• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles?

    2019-11-06 00:44:22JieHan韓杰ShengDongChang常圣東YanJiaLyu呂彥佳andYongLiu劉永
    Chinese Physics B 2019年10期

    Jie Han(韓杰),Sheng-Dong Chang(常圣東),Yan-Jia Lyu(呂彥佳),and Yong Liu(劉永)

    1State Key Laboratory of Electronic Thin Film and Integrated Devices,School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China

    2School of Environment,3480 University Street,McGill University,Montréal H3A 0E9,Canada

    Keywords:supercontinuum generation,photonic crystal fiber,nonlinear optics

    1.Introductio n

    Coherent light sources in mid-infrared(MIR)region are of great significance for scientific and engineering applications in many domains such as medical surgery,[1]remote sensing,[2]and military countermeasure,[3]since a large number of molecules display a strong vibration absorption capability in this region. The supercontinuum(SC)generation is a process that generates a broad spectrum,promoting the applications in the relevant fields above. Silica-based glass fibers have proved to be excellent nonlinear medium for SC generation.However,the strong material absorption of silica fibers in the MIR region(>2.5μm)limits their applications at longer wavelengths. Compared with silica fibers,chalcogenide glass fibers benefit from their wide transmission window up to 20μm,[4]thus making them a superior candidate for MIR-SC generation. To date,MIR-SC generation spanning from 2μm to 16μm has been successfully demonstrated by using a chalcogenide fiber as a nonlinear medium.[5]Appropriate pump wavelength also plays a crucial role in wide SC generation.It needs to be in the anomalous dispersion regime and near the zero dispersion wavelength of the said fiber.[5]The spectral broadening is mainly dominated by soliton dynamics,especially soliton fission,and subsequent soliton selffrequency shift.However,soliton dynamics is sensitive to the input noise,[6]which causes the spectral coherence to degrade.In view of the perspective of practical applications,the SCs with high coherence possesses great applications in optical coherence tomography[7]and frequency metrology.[8]

    To generate coherent SCs,fibers with all-normal dispersion profiles are now used. For SCs in these fibers,spectrum broadening is mainly dominated by self-phase modulation(SPM)and optical wave breaking(OWB),which suppress soliton-related process,especially soliton fission. The generated SC possesses perfect coherence in the entire spectrum.In the following experimental work the all-normal dispersion fibers are adopted for better SC coherence.[9–13]Al-Kadry et al.generated a 0.96-μm–2.5-μm coherent SC by using 150-pJ pulses to pump all-normal dispersion chalcogenide microwires.[9]A coherent SC covering 2.2μm–3.3μm was demonstrated by using all-normal dispersion AsSe2–As2S5microstructured fiber pumped at 2.7μm.[10]Nagasaka et al.used a double-cladding chalcogenide fiber,which has As2Se3core and AsSe2inner cladding and As2S5outer cladding,pumped with 1.3-MW pulses at 10μm to generate 2-μm–14-μm coherent SC.[11]Optical parametric amplifier(OPA)was adopted because the considered pump pulse is hard to obtain just by fiber laser. However,OPA suffers huge system and high expanse,which is disadvantageous to the practical applications. Jiao et al.generated a coherent SC covering 2μm–14μm by pumping a double-cladding tellurium fiber with femtosecond laser at 5μm.[12]The choice of the double-cladding fiber leads to the high peak power(estimated at around several megawatts)of the pump pulses.In addition,OPA was also used to provide pump pulses.Zhang et al.generated a coherent SC covering 1.7μm–12.7μm by pumping a chalcogenide tapered fiber at 5.5μm.[13]The adopted dispersion curve is inverted-V-shaped.The long wavelength components experience large group velocity dispersion,which also means that high pump power leads to a large red frequency shift.

    There are also several numerical simulations on SCs in all-normal dispersion medium. Karim et al. numerically demonstrated a 2-μm–5.5-μm SC by pumping a Ge11.5As24Se64.5PCF with 5-kW pulses at 3.1 μm.[14]Then Singh Saini et al.simulated coherent SC covering 1.2μm–7.2μm by pumping a chalcogenide rib waveguide at 2.8μm.[15]Nagasaka et al.numerically generated a coherent SC covering 3.3μm–10.4μm by pumping a chalcogenide double-clad fiber with 300-fs pulses at 6μm.[16]The considered pump pulses are still based on OPA.Diouf et al.numerically generated a coherent SC covering 2.9μm–4.575μm by pumping an As38.8Se61.2PCF with 50-fs pulses at 3.7μm.[17]The adopted dispersion curve is also inverted-V-shaped,which is disadvantageous to increasing red frequency shift due to the large dispersion of long wavelength components.[18]Cherif et al.generated a 2μm–8μm coherent SC by pumping an As2Se3-based PCF with pulses at 5μm.[19]The adopted dispersion curve is inverted-V-shaped,and the pump pulse is hard to obtain by fiber laser.

    Appropriate all-normal dispersion profile is significant for the broadband coherent SC generation. Compared with the inverted-V-shaped dispersion curve,an inverted-L-shaped dispersion curve is very beneficial to increasing red frequency shift of the SC.[18]To obtain such inverted-V-shaped dispersion characteristics,fibers with high design flexibility are more attractive. Having high design flexibility and being able to achieve the desired dispersion characteristics,the photonic crystal fibers(PCFs)enjoy the dispersion curve that is changeable by varying the geometric parameters,and the nonlinearity of PCF can also increase due to the enhanced confinement of the optical field.All the above merits of PCFs are favorable for generating broadband SC in the MIR region.

    In this paper,we design a novel 3-cm-long As2Se3–As2S5PCF with near-zero flattened all-normal dispersion profiles.With the above all-normal dispersion PCF,it is possible to generate SC up to 10μm with perfect coherence when pumped with pulses at 3μm,and the resulting SC is able to cover two atmospheric windows of 3μm–5μm and 8μm–10μm wavelengths.Our simulations provide a potential all-fiber scheme to obtain highly coherent MIR-SC.

    2.Numerical model

    Pulse propagation in the fiber can be modeled by generalized nonlinear Schr?dinger equation(GNLSE).Based on the derivation of GNLSE in Ref.[20],we solved this equation in the frequency domain:

    where α(ω)denotes the frequency-dependent linear loss in the fiber, β(ω)the propagation constant, ω the angular frequency,ω0the central angular frequency,andthe frequency-dependent nonlinear coefficient,which is defined as

    where n2is the nonlinear refractive index,and neff(ω)is the frequency-dependent refractive index.It should be noted that this definition of nonlinear coefficient is different from the conventional definition of nonlinear coefficient that is defined as

    where Aeff(ω)denotes the frequency-dependent effective area,which is given by

    where F(x,y,ω)is the transverse mode distribution in the fiber and R(t)is the nonlinear response function which can be obtained from

    where fRdenotes the Raman contribution to the total nonlinear response and hR(t)represents the delayed Raman response and is expressed as a damped oscillation function,which is given by

    Using

    to change into interaction picture,the stiff dispersive part of the equation can be removed.[21]This version of GNLSE can be solved by standard Runge–Kutta method.

    Shot noise of the input pulses is added based on the one photon per mode(OPPM)model,[22]which is defined as

    where Tmaxis the time window of the simulation,h the Planck constant,ν the frequency,and ?(ν)the random phase described by the white noise which is uniformly distributed in the interval of[0,2π].The OPPM noise model is added in the frequency domain,then the field with random noise is transformed into the time domain to denote the input pulse.

    The coherence can be described by the modulus of the complex degree of first-order coherence,[6]which is defined as

    where the angular brackets denote an ensemble average of a great number of independently generated pairs of SC spectraand t is the time measured on the scale of the temporal resolution of the spectrometer used to resolve these spectra.The degree of coherencelies in the interval[0,1],with a value of 1 denoting perfect coherence.

    3.Design of all-normal dispersion chalcogenide PCF

    The conventional hexagon PCF structure is adopted to obtain all-normal dispersion properties.The cross-section of the proposed chalcogenide PCF is shown in Fig.1,where d is the air hole diameter and Λ is the pitch between two air holes.The PCF has a core made of As2Se3surrounded by five rings of circular air holes where the innermost ring is filled with As2S5glass.The As2Se3glass and the As2S5glass each have a high transmissivity in the region of 1μm–17μm and 1μm–15μm,[11]respectively.All these holes have identical diameters.Such a microstructured fiber can be fabricated by rod-intube technique.[23]

    Fig.1.Cross-section of the proposed As2Se3–As2S5 PCF.

    3.1.Dispersion properties of PCF

    The wavelength-dependent refractive index of the chalcogenide glass is calculated from the Sellmeier equation

    Here,the coefficients Aiand λiof As2Se3and As2S5are cited from Refs.[24]and[23],respectively.The group velocity dispersion(GVD)of the fiber is calculated from

    where neffis the effective refractive index calculated by COMSOL based on the full-vector finite element method.

    Fig.2.Plots of D versus wavelength(a)for three different d values and(b)for three different Λ values,respectively.

    To obtain all-normal dispersion property of the proposed PCF,we optimized the dispersion by changing the structure parameters of the fiber. Dispersion curves of the PCF can be changed by varying the values of air hole diameter d,and the pitch Λ.Figure 2 shows the dispersion curves of the proposed PCF in a wavelength range between 2μm and 10μm.The dispersion curves with fixed Λ value at 3.2μm and varying d value are shown in Fig.2(a). As can be observed in Fig.2(a),when the air hole diameter increases,the dispersion curve moves up.When d value is smaller than 2μm,the whole dispersion curves are below the zero axis.When d value increases to 2μm,the peak of the dispersion curve enters into the anomalous dispersion region,which is related to soliton dynamics that can cause the SC coherence to degrade. The dispersion curve with d value at 1.6μm has the near zero flatted all-normal property in a 4μm–10μm region.To investigate the effect of Λ value on the dispersion characteristics,we calculated the dispersion by changing Λ value.The dispersion curves with fixed d value at 1.6μm and varying Λ value are shown in Fig.2(b).When Λ value changes,dispersion curves are nearly unchanged.For varying Λ value at 3.0μm,3.2μm,and 3.4μm,all three dispersion curves are in the normal dispersion region.According to the dispersion curves mentioned above,we chose the chalcogenide PCF with d value at 1.6μm and Λ value at 3.2μm as the optimized all-normal dispersion fiber.The corresponding dispersion curve is shown in the red dashed line in Fig.2(a).

    3.2.Effective mode area and nonlinear coefficient of PCF

    The effective mode area and the nonlinear coefficient are calculated by Eq.(6)and Eq.(4),respectively,which are shown in Fig.3.The value of n2is 2.3×10?17m2/W.[1]The black line and the red line indicate the effective mode area and the nonlinear coefficient,respectively.As can be observed in Fig.3,the efficient mode area increases with wavelength increasing,while the nonlinear coefficient has an opposite trend.The effective area and the nonlinear coefficient at 3μm are 15μm2and 3.22 W?1·m?1,respectively.

    Fig.3. Calculated effective mode area and nonlinear coefficient versus wavelength of proposed all-normal dispersion PCF(Λ=3.2μm,and d=1.6μm),with inset showing fundamental mode distribution at 3μm of proposed PCF.

    4.Results and discussion

    According to the obtained all-normal dispersion curve,first,we numerically study the chalcogenide PCF pumped with hyperbolic secant pulses at 3μm,which can be obtained in an Er3+-doped ZBLAN fiber laser.[25]The fundamental mode distribution at 3μm of the proposed PCF is shown in the inset in Fig.3,which indicates that the optical field is confined in the PCF core. The GVD at 3μm has a value of ?61.7 ps·nm?1·km?1.For As2Se3-based fiber,fR=0.148,τ1=23 fs,and τ2=164.5 fs are considered in the simulation.[26]In order to investigate the effect of pulse parameters(peak power and pulse width)on the obtained SC,we solve the GNLSE by MATLAB with a series of varying pulse parameters.

    We first pump 3-cm PCF with 100-fs pulses. The obtained spectra at the output of the PCF pumped with 4 kW–16 kW are shown in Fig.4.The obtained spectrum width increases with peak power increasing.As the pump peak power increases,the short wavelength edges of the generated SCs decrease little while the long wavelength edges increase obviously.When the peak power reaches 16 kW,the generated SC covers the wavelength region from 1.4μm to 9.9μm at a?40-dB level.The long wavelength edge is nearly 10μm.

    Fig.4.Simulated output spectra in 3-cm PCF(Λ=3.2μm,d=1.6μm)when pumped at 3μm with 4-kW–16-kW pulses(pulse width:100 fs).

    When the peak power increases to 16.8 kW,the output SC rises from 1.4μm to 10μm.The corresponding spectral and temporal evolution along the 3-cm chalcogenide PCF are shown in Figs.5(a)and 5(b),respectively.At the first stage of the SC generation,self-phase modulation is dominated.This causes the spectrum to broaden symmetrically.After several millimeters’propagation,the spectrum broadening is dominated by optical wave breaking.Because the pulse propagates in the normal dispersion region,longer wavelength components travel faster than shorter wavelength components,which causes different wavelengths to overlap in the time domain.[27]This phenomenon results in the generation of new frequencies on both sides of the spectrum.The onset position of OWB can be calculated from

    where T0is the pulse width,β2is the group velocity dispersion,and P0is the peak power of the pulse.[15,27]The calculated onset distance of OWB is 0.5 mm.It means that the OWB occurs at the very short distance,which can be observed from Fig.5(a).The corresponding spectral and temporal output are depicted in Figs.5(c)and 5(d),respectively.

    Fig.5.(a)Simulated spectral and(b)temporal evolutions along the fiber,(c)simulated spectral output,and(d)simulated temporal output,obtained on condition that 3-cm chalcogenide PCF is pumped at 3μm with 100-fs pulses with 16.8-kW peak power.

    Fig.6.(a)Simulated modulus of complex degree of first-order coherence and(b)spectrogram of the output SC,with 3-cm chalcogenide PCF pumped at 3μm by 100-fs pulse with 16.8-kW peak power.

    To investigate the coherence characteristics of the generated SC,we conduct 20 independent simulations with random noise described by OPPM model,which generates 190 pairs of SC spectra.The calculated modulus of complex degree of first-order coherence of the output SC is shown in Fig.6(a).As can be seen from the figure,the degree of coherence has a value of 1 in the entire spectrum,which indicates perfect coherence.The spectrogram can reveal spectral and temporal characteristics of pulses simultaneously. The corresponding spectrogram is depicted in Fig.6(b). It shows that the obtained SC has no separated components in both time domain and frequency domain,which further confirms the coherent characteristics.

    Fig.7.Simulated spectra and coherence of the generated SCs,with 3-cm chalcogenide PCF pumped at 3μm by pulses with peak power of 16.8 kW and pulse duration of(a)100 fs,(b)200 fs,and(c)300 fs,respectively.

    To investigate the influence of pulse width on the SC,we carry out simulations by changing pulse widths.Figure 7 shows the spectra and coherence of the generated SCs when pumped at 3μm with 100-fs–300-fs pulses.As pulse width increases,the spectrum has more oscillation components,and the spectrum width decreases. Compared with longer pulse duration,shorter pulse duration undergoes stronge SPM effect,which causes a wider SC spectrum at the same distance.When pump pulse duration increases,the generated SC is still highly coherent.By using ultra-short pulses,broadband and highly coherent SC can be obtained.

    The pump wavelengths of the simulations mentioned above are 3μm. At this pump wavelength,the dispersion of the PCF is ?61.7 ps·nm?1·km?1. A smaller value of dispersion is beneficial to the low pump power. The optimized dispersion curve has near-zero flatted characteristics in a region of 4μm–10μm,which provides the wide selection of pump wavelengths.The peak of the dispersion curve in the 2μm–8μm region is at 5μm with a value of only?9.6 ps·nm?1·km?1.According to this small GVD,we pump 3-cm PCF with 100-fs pulses at 5μm. At this pump wavelength,a peak power of 2.7 kW can generate an SC covering 2.7μm–10μm at a ?30-dB level.The corresponding spectral evolution and the output SC are shown in Figs.8(a)and 8(b),respectively.The spectrum broadening is also dominated by SPM and OWB.The spectrogram and the coherence of the obtained SC are depicted in Figs.8(c)and 8(d),respectively,indicating the perfect coherence in the entire spectrum.

    Fig.8. (a)Simulated spectral evolution,(b)simulated spectral output,(c)simulated spectrogram,and(d)modulus of complex degree of first-order coherence of the output SC,with 3-cm chalcogenide PCF pumped at 5μm with 100-fs pulses and 2.7-kW peak power.

    5.Conclusions

    In this paper,we proposed a novel As2Se3–As2S5PCF.When Λ=3.2μm and d=1.6μm,the optimized near-zero flattened all-normal dispersion curve is obtained.Such dispersion characteristics provide a wide selection of pump wavelengths.The highly coherent SC covering 1.4μm–10μm is achieved when pumped at 3μm. The generated SC covers 3-μm–5-μm and 8-μm–10-μm atmospheric windows. Furthermore,we investigate the influence of pulse parameters on the output SC.By using ultra-short pulses,the broadband and highly coherent SC spectrum can be generated. The simulation results provide a potential all-fiber realization of the broadband coherent MIR-SC.

    成年人黄色毛片网站| 国产av精品麻豆| 97人妻精品一区二区三区麻豆 | 一本综合久久免费| 国产精品秋霞免费鲁丝片| 国产成人一区二区三区免费视频网站| 校园春色视频在线观看| 老司机午夜福利在线观看视频| 久久久久久大精品| 波多野结衣高清无吗| 男人的好看免费观看在线视频 | 欧美中文综合在线视频| 欧美日韩福利视频一区二区| 久9热在线精品视频| 给我免费播放毛片高清在线观看| 人人妻人人爽人人添夜夜欢视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品免费视频内射| 精品久久久久久久久久免费视频| 久久久久久亚洲精品国产蜜桃av| 成人免费观看视频高清| 午夜福利一区二区在线看| 欧美日韩精品网址| 亚洲国产日韩欧美精品在线观看 | 老司机靠b影院| 国产伦一二天堂av在线观看| 窝窝影院91人妻| 色综合婷婷激情| 两性夫妻黄色片| 中文字幕另类日韩欧美亚洲嫩草| 女性生殖器流出的白浆| 欧美av亚洲av综合av国产av| 婷婷精品国产亚洲av在线| 夜夜躁狠狠躁天天躁| 人人澡人人妻人| 欧美成人免费av一区二区三区| 国产熟女午夜一区二区三区| 午夜亚洲福利在线播放| 99在线人妻在线中文字幕| ponron亚洲| 亚洲一区中文字幕在线| 日韩精品中文字幕看吧| av在线播放免费不卡| 丝袜美腿诱惑在线| 麻豆av在线久日| 美女高潮到喷水免费观看| 色老头精品视频在线观看| av片东京热男人的天堂| 欧美人与性动交α欧美精品济南到| 国产一区二区三区在线臀色熟女| 国产av一区二区精品久久| 午夜福利,免费看| 免费看十八禁软件| 成人18禁在线播放| 中文字幕久久专区| 欧美另类亚洲清纯唯美| 一个人免费在线观看的高清视频| 免费av毛片视频| 国产精品久久久久久亚洲av鲁大| 一区二区三区激情视频| 少妇熟女aⅴ在线视频| 精品国产亚洲在线| 国产亚洲精品久久久久久毛片| xxx96com| 亚洲欧美精品综合久久99| 老鸭窝网址在线观看| 国产精品精品国产色婷婷| 成人av一区二区三区在线看| 侵犯人妻中文字幕一二三四区| 又黄又爽又免费观看的视频| 黄色片一级片一级黄色片| 亚洲人成伊人成综合网2020| 国产精品 国内视频| 中文字幕另类日韩欧美亚洲嫩草| 91精品三级在线观看| 国产精品久久久久久精品电影 | 一级毛片精品| 国产精品久久电影中文字幕| 少妇裸体淫交视频免费看高清 | 日日干狠狠操夜夜爽| 88av欧美| 女人被躁到高潮嗷嗷叫费观| 好看av亚洲va欧美ⅴa在| xxx96com| 女人精品久久久久毛片| 成人手机av| 久久中文字幕人妻熟女| 露出奶头的视频| 国产蜜桃级精品一区二区三区| ponron亚洲| 亚洲精品在线美女| 欧美日本视频| 看免费av毛片| 国产精品永久免费网站| 美女高潮喷水抽搐中文字幕| 午夜福利欧美成人| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产精品男人的天堂亚洲| 无遮挡黄片免费观看| 久热这里只有精品99| 国产成年人精品一区二区| 久热爱精品视频在线9| 黑人操中国人逼视频| 两人在一起打扑克的视频| 免费在线观看亚洲国产| 又大又爽又粗| 欧美另类亚洲清纯唯美| 动漫黄色视频在线观看| 亚洲第一青青草原| 亚洲熟妇熟女久久| 亚洲狠狠婷婷综合久久图片| 免费在线观看完整版高清| 99re在线观看精品视频| 999精品在线视频| 亚洲欧美日韩另类电影网站| 自线自在国产av| 亚洲全国av大片| 丝袜在线中文字幕| 91字幕亚洲| 欧美激情 高清一区二区三区| 欧美乱妇无乱码| 丁香六月欧美| 啦啦啦免费观看视频1| 亚洲国产欧美一区二区综合| 一级毛片精品| 欧美黑人精品巨大| 1024视频免费在线观看| 色综合婷婷激情| 国产精品久久久av美女十八| 制服诱惑二区| 熟妇人妻久久中文字幕3abv| 日韩欧美三级三区| 国产成人一区二区三区免费视频网站| 国产精品一区二区精品视频观看| 女生性感内裤真人,穿戴方法视频| 中文字幕人妻熟女乱码| 久久午夜综合久久蜜桃| 性欧美人与动物交配| 满18在线观看网站| 精品国产乱码久久久久久男人| 亚洲视频免费观看视频| 老鸭窝网址在线观看| 在线av久久热| 免费一级毛片在线播放高清视频 | 亚洲av第一区精品v没综合| 亚洲欧美激情综合另类| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区mp4| 天天躁狠狠躁夜夜躁狠狠躁| 成人亚洲精品一区在线观看| 一级,二级,三级黄色视频| 免费在线观看黄色视频的| 免费不卡黄色视频| 久久久久久亚洲精品国产蜜桃av| 欧美另类亚洲清纯唯美| 日日摸夜夜添夜夜添小说| 中文字幕精品免费在线观看视频| 91老司机精品| 黑人操中国人逼视频| www.熟女人妻精品国产| 欧美成人免费av一区二区三区| 精品久久蜜臀av无| 桃色一区二区三区在线观看| 校园春色视频在线观看| 成人av一区二区三区在线看| 91av网站免费观看| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| 亚洲精华国产精华精| 免费在线观看日本一区| 不卡av一区二区三区| 欧美乱色亚洲激情| 91麻豆av在线| av天堂久久9| 国产亚洲精品综合一区在线观看 | 亚洲国产中文字幕在线视频| 亚洲电影在线观看av| 丁香欧美五月| 亚洲片人在线观看| 少妇粗大呻吟视频| 天天躁夜夜躁狠狠躁躁| 女同久久另类99精品国产91| 亚洲少妇的诱惑av| 美女大奶头视频| 成人免费观看视频高清| 亚洲色图 男人天堂 中文字幕| 久久久久国产一级毛片高清牌| 可以免费在线观看a视频的电影网站| 亚洲成a人片在线一区二区| 在线av久久热| 精品无人区乱码1区二区| 欧美另类亚洲清纯唯美| 国产99久久九九免费精品| 咕卡用的链子| 亚洲美女黄片视频| 女人被躁到高潮嗷嗷叫费观| av福利片在线| 亚洲成国产人片在线观看| 女人被狂操c到高潮| 深夜精品福利| 日韩视频一区二区在线观看| 欧美日本中文国产一区发布| 给我免费播放毛片高清在线观看| 日本精品一区二区三区蜜桃| 黄色视频不卡| av视频在线观看入口| 国产欧美日韩一区二区精品| 99香蕉大伊视频| 狂野欧美激情性xxxx| 亚洲专区国产一区二区| 免费看美女性在线毛片视频| 可以在线观看毛片的网站| 巨乳人妻的诱惑在线观看| 桃红色精品国产亚洲av| 美国免费a级毛片| 国产精品,欧美在线| 日韩有码中文字幕| 一级a爱视频在线免费观看| www.999成人在线观看| 美女国产高潮福利片在线看| 九色亚洲精品在线播放| 一二三四在线观看免费中文在| 国产精品久久久久久亚洲av鲁大| 日本精品一区二区三区蜜桃| 欧美在线一区亚洲| 久久久久精品国产欧美久久久| 精品不卡国产一区二区三区| av在线播放免费不卡| 女性生殖器流出的白浆| 极品教师在线免费播放| 亚洲一码二码三码区别大吗| 18禁黄网站禁片午夜丰满| av天堂久久9| 亚洲国产欧美网| 久久婷婷成人综合色麻豆| 在线观看免费视频网站a站| 19禁男女啪啪无遮挡网站| 91av网站免费观看| 18禁裸乳无遮挡免费网站照片 | 男人操女人黄网站| 变态另类成人亚洲欧美熟女 | 一二三四在线观看免费中文在| 91成年电影在线观看| 亚洲精品国产一区二区精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜日韩欧美国产| 亚洲 欧美 日韩 在线 免费| 国产精品,欧美在线| 69av精品久久久久久| 亚洲一区高清亚洲精品| 成人亚洲精品av一区二区| 国产1区2区3区精品| 国产免费av片在线观看野外av| 日本一区二区免费在线视频| 亚洲一区二区三区色噜噜| 男女下面插进去视频免费观看| 国产av一区在线观看免费| 久久精品亚洲熟妇少妇任你| 久久国产精品影院| 一区二区三区激情视频| 一级a爱片免费观看的视频| 国产午夜精品久久久久久| 国产伦人伦偷精品视频| 国产精品电影一区二区三区| 免费在线观看完整版高清| 亚洲成国产人片在线观看| ponron亚洲| 一级,二级,三级黄色视频| 免费观看精品视频网站| 亚洲国产欧美日韩在线播放| 无遮挡黄片免费观看| 搡老岳熟女国产| 岛国视频午夜一区免费看| 免费人成视频x8x8入口观看| 国产精品 国内视频| 日韩大码丰满熟妇| 极品人妻少妇av视频| 变态另类成人亚洲欧美熟女 | 黑人操中国人逼视频| 一二三四社区在线视频社区8| 美女扒开内裤让男人捅视频| 亚洲第一av免费看| 十八禁人妻一区二区| 最近最新中文字幕大全电影3 | 欧美成人一区二区免费高清观看 | 别揉我奶头~嗯~啊~动态视频| 99久久综合精品五月天人人| 精品久久久久久久久久免费视频| 97碰自拍视频| 亚洲一码二码三码区别大吗| 精品久久蜜臀av无| 日本三级黄在线观看| 国产乱人伦免费视频| 国产91精品成人一区二区三区| www.www免费av| 亚洲第一欧美日韩一区二区三区| 在线国产一区二区在线| 97人妻精品一区二区三区麻豆 | 好男人电影高清在线观看| 90打野战视频偷拍视频| 精品国产一区二区久久| 又黄又粗又硬又大视频| 精品久久久精品久久久| 日本免费一区二区三区高清不卡 | 亚洲黑人精品在线| 青草久久国产| 亚洲欧美精品综合久久99| 国产熟女xx| 天天躁夜夜躁狠狠躁躁| 香蕉丝袜av| 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 国产精品免费视频内射| 十八禁网站免费在线| 午夜精品久久久久久毛片777| 可以在线观看毛片的网站| 一级作爱视频免费观看| 精品高清国产在线一区| 亚洲片人在线观看| 亚洲精华国产精华精| 欧美丝袜亚洲另类 | 国产视频一区二区在线看| 大型黄色视频在线免费观看| 国产蜜桃级精品一区二区三区| 精品免费久久久久久久清纯| 91麻豆av在线| 国产成人免费无遮挡视频| 97人妻天天添夜夜摸| 88av欧美| 这个男人来自地球电影免费观看| bbb黄色大片| 好看av亚洲va欧美ⅴa在| 亚洲精品在线观看二区| 久久久精品欧美日韩精品| 自拍欧美九色日韩亚洲蝌蚪91| 老司机在亚洲福利影院| 国产三级在线视频| 国产一区二区在线av高清观看| 国产av精品麻豆| 99久久国产精品久久久| 啦啦啦韩国在线观看视频| 久久久久久人人人人人| 91成年电影在线观看| 看免费av毛片| 国产精品日韩av在线免费观看 | av天堂在线播放| 久久人妻福利社区极品人妻图片| 亚洲无线在线观看| 日韩av在线大香蕉| 久久久久久久久免费视频了| 老司机在亚洲福利影院| 亚洲第一青青草原| 国产av又大| 亚洲精品av麻豆狂野| 国产av在哪里看| 大陆偷拍与自拍| 非洲黑人性xxxx精品又粗又长| 成人欧美大片| 波多野结衣高清无吗| 亚洲精华国产精华精| 美女国产高潮福利片在线看| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 久久久久久久久久久久大奶| 一级黄色大片毛片| 亚洲精华国产精华精| 女人爽到高潮嗷嗷叫在线视频| 午夜福利一区二区在线看| 亚洲av第一区精品v没综合| 午夜福利视频1000在线观看 | 久久国产亚洲av麻豆专区| 久久久久国产精品人妻aⅴ院| 人人妻,人人澡人人爽秒播| 人成视频在线观看免费观看| 午夜久久久在线观看| 激情在线观看视频在线高清| 国产一区二区三区在线臀色熟女| 欧美乱色亚洲激情| cao死你这个sao货| 777久久人妻少妇嫩草av网站| 女性生殖器流出的白浆| 欧美另类亚洲清纯唯美| 无限看片的www在线观看| 亚洲自拍偷在线| 国产私拍福利视频在线观看| 香蕉国产在线看| 亚洲专区字幕在线| 涩涩av久久男人的天堂| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 在线观看66精品国产| 俄罗斯特黄特色一大片| 国产成人免费无遮挡视频| 男女做爰动态图高潮gif福利片 | 精品日产1卡2卡| 欧美乱码精品一区二区三区| av中文乱码字幕在线| 国产精品久久久久久人妻精品电影| 久久影院123| ponron亚洲| 亚洲五月天丁香| 在线观看舔阴道视频| 国产一卡二卡三卡精品| 国产精品美女特级片免费视频播放器 | 午夜老司机福利片| 久久精品亚洲熟妇少妇任你| 欧美黑人欧美精品刺激| 欧美中文综合在线视频| 成人av一区二区三区在线看| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 男女做爰动态图高潮gif福利片 | 老司机福利观看| 亚洲一区二区三区色噜噜| 国产精品九九99| 午夜福利成人在线免费观看| 不卡一级毛片| 99国产综合亚洲精品| xxx96com| 色哟哟哟哟哟哟| 中国美女看黄片| 又黄又粗又硬又大视频| 久久精品影院6| 久久伊人香网站| 亚洲电影在线观看av| 国产精品日韩av在线免费观看 | 亚洲精品国产区一区二| 变态另类丝袜制服| 大码成人一级视频| 亚洲 欧美 日韩 在线 免费| 丝袜美腿诱惑在线| 国产成人av激情在线播放| 亚洲伊人色综图| 88av欧美| 国产精品秋霞免费鲁丝片| 在线十欧美十亚洲十日本专区| 午夜福利,免费看| 日韩欧美在线二视频| 色哟哟哟哟哟哟| 丝袜美腿诱惑在线| 怎么达到女性高潮| 美女免费视频网站| 人成视频在线观看免费观看| 亚洲欧美日韩另类电影网站| 久久久久国内视频| 亚洲国产精品合色在线| 久久久精品欧美日韩精品| 亚洲avbb在线观看| 免费久久久久久久精品成人欧美视频| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频不卡| 色av中文字幕| 日韩中文字幕欧美一区二区| 久久中文字幕一级| 中文字幕久久专区| 国产xxxxx性猛交| 别揉我奶头~嗯~啊~动态视频| 99国产精品一区二区三区| 老汉色av国产亚洲站长工具| 两人在一起打扑克的视频| 精品福利观看| 午夜福利高清视频| 久久久久国内视频| 亚洲最大成人中文| 免费高清视频大片| 国产精品永久免费网站| 波多野结衣av一区二区av| 男人的好看免费观看在线视频 | 日韩大码丰满熟妇| 国产精品电影一区二区三区| 美女高潮喷水抽搐中文字幕| 久久精品国产99精品国产亚洲性色 | 韩国av一区二区三区四区| 日韩欧美一区二区三区在线观看| e午夜精品久久久久久久| 91字幕亚洲| 18美女黄网站色大片免费观看| 欧美日本视频| 在线永久观看黄色视频| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕一区二区三区有码在线看 | 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 欧美最黄视频在线播放免费| 国产精品二区激情视频| 国产片内射在线| 免费看a级黄色片| 一进一出抽搐动态| 亚洲中文字幕日韩| 久久久国产精品麻豆| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 亚洲成国产人片在线观看| 亚洲国产欧美日韩在线播放| av网站免费在线观看视频| av电影中文网址| 国产精品免费一区二区三区在线| 亚洲第一电影网av| av中文乱码字幕在线| 两性夫妻黄色片| 黑人巨大精品欧美一区二区mp4| 叶爱在线成人免费视频播放| 久久久久久久久免费视频了| 精品久久久久久,| aaaaa片日本免费| 精品少妇一区二区三区视频日本电影| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| 亚洲无线在线观看| 9热在线视频观看99| 日韩高清综合在线| 日韩中文字幕欧美一区二区| 亚洲精华国产精华精| 成年版毛片免费区| 欧美成人性av电影在线观看| 熟妇人妻久久中文字幕3abv| av有码第一页| 日韩大尺度精品在线看网址 | 在线av久久热| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 国产成人免费无遮挡视频| 在线观看免费视频网站a站| 老司机福利观看| 国产精品久久久av美女十八| 精品国产一区二区久久| 午夜精品国产一区二区电影| 成人手机av| 久久香蕉精品热| 极品教师在线免费播放| 91精品国产国语对白视频| 国产在线观看jvid| 免费在线观看黄色视频的| 亚洲中文字幕一区二区三区有码在线看 | 午夜两性在线视频| 日日干狠狠操夜夜爽| 午夜福利影视在线免费观看| 99国产综合亚洲精品| 精品卡一卡二卡四卡免费| 久久久国产精品麻豆| 日日爽夜夜爽网站| 国产精品二区激情视频| 两个人看的免费小视频| 免费在线观看完整版高清| 丰满人妻熟妇乱又伦精品不卡| 免费av毛片视频| 可以免费在线观看a视频的电影网站| 嫩草影视91久久| 亚洲性夜色夜夜综合| 色综合婷婷激情| 露出奶头的视频| 亚洲av成人一区二区三| 精品国产乱码久久久久久男人| 男男h啪啪无遮挡| 精品国产美女av久久久久小说| 精品久久久久久成人av| 国产主播在线观看一区二区| 精品午夜福利视频在线观看一区| 男人舔女人下体高潮全视频| 日本三级黄在线观看| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 成人三级黄色视频| 可以免费在线观看a视频的电影网站| 午夜福利18| 性欧美人与动物交配| 国产精品香港三级国产av潘金莲| √禁漫天堂资源中文www| 男女做爰动态图高潮gif福利片 | 精品国产乱子伦一区二区三区| АⅤ资源中文在线天堂| 国产成人免费无遮挡视频| or卡值多少钱| 一本综合久久免费| 精品久久久久久久毛片微露脸| 在线观看舔阴道视频| 欧美激情高清一区二区三区| 女性被躁到高潮视频| 亚洲国产欧美一区二区综合| 国产精品亚洲一级av第二区| tocl精华| 一区二区三区高清视频在线| 亚洲人成伊人成综合网2020| 一级毛片精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频| 欧美国产精品va在线观看不卡| 中亚洲国语对白在线视频| 国产精品亚洲一级av第二区| 99在线视频只有这里精品首页| www.自偷自拍.com| 欧美色欧美亚洲另类二区 | 免费观看人在逋| 欧美日韩瑟瑟在线播放| 亚洲黑人精品在线| 精品不卡国产一区二区三区| 国产欧美日韩一区二区精品| 午夜福利高清视频| 久久久久国产一级毛片高清牌| 日韩成人在线观看一区二区三区| 大码成人一级视频| 国产精品香港三级国产av潘金莲| www.熟女人妻精品国产| 国产精品免费一区二区三区在线| 一级毛片精品| 国产伦人伦偷精品视频| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 天天躁夜夜躁狠狠躁躁| 久久草成人影院| av视频免费观看在线观看| 九色国产91popny在线|