we realize a better waveguide topography,and the insertion loss is reduced effectively.First,NaYF4:Er3+,Yb3+nanocrystals are synthesized by using a high temperature thermal decomposition approach and their morphologies are characterized.We use Rsoft and COMSOL software to simulate the optical field of the device and the power distribution of the Y-branch power splitter.The characteristic parameters of the Y-branch are designed and optimized by using the simulated results. Then the nanocrystals are doped into SU-8 as the core material of the optical waveguide amplifier and spin-coated on the surface of the etched SiO2groove to realize a structure of embedded waveguide.Polymethyl methacrylate(PMMA)is used as the upper cladding.Throughout the fabrication,the traditional semiconductor technology such as spin-coating,photolithography,and development is used.Finally,the performance of the device is tested by the direct coupling.

    2.Loss compensation principle

    The loss compensation principle of Y-branch power splitter is based on optical amplification of the Er3+–Yb3+codoped system at 1530-nm wavelength under the 980-nm excitation.The energy level of Er3+–Yb3+co-doped system is shown in Fig.1.The Yb3+ion acts as a sensitizer in the energy level system.It shows a higher absorption cross section than Er3+ion and the concentration quenching does not occur under a high Yb3+doping concentration because it is a two-level energy system.The band gap between levels2F7/2and2F5/2of Yb3+ion equals that between levels4I15/2and4I11/2of Er3+ion.First,the ground-level2F7/2of Yb3+ions can efficiently absorb the pump energy at 980 nm and transit up to the excitation-level2F5/2,then transfer the energy to the level4I15/2of Er3+ions to help them transit up to the unsteady excitation-level4I11/2.After they decay to the metastable level4I13/2,the population inversion between excitation level and the ground level is obtained. Then the stimulation emission starts,generating light around 1530 nm that is the same as the signal wavelength. Therefore,the amplification function for the signal light is finally realized.

    Fig.1.Energy levels of Er3+–Yb3+co-doped system.

    3.Experiment

    3.1.Waveguide material preparation

    In this work,NaYF4:Er3+,Yb3+nanocrystals were synthesized by using a high temperature thermal decomposition approach.RECl3·6H2O(2 mmol),including YCl3·6H2O(1.6 mmol), ErCl3·6H2O(0.04 mmol), and YbCl3·6H2O(0.36 mmol),was added into a three-necked flask.Octadecene(30 mL)and OA(12 mL)were poured into the same flask.The mixture was heated to 100?C for 10 min and then raised to 150?C and heated for 30 min.With a flow of argon as the protective gas,the solution in the flask was cooled to room temperature. Meanwhile,two solutions of NH4F(8 mmol)dissolved in methanol(20 mL)and NaOH(5 mmol)dissolved in methanol(10 mL)were added dropwise into the flask.To evaporate the methanol,the flask was kept at 50?C with continuously stirring for 1 h. Then the solution was heated at a constant temperature of 310?C for 1 h under the protective gas argon and finally cooled to room temperature naturally. After the reaction,the nanocrystals were collected by repeatedly washing with ethanol and centrifugation.The synthesized nanocrystals were modified by OA and they are soluble in toluene.High-concentration Er3+is conducive to enhancing the gain of device,but the high doping concentration of nanocrystals in polymer matrix will cause the nanoparticles to be aggregated,thus producing a large scattering loss.In our experiments,nanocrystals(0.3 mmol)were dissolved in the toluene(2 mL)and the solution was mixed into SU-8 2002. After being agitated ultrasonically for 2 h,nanocrystals with OA-modified surface were uniformly dispersed in the SU-8 2002,and the core material with 0.4 wt%concentration of nanocrystals in polymer was obtained.

    3.2.Characterization

    The NaYF4:Er3+,Yb3+nanocrystals were characterized in terms of their morphology and emission properties. The sizes of the samples were characterized by a transmission electron microscopy(TEM:JEOL JSM-7500F).Figures 2(a)and 2(b)show the TEM image of the nanocrystals and the histogram of size distribution.The particle sizes of the nanocrystals prepared by this method ranged from 6 nm–11 nm with a mean diameter of 8 nm.The core material was spin-coated with a thickness of 1μm on the surface of silicon chip to test its film-formation.The atomic force microscopy(AFM)micrograph of the core material film with a square mean roughness value of 0.407 nm and maximum surface fluctuation of 2.8 nm is shown in Fig.3,demonstrating that the nanocrystals were well dispersed into SU-8 without particle aggregation and thus the surface of the film was smooth. The absorption spectrum and emission spectrum pumped by a 980-nm laser of the nanocrystals were obtained.The full width at half maximum of the emission was about 83 nm.The absorption spectrum and the emission spectrum are shown in Figs.4(a)and 4(b),respectively.

    Fig.2.(a)The TEM image of NaYF4:Er3+,Yb3+nanocrystals(b)histogram of particle size distribution.

    Fig.3.The AFM image of core film.

    Fig.4.(a)Absorption spectrum of nanocrystals and(b)emission spectrum of nanocrystals with excitation of 980-nm laser.

    3.3.Analysis and simulation

    The structure of the waveguide Y-branch power splitter was designed based on the cosine curve. Figure 5(a)shows that the specific structure of the device consists of an input waveguide,two transition waveguides,and two output waveguides.The function expression of the cosine curve waveguide is

    where l is the length of the transition zone,h is half of the distance between two branches,and the zero point of the coordinate axis is the starting point of the branch.When x=l,the transition of Y-branch ends.The above parameters were marked in Fig.5(b). Based on the simulation and experiment,the parameter values of the structure were chosen as l=4000μm and h=50μm.

    The two branches have the same optical properties,including the same material,structure,and waveguide width.When the signal light reaches the branch point,the power will be evenly output into the two branches,making the Y-branch a 3-dB power splitter.

    As shown in Fig.6(a),the embedded waveguide structure with etched SiO2was used as the bottom cladding,nanocrystal-doped SU-8 as the core,and PMMA as the upper cladding. The refractive index of the bottom cladding,core and upper cladding were measured to be 1.46,1.57,and 1.48 at 1530 nm,respectively.Taking into account the precision of the fabrication process,simplicity of testing,and characteristics of the core and cladding material,w=6μm was chosen as the waveguide width and b=6.5μm as the total core thickness with the groove height a=5.5μm.The optical field distribution of the waveguide at 1530 nm was simulated by COMSOL,and the light was well confined within the core region with a power confinement of 92.6%as shown in Fig.6(b).

    Fig.5.(a)Schematic diagram and(b)top view of device.

    Fig.6.(a)Schematic diagram of cross-section and(b)simulated optical field distribution in waveguide.

    The optical power distribution of the waveguide under the transverse magnetic(TM)polarization was simulated by Rsoft. Figures 7(a)and 7(b)show the simulation results of optical power distribution at 1530 nm and 980 nm.The green lines in the figures represent the change of optical transmission power in the Y-branch power splitter.After passing through the branch point,the output power of each branch was only half of the input power,thus realizing the function of a 3-dB power splitter.

    Fig.7.Rsoft simulated optical power distribution of TM waveguide mode at(a)1530 nm and(b)980 nm.The unit a.u.is short for arbitrary units.

    3.4.Fabrication

    High-concentration nanocrystals doped in SU-8 will cause the breakage on the waveguide during photolithography and development. Therefore,we used an embedded waveguide structure to overcome this difficulty. By etching the SiO2,we obtained the rectangular grooves with the shape of Y-branch.Then the nanocrystals-doped SU-8 was spin-coated to fill the groove.Finally,PMMA was spin-coated as the upper cladding of the device.

    Fig.8.Preparation process of Y-branch power splitter.

    Figure 8 shows the process of preparation of the Y-branch power splitter. Both the easy integration and low fabrication cost will be obtained by this method.Figure 9(a)shows the scanning electron microscopy(SEM)image of the groove cross-section on the SiO2substrate embedding no core material. And figure 9(b)exhibits the SEM micrograph of the cross-section of the waveguide embedding the core material without the upper cladding.

    Fig.9.The SEM image of(a)groove on the SiO2 substrate and(b)crosssection of waveguide without upper cladding.

    3.5.Testing

    First,we cleaved both input cross-section and output cross-section of the Y-branch power splitter. Each port of the device was separately coupled to the optical fiber by direct coupling.Figure 10 shows the schematic diagram of the test system of optical loss compensation measurement.A tunable laser(Santec TSL-210)with a wavelength range from 1510 nm to 1590 nm and a 980-nm laser were used as the signal source and pump source respectively.The signal light and pump light were coupled by a WDM to launch into the input cross-section of Y-branch power splitter.The output light from the cross-section of the device was collected and coupled into a spectrum analyzer(OSA,ANDO AQ-6315 A).Finally,we observed the two branches of the Y-branch power splitter separately to analyze the loss compensation characteristics of the device.

    Fig.10.Structural diagram of test system.

    The relative gain of the device was calculated from the following formula:

    The test results are shown as follows.Figure 11(a)shows the output pattern of the device with 1530-nm signal light.The input signal light was evenly distributed across the two branches after passing through the Y-branch,thus obtaining two output spots.Figure 11(b)shows the upconversion luminescence of the Y-branch power splitter. The up-conversion green light occurred under the excitation of 980-nm pump laser and the light path was clear and uniform,demonstrating that the nanocrystals were uniformly dispersed in the core material.

    Fig.11.(a)Output pattern of device,(b)Y-branch power splitter with upconversion luminescence under excitation at 980 nm.

    Each of branches was tested separately.When the signal light power was 1 mW,the insertion losses of two branches were ?14.8 dB and ?15.1 dB at 1530 nm,respectively.Figures 12(a)and 12(b)show the relative gain versus pump power for 1530-nm signal light,respectively of branch A and branch B.For the input signal power of 0.05 mW and the pump power of 267.7 mW,the loss compensation of two branches were 5.81 dB and 5.41 dB,respectively.And when the signal light power was 1 mW,the relative gains were 1.73 dB and 1.72 dB.Comparing within different signal power,it can be found that the loss compensation for small signal is better than for large signal.Figures 12(c)and 12(d)show the relationship between relative gain and pump power with a signal power of 0.05 mW,relatively,of branch A and branch B.The relative gain are 3.5 dB and 2.95 dB,respectively,at 1540 nm and 1550 nm.The maximum relative gain is 5.81 dB at a wavelength of 1530 nm.The insertion loss and relative gain of the two branches are almost the same,which proves that the basic function and loss compensation function of the Y branch are well achieved.The above test results of the device at different signal wavelengths are consistent with the emission characteristics of the nanocrystals.

    In this work,we doped the NaYF4:Er,Yb nanocrystals into SU-8 as amplification material.Rare-earth nanocrystals can be doped in many polymer materials by different methods.Polymethyl methacrylate(PMMA)is a common polymer and the main component of polymer fiber.Compared with doping nanocrystals into the polymer,nanoparticles-PMMA covalentlinking is a good method in terms of reducing the aggregation of nanocrystals and increasing the nanocrystals doping concentration in polymer matric.Optical waveguide devices with loss compensation will play an important role in photonic integration on chip.

    Fig.12.Relative gain at 1530-nm wavelength versus pump power for different signal powers of(a)branch A and(b)branch B.Relative gain versus pump power for signal power of 0.05 mW at different signal wavelengths of(c)branch A and(d)branch B.

    4.Conclusions

    In this work,a polymer waveguide Y-branch power splitter with loss compensation based on NaYF4:Er3+, Yb3+nanocrystals is proposed and investigated. During the fabrication of the device,SiO2is used as the bottom cladding,nanocrystal-doped SU-8 as the core material,and PMMA as the upper cladding.The whole device is designed with a structure of embedded waveguide.The fabricated device realizes the functions of power splitting and loss compensation.The insertion loss for each of the two branches of the Y-branch power splitter is about 15 dB.When the 980-nm pump power is 0.05 mW and the signal power is 267.7 mW,the maximum relative gain of a single branch is 5.81 dB at 1530 nm.The proposed Y-branch power splitter with loss compensation can improve the stability of optical device and therefore has a great research significance.

    猜你喜歡
    美玲王菲大明
    《夏日》
    《秋》
    到延安去
    王菲版《我和我的祖國》為什么也那么動(dòng)聽?
    綠色中國(2019年19期)2019-11-26 07:13:30
    王菲與那英的《歲月》
    海峽姐妹(2018年3期)2018-05-09 08:21:05
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    春天的早晨
    《十大明王》造像方法談
    雕塑(1999年1期)1999-06-28 05:01:06
    国产成人av教育| 午夜福利免费观看在线| 一级毛片女人18水好多| 狂野欧美激情性xxxx| 最近在线观看免费完整版| 丝袜美腿在线中文| 乱人视频在线观看| 亚洲内射少妇av| 欧美黄色片欧美黄色片| 久久欧美精品欧美久久欧美| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 长腿黑丝高跟| 精品久久久久久,| 国产爱豆传媒在线观看| 亚洲精品在线美女| 内射极品少妇av片p| 国产色爽女视频免费观看| 欧美色视频一区免费| 欧美成人一区二区免费高清观看| 亚洲18禁久久av| 亚洲av免费在线观看| 国产91精品成人一区二区三区| 成人三级黄色视频| 午夜日韩欧美国产| 免费一级毛片在线播放高清视频| 久久久国产成人精品二区| 久久久色成人| 高清毛片免费观看视频网站| 在线观看午夜福利视频| 青草久久国产| 男人的好看免费观看在线视频| 丰满人妻一区二区三区视频av | 免费观看的影片在线观看| 亚洲五月天丁香| 欧美成人性av电影在线观看| 69人妻影院| 日本精品一区二区三区蜜桃| 每晚都被弄得嗷嗷叫到高潮| 中文资源天堂在线| 国产精品一区二区免费欧美| 美女 人体艺术 gogo| 亚洲五月天丁香| 亚洲精品美女久久久久99蜜臀| 亚洲乱码一区二区免费版| 婷婷精品国产亚洲av在线| 精品人妻1区二区| 免费av不卡在线播放| 最新美女视频免费是黄的| 黄色片一级片一级黄色片| 51午夜福利影视在线观看| 欧美午夜高清在线| 欧美一区二区精品小视频在线| 一本综合久久免费| 日本在线视频免费播放| 国产美女午夜福利| 免费大片18禁| 国产蜜桃级精品一区二区三区| 欧美一区二区精品小视频在线| 老司机深夜福利视频在线观看| 国产又黄又爽又无遮挡在线| 美女 人体艺术 gogo| 母亲3免费完整高清在线观看| 久久精品影院6| 精华霜和精华液先用哪个| 亚洲电影在线观看av| 又黄又爽又免费观看的视频| 一级毛片女人18水好多| 欧美另类亚洲清纯唯美| 99久国产av精品| 黄片大片在线免费观看| 亚洲精品粉嫩美女一区| 国产一区二区在线观看日韩 | 国产伦精品一区二区三区视频9 | а√天堂www在线а√下载| 欧美黑人欧美精品刺激| 丰满的人妻完整版| 国产精品,欧美在线| 99热只有精品国产| 深夜精品福利| 18禁黄网站禁片免费观看直播| 又黄又爽又免费观看的视频| 脱女人内裤的视频| 国产成人a区在线观看| 看免费av毛片| av天堂中文字幕网| 欧美大码av| 免费看日本二区| 国产成人av教育| 国产麻豆成人av免费视频| 日本 欧美在线| 性色av乱码一区二区三区2| 狠狠狠狠99中文字幕| 午夜老司机福利剧场| 午夜福利视频1000在线观看| 欧美成人性av电影在线观看| 亚洲片人在线观看| 最新中文字幕久久久久| 91av网一区二区| 亚洲激情在线av| 国产午夜精品久久久久久一区二区三区 | 亚洲中文日韩欧美视频| 最近最新中文字幕大全电影3| 久久久国产成人精品二区| 别揉我奶头~嗯~啊~动态视频| 嫩草影院入口| 亚洲aⅴ乱码一区二区在线播放| 一本久久中文字幕| 欧美黑人巨大hd| 欧美成狂野欧美在线观看| 国产精品久久久久久人妻精品电影| 国产成人福利小说| 国产一区在线观看成人免费| 午夜福利在线在线| 人妻夜夜爽99麻豆av| av天堂中文字幕网| 亚洲最大成人中文| 亚洲av中文字字幕乱码综合| 国产高清三级在线| 亚洲avbb在线观看| 久久久久性生活片| 亚洲欧美日韩高清专用| 久久久久九九精品影院| 亚洲精品影视一区二区三区av| 夜夜爽天天搞| 黄片大片在线免费观看| 中文字幕精品亚洲无线码一区| 美女 人体艺术 gogo| 国模一区二区三区四区视频| 久久6这里有精品| 国产亚洲av嫩草精品影院| aaaaa片日本免费| 欧美另类亚洲清纯唯美| 99热这里只有是精品50| 在线国产一区二区在线| 午夜日韩欧美国产| 日韩国内少妇激情av| 九九在线视频观看精品| 国内少妇人妻偷人精品xxx网站| 97人妻精品一区二区三区麻豆| 男人舔女人下体高潮全视频| av欧美777| 亚洲精品亚洲一区二区| 3wmmmm亚洲av在线观看| 精品人妻偷拍中文字幕| 免费观看精品视频网站| 9191精品国产免费久久| 一个人看的www免费观看视频| 黄色成人免费大全| 人人妻,人人澡人人爽秒播| 日韩成人在线观看一区二区三区| 99久久精品热视频| 亚洲精品色激情综合| 国产欧美日韩一区二区三| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 久久久久九九精品影院| 国产亚洲欧美98| 桃色一区二区三区在线观看| 色综合欧美亚洲国产小说| 久久精品国产99精品国产亚洲性色| 91av网一区二区| 在线观看av片永久免费下载| 国产真人三级小视频在线观看| 在线免费观看的www视频| 天天添夜夜摸| 在线观看午夜福利视频| 精品熟女少妇八av免费久了| 一级黄片播放器| 国产精品亚洲av一区麻豆| 法律面前人人平等表现在哪些方面| 婷婷丁香在线五月| 精品99又大又爽又粗少妇毛片 | 免费在线观看影片大全网站| 国产男靠女视频免费网站| 色在线成人网| 一a级毛片在线观看| 欧美日本亚洲视频在线播放| 香蕉av资源在线| 亚洲av一区综合| 久久草成人影院| 国产精品美女特级片免费视频播放器| 母亲3免费完整高清在线观看| 最近最新免费中文字幕在线| 18禁裸乳无遮挡免费网站照片| 18禁裸乳无遮挡免费网站照片| 黄片大片在线免费观看| 国产精华一区二区三区| 久久性视频一级片| 国产精品嫩草影院av在线观看 | 在线播放国产精品三级| 日韩欧美国产在线观看| 亚洲欧美日韩高清在线视频| 欧美最新免费一区二区三区 | 成人无遮挡网站| 成人无遮挡网站| 老鸭窝网址在线观看| 亚洲精华国产精华精| 午夜免费激情av| 嫁个100分男人电影在线观看| 午夜福利视频1000在线观看| 最近在线观看免费完整版| 最近在线观看免费完整版| 麻豆国产av国片精品| 桃色一区二区三区在线观看| 少妇的丰满在线观看| 国产高清三级在线| 伊人久久精品亚洲午夜| 国产高潮美女av| 久久99热这里只有精品18| 嫩草影院精品99| 69人妻影院| 欧美zozozo另类| 桃红色精品国产亚洲av| 国产高清三级在线| 999久久久精品免费观看国产| 少妇丰满av| 成人国产一区最新在线观看| 久久这里只有精品中国| 免费看美女性在线毛片视频| 久久久国产成人免费| 国产av不卡久久| 欧美日韩乱码在线| 桃红色精品国产亚洲av| 成人18禁在线播放| 国产伦在线观看视频一区| 亚洲精品亚洲一区二区| 久久精品国产亚洲av香蕉五月| 天美传媒精品一区二区| 午夜福利视频1000在线观看| 99久国产av精品| 小蜜桃在线观看免费完整版高清| 欧美最新免费一区二区三区 | 桃色一区二区三区在线观看| 观看免费一级毛片| 亚洲最大成人中文| 1000部很黄的大片| 色噜噜av男人的天堂激情| 淫秽高清视频在线观看| 国产高清有码在线观看视频| 性色avwww在线观看| 美女高潮的动态| x7x7x7水蜜桃| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲美女黄片视频| 美女大奶头视频| 午夜福利18| 嫩草影院精品99| 高清毛片免费观看视频网站| 午夜激情欧美在线| 精品一区二区三区av网在线观看| 波野结衣二区三区在线 | or卡值多少钱| 久久久国产成人免费| 日韩欧美在线二视频| 欧美高清成人免费视频www| 亚洲av二区三区四区| 久久精品人妻少妇| 亚洲av免费在线观看| 亚洲五月天丁香| www国产在线视频色| 中文字幕av在线有码专区| 成人国产综合亚洲| 成人特级黄色片久久久久久久| 欧美又色又爽又黄视频| 亚洲激情在线av| av在线天堂中文字幕| 亚洲五月婷婷丁香| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品合色在线| 国产真实伦视频高清在线观看 | 成人av在线播放网站| 亚洲欧美精品综合久久99| 欧美大码av| 搡老熟女国产l中国老女人| 国产视频一区二区在线看| 精品人妻偷拍中文字幕| 午夜a级毛片| 久久久久久久午夜电影| 色播亚洲综合网| 午夜精品久久久久久毛片777| 老司机午夜福利在线观看视频| 中亚洲国语对白在线视频| 国内精品久久久久久久电影| 色尼玛亚洲综合影院| 国产精品乱码一区二三区的特点| 久久精品91蜜桃| 午夜免费观看网址| www.www免费av| av黄色大香蕉| 一区二区三区激情视频| 久久久久久久久久黄片| 久久性视频一级片| av女优亚洲男人天堂| 国内毛片毛片毛片毛片毛片| 精品一区二区三区视频在线 | 国产男靠女视频免费网站| 香蕉丝袜av| 中文字幕精品亚洲无线码一区| 国产高清三级在线| 亚洲人成网站在线播放欧美日韩| 他把我摸到了高潮在线观看| 一区二区三区免费毛片| www国产在线视频色| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看| 日日干狠狠操夜夜爽| 亚洲av不卡在线观看| 又黄又爽又免费观看的视频| 欧美在线黄色| 午夜福利免费观看在线| 麻豆国产av国片精品| 日韩欧美国产在线观看| 久久久久国产精品人妻aⅴ院| 少妇人妻一区二区三区视频| 欧美日韩乱码在线| 一卡2卡三卡四卡精品乱码亚洲| 九九在线视频观看精品| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 久久精品亚洲精品国产色婷小说| 亚洲成人中文字幕在线播放| 日本 欧美在线| 亚洲不卡免费看| 免费av观看视频| 大型黄色视频在线免费观看| 最近视频中文字幕2019在线8| 国产视频内射| 一级毛片高清免费大全| 人妻夜夜爽99麻豆av| 国产国拍精品亚洲av在线观看 | 亚洲人成网站高清观看| 亚洲 国产 在线| 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 日本黄色视频三级网站网址| 五月玫瑰六月丁香| 免费看十八禁软件| 精品久久久久久成人av| 久久精品亚洲精品国产色婷小说| 欧美日本亚洲视频在线播放| 狠狠狠狠99中文字幕| 亚洲av不卡在线观看| 变态另类成人亚洲欧美熟女| 日韩欧美三级三区| 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 又黄又粗又硬又大视频| 精品人妻1区二区| 欧美性猛交黑人性爽| 国产成人影院久久av| 国产高清videossex| 波野结衣二区三区在线 | 丰满乱子伦码专区| 黄色片一级片一级黄色片| 脱女人内裤的视频| 人人妻人人澡欧美一区二区| 一个人免费在线观看电影| 美女 人体艺术 gogo| 丁香六月欧美| 亚洲中文字幕一区二区三区有码在线看| 亚洲美女视频黄频| 最近最新中文字幕大全免费视频| 国产日本99.免费观看| 少妇的逼水好多| 精品电影一区二区在线| 天堂√8在线中文| 青草久久国产| 真实男女啪啪啪动态图| 三级男女做爰猛烈吃奶摸视频| 久久精品夜夜夜夜夜久久蜜豆| 一个人观看的视频www高清免费观看| 久久精品国产99精品国产亚洲性色| 欧美不卡视频在线免费观看| 久久久成人免费电影| 麻豆成人午夜福利视频| 老熟妇乱子伦视频在线观看| 国产探花极品一区二区| 免费av毛片视频| 国产淫片久久久久久久久 | 亚洲av电影不卡..在线观看| 国产乱人伦免费视频| 99国产综合亚洲精品| 精品国内亚洲2022精品成人| 国产精品香港三级国产av潘金莲| 无人区码免费观看不卡| 亚洲精品在线美女| www.999成人在线观看| 国产视频内射| 丰满人妻熟妇乱又伦精品不卡| 亚洲av中文字字幕乱码综合| 精品电影一区二区在线| 欧美成狂野欧美在线观看| 亚洲专区国产一区二区| 久久久久久久精品吃奶| 国产亚洲精品一区二区www| 有码 亚洲区| 日本在线视频免费播放| 欧美av亚洲av综合av国产av| 久久久久国内视频| 国产精品99久久久久久久久| 变态另类丝袜制服| 久久草成人影院| 伊人久久大香线蕉亚洲五| 一本久久中文字幕| 日韩国内少妇激情av| 丁香欧美五月| 非洲黑人性xxxx精品又粗又长| 一级黄色大片毛片| 欧美性猛交黑人性爽| 99久久精品国产亚洲精品| 狂野欧美激情性xxxx| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 90打野战视频偷拍视频| 99热这里只有精品一区| 亚洲最大成人中文| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利高清视频| 国产真人三级小视频在线观看| 国产av不卡久久| 中国美女看黄片| 国产久久久一区二区三区| 国产亚洲精品一区二区www| 亚洲精品在线观看二区| 有码 亚洲区| 最近在线观看免费完整版| 婷婷丁香在线五月| 免费一级毛片在线播放高清视频| 黄色日韩在线| 国产不卡一卡二| 久久6这里有精品| 国产日本99.免费观看| 日本一本二区三区精品| 欧美日韩综合久久久久久 | 国内精品久久久久精免费| av福利片在线观看| av中文乱码字幕在线| 国产精品精品国产色婷婷| 成人亚洲精品av一区二区| 久久精品91蜜桃| 欧美一区二区亚洲| 国产高清三级在线| 日韩欧美精品v在线| 给我免费播放毛片高清在线观看| 国产免费男女视频| 九色成人免费人妻av| 99热这里只有精品一区| 欧美日韩黄片免| 观看美女的网站| xxx96com| 国产成人系列免费观看| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 男女床上黄色一级片免费看| 久久99热这里只有精品18| 狠狠狠狠99中文字幕| 观看免费一级毛片| 久久欧美精品欧美久久欧美| 久久久久久久精品吃奶| 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播| 免费人成视频x8x8入口观看| 国产成人av激情在线播放| av中文乱码字幕在线| 欧美激情在线99| 欧美色欧美亚洲另类二区| 熟妇人妻久久中文字幕3abv| avwww免费| 国产淫片久久久久久久久 | 久久99热这里只有精品18| 最近最新免费中文字幕在线| 人妻久久中文字幕网| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 高潮久久久久久久久久久不卡| 欧美在线黄色| 亚洲人与动物交配视频| 欧美区成人在线视频| 精品免费久久久久久久清纯| 观看免费一级毛片| av中文乱码字幕在线| 欧美成人一区二区免费高清观看| 小蜜桃在线观看免费完整版高清| 他把我摸到了高潮在线观看| 最新在线观看一区二区三区| 1000部很黄的大片| 18美女黄网站色大片免费观看| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品永久免费网站| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片| 国产免费男女视频| 19禁男女啪啪无遮挡网站| 午夜久久久久精精品| 一a级毛片在线观看| 色视频www国产| 免费在线观看影片大全网站| 亚洲五月天丁香| 搡老熟女国产l中国老女人| 美女高潮喷水抽搐中文字幕| 又爽又黄无遮挡网站| 亚洲 欧美 日韩 在线 免费| 午夜亚洲福利在线播放| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| 特大巨黑吊av在线直播| 久久欧美精品欧美久久欧美| 欧美日韩一级在线毛片| 夜夜看夜夜爽夜夜摸| 亚洲精华国产精华精| 亚洲av五月六月丁香网| 超碰av人人做人人爽久久 | 久久精品国产亚洲av涩爱 | 老司机午夜福利在线观看视频| 丁香欧美五月| 中出人妻视频一区二区| 嫩草影视91久久| 精品无人区乱码1区二区| 日韩欧美国产一区二区入口| 麻豆国产av国片精品| 亚洲色图av天堂| 欧美日韩乱码在线| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 国产高清三级在线| 黄色女人牲交| 日韩欧美在线二视频| 美女免费视频网站| 蜜桃亚洲精品一区二区三区| 成人国产一区最新在线观看| 亚洲最大成人手机在线| 亚洲av二区三区四区| 听说在线观看完整版免费高清| 午夜精品一区二区三区免费看| 香蕉av资源在线| 亚洲人成网站在线播| 搡老岳熟女国产| 在线看三级毛片| 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 精品电影一区二区在线| 欧美日韩一级在线毛片| 精品一区二区三区视频在线观看免费| 性色avwww在线观看| 手机成人av网站| 国内毛片毛片毛片毛片毛片| 少妇的逼水好多| 国产国拍精品亚洲av在线观看 | 亚洲国产日韩欧美精品在线观看 | 国产高清videossex| 久久精品国产自在天天线| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 男插女下体视频免费在线播放| 欧美日韩精品网址| 69人妻影院| 无限看片的www在线观看| 国产精品自产拍在线观看55亚洲| 日日夜夜操网爽| 男女床上黄色一级片免费看| 国产又黄又爽又无遮挡在线| www.色视频.com| 欧美中文综合在线视频| 亚洲成人中文字幕在线播放| xxxwww97欧美| 老熟妇仑乱视频hdxx| 亚洲av免费高清在线观看| 在线观看免费视频日本深夜| 色播亚洲综合网| 成人高潮视频无遮挡免费网站| 俄罗斯特黄特色一大片| 看黄色毛片网站| 麻豆国产97在线/欧美| 亚洲av成人精品一区久久| 91麻豆精品激情在线观看国产| 亚洲男人的天堂狠狠| 欧美在线黄色| 国产单亲对白刺激| 日本与韩国留学比较| 99热6这里只有精品| 中文字幕av成人在线电影| 久久久国产成人免费| 国产一区二区三区视频了| 日本一二三区视频观看| 欧美日韩综合久久久久久 | 在线观看免费午夜福利视频| 亚洲中文字幕一区二区三区有码在线看| 国产成人影院久久av| 欧美激情久久久久久爽电影| 69人妻影院| 国产精品一区二区三区四区免费观看 | 动漫黄色视频在线观看| 啪啪无遮挡十八禁网站| 又黄又粗又硬又大视频| 露出奶头的视频| 午夜日韩欧美国产| 最近视频中文字幕2019在线8| 好看av亚洲va欧美ⅴa在| 精品免费久久久久久久清纯| 又黄又爽又免费观看的视频| 母亲3免费完整高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 俺也久久电影网| 亚洲一区二区三区色噜噜| 亚洲欧美日韩高清专用| 国产高潮美女av| 久99久视频精品免费| av中文乱码字幕在线| 免费看日本二区| 黄色女人牲交| 99热这里只有是精品50| 久久精品影院6| 在线国产一区二区在线|