• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab initioinvestigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound?

    2019-11-06 00:44:02YuShengWang王玉生MinJia賈敏QiaoLiZhang張巧麗XiaoYanSong宋曉燕andDaPengYang楊大鵬
    Chinese Physics B 2019年10期
    關鍵詞:大鵬

    Yu-Sheng Wang(王玉生),Min Jia(賈敏),Qiao-Li Zhang(張巧麗),Xiao-Yan Song(宋曉燕),and Da-Peng Yang(楊大鵬),2

    1College of Physics and Electronics,North China University of Water Resources and Electric Power,Zhengzhou 450046,China

    2State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    Keywords:excited state intramolecular proton transfer,potential energy surface,intramolecular charge transfer,infrared vibrational spectra

    1.Introduction

    As one of the most fundamental non-covalent weak interactions,hydrogen bond exists anywhere in our natural life.In the past few decades,more and more researches have been devoted to investigating the hydrogen bonding interactions.[1–3]In fact,hydrogen bond can be represented in the X–H···Y form,where X and Y denote the atoms having high electronegativity and small radius,such as O,N,F or the like.When the hydrogen atom forms a covalent bond with the electronegative atom,the shared electronic pair is biased towards another electronegative atom.That should be the simple explanation for the formation of hydrogen bond.[1–3]Among the various chemical reactions,the proton transfer(PT)is a characteristic process in chemical and biological acid-based neutralization reactions.Based on the excitation of light,the initial hydrogen bonding intensity makes a difference,which becomes favorable for the excited state intramolecular proton transfer(ESIPT)process.[4–9]Since Weller first reported ESIPT in the middle of the last century,[10]this kind of chemical reaction has attracted lots of attention.Since Han and coworkers put forward a novel excited state hydrogen bonding strengthening mechanism,[11–16]the dynamical behaviors about excited state hydrogen bonding interactions have been strongly attractive. Essentially,the ESIPT mechanism has become a hot research topic in excited state relaxations currently.Particularly,the rapid charge recombination and unique dual emission phenomenon endow ESIPT compounds with extensive applications,such as molecular switches,laser dyes,fluorescence chemosensors,UV filters,etc.[17–28]

    It cannot be denied that most of chemical and biological systems exhibit multiple hydrogen bonding interactions.Therefore,the case about ESIPT process involved in single hydrogen bonding wire is not enough to imitate the biological behaviors.Therefore,to further explore the excited state behaviors along with multiple hydrogen bonds,one pays attention to the excited state single or double proton transfer reaction along with double hydrogen bonds since this kind of case should be the most fundamental way to further investigate multiple proton behavior in future.[29–35]For example,Krishnamoorthy et al.theoretically explored the double excited state intramolecular proton transfer behavior for the novel 3,5-bis(2-hydroxyphenyl)-1 H-1,2,4-triazole(bis-HPTA).[29]The new type of sequential proton transfer is referred to as proton transfer triggered proton transfer mechanism.[29]Tang et al.elaborated the intramolecular proton relay behaviors and confirm the undergoing ESDPT reaction process.[30]Song et al.compared the intermolecular dual hydrogen bonding effects for 3-hydroxyisoquinoline dimer and acidity compound.[31]They clearly clarified the detailed intermolecular dual PT behaviors.In addition,as a classical chemical system,7-azaindole dimer has been explored by Crepo-Otero et al.in detail.[32]According to their simulated results,Crepo-Otero et al.presented that the stepwise mechanism is not consistent with the topography of the excited state.[32]As a whole,the investigation about ESPT reaction along with multiple hydrogen bonds is very important,[33–35]which plays a role in helping researchers to gain a more in-depth understanding of multiple proton behaviors in excited state.

    Very recently, Reis et al. designed and synthesized a novel intramolecular dual hydrogen bond compound dimethyl-2,2’-(3,3”-dihydroxy-[1,1’,4”,1”-terphenyl]-4,4”-diyl)(4 S,4’S,5 S,5’S)-bis(5-methyl-4,5-dihydrooxazole-4-carboxylate)(abbreviated as“1-enol”according to Ref.[36],based on which the excited state dynamical process of this molecule has been explored.Experimentally,they measured the steady-state absorption and emission spectra in different solvents,and confirmed the ESIPT behavior of 1-enol compound via the dual emission peaks. They attributed the behaviors of first excited state to the double ESIPT reaction. Even though some simple simulations have been carried out,the solvent effects were not considered in the theoretical process.[36]In fact,direct information about the geometrical relaxation upon the photoexcitation and the transition state geometry is difficult to obtain from the experimental spectroscopic manners.[37–42]And it is worth mentioning that the ab initio excited state calculations can provide the missing information and in-depth insight into the mechanism of clear excited state behaviors. And it cannot be denied that none of some suggested mechanisms in experiment is usually completely correct and sometimes they are problematic.[43–49]Therefore,further theoretical study for validating the mechanism could provide guidance for developing novel ESIPT compounds.

    In this present work,therefore,we mainly pay attention to the excited state dynamic behavior for 1-enol compound by using theoretical simulation manner.We show the corresponding structures for 1-enol compound in Fig.1. Here in this paper,1-spt and 1-dpt denote the single proton-transfer 1-enol and the double proton-transfer 1-enol forms,respectively.According to the density functional theory(DFT)and time-dependent density functional theory(TDDFT)method,we comprehend the detailed mechanism and clarify the fundamental aspects concerning the different electronic states and structures involved in the ESIPT reaction. Particularly,we clarify that the excited state intramolecular single proton transfer(ESISPT)mechanism rather than the double ESIPT process contributes to the 1-enol system.

    Fig.1.Relative structures for 1-enol,1-spt,1-dpt,and their non-hydrogen bonding 1-open forms,where dual intramolecular hydrogen bonds are referred to as O1–H2···N3 and O4–H5···N6 for 1-enol configuration,respectively.

    2.Theoretical methods

    In this work,all calculations about structures and the stable energy for 1-enol system and its tautomers have been performed by using Gaussian 09 program.[50]And according to the DFT and TDDFT method with the Becke’s threeparameter hybrid exchange function combined with the Lee–Yang–Parr gradient-corrected correlation functional(B3LYP)as well as the triple-ζ valence quality with one set of polarization functions(TZVP)basis set,[51–54]we perform the quantum chemical simulations. To consider the solvent effect(DMSO)adopted in previous experiment,[36]in this work,we select the integral equation formalism version of the polarizable continuum model(IEFPCM).[55,56]The ground state structures for all the structures involved in this work are optimized by using the DFT method,and the vibrational frequencies at the optimized structures are calculated by using the same DFT method to verify that the optimized configurations correspond to the local minima on the S0-state potential energy surface(PES).Then,the photo-excitation process and corresponding charge redistribution are calculated by using the TDDFT method based on the optimized S0-state 1-enol structure.The first singlet excited state of each tautomers is relaxed by using the TDDFT method to obtain its minimum energy geometry.The frequency calculations of selected excited state minima are also calculated to verify that they correspond to the local minima on the S1-state PES.No constraints are imposed on symmetry,bond length,bond angle and dihedral angle in the simulation of geometry optimization.The PES of S0state and the PES of S1state are constructed each as a function of hydroxide radical length in a range from 0.9 ?A to 2.1 ?A in steps of 0.1 ?A based on DFT and TDDFT method coupling with B3LYP/TZVP level in DMSO solvent,respectively.

    The self-consistent field(SCF)convergence threshold of energy for each of S0-and S1-state optimizations is set to be 10?8(default setting is 10?6).The harmonic vibrational frequencies of S0and S1states are determined by the diagonalization of Hessian matrix.Excited-state Hessian matrix can be obtained by numerical differentiation of the analytical gradients via central differences and default displacements of 0.02 Bohr.And the infrared intensities are determined by the gradients of the dipole moment.

    3.Results and discussion

    The 1-enol possesses dual intramolecular hydrogen bonds and a symmetrical structure.Therefore,we can locate three kinds of structures(i.e.,1-enol itself,its single proton-transfer 1-spt form,and its double-proton transfer 1-dpt form)in S0and S1states(Fig.1).For convenience,we name the dual intramolecular hydrogen bonds O1–H2···N3and O4–H5···N6for 1-enol system,respectively.In the process of investigating the possible correlation of the electronic potential with hydrogen bonding effect,we calculate the electrostatic potential surface,and the results are shown in Fig.2. The regions of the negative electrostatic potential(denoted by red)are usually used to identify the hydrogen bonding acceptor sites.On the contrary,to describe the hydrogen bonding donating moieties,the regions of positive potential(denoted by bluish)are prominent.It can be clearly found that the negative electrostatic potentials for O1and O4atoms lead the intramolecular dual hydrogen bonds O1–H2···N3and O4–H5···N6to form for 1-enol.To further reveal the intramolecular interactions in the real space,we also calculate the reduced density gradient(RDG)and the sign(λ2)ρ since they are a pair of very important functions for exploring weak interactions by using the NCI method.The corresponding results are shown in Fig.3.The lower panel shows the low-gradient isosurface for 1-enol.Obviously,the spikes located in the dashed rectangular frame correspond to the hydrogen bonding interactions in the ground state.Moreover,we also consider the non-hydrogen bonding 1-open form,since the non-hydrogen bonding form can serve as a kind of comparison.In our calculation results,the bond length O1–H2and O4–H5for 1-open form are both 0.9663 ?A in the ground state,whereas they become 0.9869 ?A for 1-enol configuration.It further confirms the formation of dual hydrogen bonds O1–H2···N3and O4–H5···N6for 1-enol in the S0state.

    Fig.2.Total electron density isosurface map with molecular electronic potential(MEP)for 1-enol structure,where values are selected from negative(red)to positive(blue):?0.05 a.u.–0.05 a.u.

    Fig.3.RDG versus sign(λ2)ρ as well as low-gradient(s=0.50 a.u.)isosurface(lower panel)for ground-state 1-enol system. Interactions can be seen below corresponding RDG(red:steric effect;blue:hydrogen bonding effect;green:VDW effect.).

    The most important geometrical parameters(i.e.,bond lengths and bond angles)involved in hydrogen bonding moieties for 1-enol,1-spt,and 1-dpt forms are listed in Table 1.It is obvious that the 1-enol configuration is symmetrical,and the bond lengths and bond angles of symmetrical parts are equivalent.Specifically speaking,the lengths of O1–H2and O4–H5bond of 1-enol in the ground state are both 0.9869 ?A and elongated to 0.9971 ?A in the first excited state.While for hydrogen bonds H2···N3and H5···N6for 1-enol structure,it can be found that they are shortened from S0-state 1.8159 ?A to S1-state 1.7924 ?A.Meanwhile,the bond angles ?(O1–H2···N3)and ?(O4–H5···N6)are also increased slightly from 145.9?to 148.5?in the first excited state. All these changes of geometrical parameters demonstrate that the dual intramolecular hydrogen bonds O1–H2···N3and O4–H5···N6of 1-enol are strengthened in the S1states.[11–16]In fact,even though the amplitude of variations is not very large,they are enough to affect the excited state dynamical behaviors for chemical systems.[57–62]For the case of excited state hydrogen bonding interactions and relative dynamics,it has to be mentioned that infrared(IR)vibrational spectrum is a very important manner to explore and compare the similarities and differences of hydrogen bonds between S0and S1states.[11–16,57–62]Therefore,in this work,we also perform the quantum chemical simulations about IR vibrational spectra by referring to the hydrogen bonding moieties.As shown in Fig.4,the conjunct vibrational region of O1–H2and O4–H5stretching vibrational modes for 1-enol in S0and S1states are displayed.One can find that the theoretical O1–H2and O4–H5stretching modes are both located at 3252 cm?1in the S0state,while they are downshifted by 86 cm?1from 3252 cm?1to 3166 cm?1in the S1state.It further confirms that the dual intramolecular hydrogen bonds O1–H2···N3and O4–H5···N6should be strengthened in the S1 state.[11–16,57–62]

    Table 1.Simulated bond distances(in unit ?A)and bond angles(?)involved in hydrogen bonding moieties for 1-enol,1-spt,and 1-dpt forms in both S0 and S1 states based on the DFT/TDDFT method in DMSO solvent,respectively.

    Fig.4. Our theoretical IR spectrum of O1–H2 and O4–H5 stretching vibrational modes for 1-enol structure in S0 and S1 states based on DFT and TDDFT methods,respectively.

    Furthermore,it cannot be denied that hydrogen bonding energy should be a more effective and visual physical quantity to check the variation between S0and S1states. Therefore,we also calculate the hydrogen bonding energy in S0and S1states for 1-enol system.Hydrogen bonding energy is calculated by subtracting the energy of 1-open configuration from the energy of 1-enol structure.In fact,it is imperative to emphasize at this stage that the estimation of the intramolecular hydrogen bonding energy according to the energy difference between the 1-enol and 1-open configurations produced by the rotation of the twist angle supports the assumption of no other geometry effects as a result of the rotation for hydroxyl O–H.Even though the assumption is perhaps inadequate for simulating the intramolecular hydrogen bonding energy,previous work has proved the feasibility of this method for comparing bonding energy approximately.[62–64]The simulated hydrogen bonding energy of 1-enol in the S0state is about 8.35 kcal/mol,while that of 1-enol in the S1state is 12.17 kcal/mol.Thus,we can confirm that the hydrogen bonding does strengthen in the first excited state,which provides the possibility for the ESIPT process.

    Table 2.Theoretical electronic excitation energy(λ nm),corresponding oscillator strengths(f)and corresponding compositions of 1-enol configuration in DMSO solvent for three different transtions.

    To examine the effects originating from photo-excitation process,the vertical excitation process from the S0-state optimized 1-enol configuration is also calculated by using TDDFT with the six low-lying absorbing transitions in DMSO solvent.For convenience,the simulated electronic transition energy values,relative oscillator strengths and compositions of first three transitions are listed in Table 2.It can be found clearly that the absorption peak of the first transition(S0→S1)is calculated to be at 339 nm,which is in good agreement with the experimental result(332 nm).[36]At least,it can be confirmed that the TDDFT/B3LYP/TZVP theoretical level is enough to describe the 1-enol system.In addition,to qualitatively discuss the change of charge redistribution in the photo-excitation process,the theoretical frontier molecular orbitals(MOs)of 1-enol are also simulated,and displayed to further elaborate the properties of electronic excited states(Fig.5).It is clear that the first excited state mainly has the ππ?-type-character with the transition from the highest occupied molecular orbital(HOMO)to the lowest unoccupied molecular orbital(LUMO).From Table 2,it should be noticed that the HOMO–LUMO transition possesses a very large oscillator strength(1.9635),which means the evident absorption in previous experiment.[36]Here,we just show the HOMO and LUMO orbitals in the present work,since this transition almost includes the entire percentage(i.e.,98.93%).That is to say,the transition from HOMO to LUMO can be adopted to describe the excited state property of the transition S0→S1.The higher transitions(i.e.,S0→S2,S0→S3or others)are not considered in this work,since the oscillator strengths of them are too low.Particularly,the S0→S3and higher transitions should be in the dark states.For the HOMO–LUMO transition,one thing should be noted that different parts could be located in range from HOMO to LUMO.Here,we mainly pay attention to the shifted moieties involved in the dual intramolecular hydrogen bonds(O1–H2···N3and O4–H5···N6).Although none of the variations in O1–H2and O4–H5,and N3and N6is very apparent,the quantitative proportions of the occupation are obviously different.The contribution proportions of O1and O4,and N3and N6on the HOMO are around 4.27%and 3.98%for 1-enol,while their corresponding contribution proportions of the same atoms change to around 2.54%and 5.15%on the LUMO orbital. That is to say,after the excitation,the driving force could be induced via increasing electronic densities around proton acceptors N3and N6moieties,which facilitates the proton transfer reaction for 1-enol system in the first excited state.

    Fig.5.Corresponding frontier molecular orbitals(HOMO and LUMO)for 1-enol system based on TDDFT/B3LYP theoretical level.

    Even though the tendency of ESIPT can be revealed via the above-mentioned analyses,the detailed mechanism is lacking.In fact,the double ESIPT process mentioned is questionable since the energy of the stable 1-dpt form in the first excited state is higher than that of the 1-spt form although the solvent was not considered in Ref.[36]. Therefore,in this part,we mainly focus on the detailed ESIPT mechanism for 1-enol system.Based on DFT//TDDFT/B3LYP/TZVP level in DMSO solvent,we construct potential energy surfaces(PESs)for 1-enol system in S0state and S1state,with O1–H2and O4–H5bond lengths fixed.Here,we should mention that although previous work has reported that the TDDFT theoretical level cannot be provide the sufficiently accurate ordering of closely space excited states,theoretical results have shown the reliability of this method to offer qualitative energetic pathways for ESIPT behaviors.[41–49]Specifically,the constructed PESs of S0and S1states are realized through fixing O1–H2and O4–H5ranging from 0.9to 2.1in steps of 0.1(see Fig.6).As shown in Fig.6(a),it can be clearly seen that the potential energy increases with the elongation of O1–H2and O4–H5bond lengths.That is to say,the forward proton transfer process cannot occur in the ground state for 1-enol system.While in the S1state,it is obvious that the optimized S1-state 1-dpt form is the most unstable one with the highest potential energy.In other words,it is difficult for the excited state intramolecular double proton transfer to occur in the 1-enol system.Since the potential energy barrier is the best evidence to judge whether the excited state double proton transfer occurs. In addition,we further calculate the potential energy barriers.Because the synergetic double proton transfer occurs from 1-enol to 1-dpt along the diagonal line of Fig.6(b),we find that high potential energy barrier is about 9.318 kcal/mol.While from 1-enol to 1-spt,the forward potential energy barrier is low(2.075 kcal/mol). It means that the excited state intramolecular single proton transfer pathway is easier than the synergetic double proton transfer way.In addition,we also consider the stepwise double proton transfer case. The potential energy barrier from 1-spt to 1-dpt is calculated to be 6.497 kcal/mol,while the reversed potential barrier(i.e.,from 1-dpt to 1-stp)is 1.924 kcal/mol.That is to say,even if the second step proton transfer occurs from 1-spt to 1-dpt,most of the 1-dpt species can return to the 1-spt one.Therefore,we can confirm that only the excited state single proton transfer occurs in the 1-enol system although it possesses two intramolecular hydrogen bonds.

    Fig.6.constructed potential energy profile for S0 and S1 states for 1-enol system,with O1–H2 and O4–H5 bond distances fixed,obtained by DFT and TDDFT methods,respectively.

    4.Conclusions

    In this work,we theoretically explore the excited state intramolecular double hydrogen bonding interactions and ESIPT behaviors for the novel 1-enol system. Comparing the geometrical parameters and corresponding IR spectra of hydrogen bonding moieties of 1-enol in both S0and S1states,we verify the strengthening of dual intramolecular hydrogen bonds for 1-enol in the first excited state. After investigating the charge distribution and charge transfer resulting from photo-excitation process,we present that the increased electronic densities around proton acceptors play an important role in attracting hydrogen proton.That is to say,the driving force for ESIPT process can be produced by charge redistribution.Further,we construct the PESs of both S0and S1states each with an ESIPT pathway.Based on the PESs,we confirm the excited state intramolecular single proton transfer mechanism for 1-enol system.Our work could let researchers have an indepth understanding of the excited state behaviors involved in multiple hydrogen bonding interactions,and also figure out the detailed ESIPT mechanism for the novel 1-enol system.We expect that this work could play a role in paving the way for revealing and developing novel applications based on 1-enol molecule in future.

    猜你喜歡
    大鵬
    周鵬飛:大鵬展翅 跨界高飛
    華人時刊(2022年7期)2022-06-05 07:33:46
    Beating standard quantum limit via two-axis magnetic susceptibility measurement
    看圖紙
    當代工人(2019年20期)2019-12-13 08:26:11
    三棱錐中的一個不等式
    Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations *
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    李大鵬:打造縱向、橫向全域發(fā)展的蘇交科
    中國公路(2017年14期)2017-09-26 11:51:42
    劉業(yè)偉、王大鵬設計作品
    藝術評論(2017年3期)2017-05-04 12:49:00
    非誠勿擾
    AComparingandContrastingAnalysisofCooperationandPoliteness
    国产美女午夜福利| 岛国毛片在线播放| 水蜜桃什么品种好| 美女内射精品一级片tv| 久久影院123| 免费大片18禁| 最近手机中文字幕大全| 国产精品久久久久久精品电影小说| 久久久久国产精品人妻一区二区| 亚洲四区av| 国产成人aa在线观看| 久久人人爽人人片av| 国产视频内射| 超碰97精品在线观看| 欧美3d第一页| 国产无遮挡羞羞视频在线观看| 国产无遮挡羞羞视频在线观看| 亚洲av综合色区一区| 久热久热在线精品观看| 日韩一区二区三区影片| 少妇人妻精品综合一区二区| 韩国av在线不卡| 欧美丝袜亚洲另类| 亚洲精品中文字幕在线视频 | 欧美丝袜亚洲另类| 热re99久久精品国产66热6| 国产乱来视频区| 51国产日韩欧美| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区国产| 国产淫片久久久久久久久| 欧美 亚洲 国产 日韩一| 一本久久精品| 好男人视频免费观看在线| 卡戴珊不雅视频在线播放| 午夜av观看不卡| 夜夜看夜夜爽夜夜摸| 丁香六月天网| 自线自在国产av| 久久精品国产a三级三级三级| 蜜桃久久精品国产亚洲av| 香蕉精品网在线| 在线观看www视频免费| 久久99热6这里只有精品| 简卡轻食公司| 国产精品熟女久久久久浪| 老司机亚洲免费影院| 国产在视频线精品| 春色校园在线视频观看| av国产久精品久网站免费入址| 大片免费播放器 马上看| 在线观看免费高清a一片| 黄色毛片三级朝国网站 | 久久狼人影院| tube8黄色片| 极品教师在线视频| 免费黄频网站在线观看国产| 国产色爽女视频免费观看| 精品一区二区三卡| 欧美日本中文国产一区发布| 亚洲性久久影院| 高清视频免费观看一区二区| 在线播放无遮挡| 久热这里只有精品99| 一个人免费看片子| 欧美精品高潮呻吟av久久| 久久精品国产鲁丝片午夜精品| 亚洲精品456在线播放app| 大香蕉97超碰在线| 人人妻人人添人人爽欧美一区卜| 久久综合国产亚洲精品| 久久99热这里只频精品6学生| av免费在线看不卡| 国产极品粉嫩免费观看在线 | 国产又色又爽无遮挡免| 欧美一级a爱片免费观看看| 99热这里只有是精品50| 99久久人妻综合| 精品人妻一区二区三区麻豆| 亚洲国产欧美日韩在线播放 | 免费观看av网站的网址| av.在线天堂| 国产在线免费精品| 日日摸夜夜添夜夜添av毛片| 人人妻人人爽人人添夜夜欢视频 | 免费观看av网站的网址| 成人美女网站在线观看视频| 最近的中文字幕免费完整| 多毛熟女@视频| 国产国拍精品亚洲av在线观看| 亚洲欧美成人综合另类久久久| 精品久久久久久久久亚洲| 欧美亚洲 丝袜 人妻 在线| 午夜福利网站1000一区二区三区| 亚洲av日韩在线播放| 亚洲成人手机| 人人澡人人妻人| 亚洲色图综合在线观看| 中文字幕av电影在线播放| 亚洲成人手机| 女性被躁到高潮视频| 熟女人妻精品中文字幕| 狂野欧美白嫩少妇大欣赏| 简卡轻食公司| 亚洲欧美中文字幕日韩二区| 在线 av 中文字幕| av不卡在线播放| 一区二区三区免费毛片| 国模一区二区三区四区视频| 欧美日韩国产mv在线观看视频| 亚洲国产最新在线播放| 一区二区三区乱码不卡18| 嫩草影院入口| 一区二区三区四区激情视频| 综合色丁香网| 免费大片18禁| 欧美性感艳星| 天美传媒精品一区二区| 少妇猛男粗大的猛烈进出视频| 国精品久久久久久国模美| 啦啦啦视频在线资源免费观看| 久久精品久久精品一区二区三区| 9色porny在线观看| 免费大片18禁| 欧美性感艳星| 中国国产av一级| 日本爱情动作片www.在线观看| 91久久精品国产一区二区成人| 啦啦啦中文免费视频观看日本| 一区二区三区四区激情视频| 久久精品久久精品一区二区三区| 综合色丁香网| 成人漫画全彩无遮挡| 99九九线精品视频在线观看视频| 成人影院久久| 成人漫画全彩无遮挡| 日本av手机在线免费观看| 国产视频首页在线观看| 噜噜噜噜噜久久久久久91| 久久ye,这里只有精品| 搡老乐熟女国产| 一区二区三区四区激情视频| 国精品久久久久久国模美| 免费观看无遮挡的男女| av卡一久久| 插阴视频在线观看视频| 免费观看的影片在线观看| 亚洲va在线va天堂va国产| 嫩草影院入口| 国产成人免费无遮挡视频| 亚洲婷婷狠狠爱综合网| 亚洲高清免费不卡视频| 高清不卡的av网站| 91在线精品国自产拍蜜月| 视频中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 性色av一级| 国产精品久久久久成人av| 18禁在线无遮挡免费观看视频| 我要看日韩黄色一级片| 亚洲av福利一区| 夫妻午夜视频| 中国国产av一级| 嫩草影院新地址| 国产成人a∨麻豆精品| 我要看黄色一级片免费的| 老司机亚洲免费影院| 少妇人妻精品综合一区二区| 秋霞在线观看毛片| 国产精品久久久久久久久免| 三上悠亚av全集在线观看 | 久久99一区二区三区| 久久久亚洲精品成人影院| 亚洲精品日韩在线中文字幕| 国产极品天堂在线| 国产精品无大码| av免费观看日本| 菩萨蛮人人尽说江南好唐韦庄| av又黄又爽大尺度在线免费看| 日本猛色少妇xxxxx猛交久久| 精品久久久久久久久av| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区三区久久久樱花| 夜夜看夜夜爽夜夜摸| 伊人亚洲综合成人网| 一区二区三区精品91| 国产一区二区在线观看av| 亚州av有码| 久久影院123| 91精品伊人久久大香线蕉| 国产精品一区二区在线不卡| 观看美女的网站| 亚洲高清免费不卡视频| 丝袜喷水一区| 精品人妻一区二区三区麻豆| 成人综合一区亚洲| 亚洲精华国产精华液的使用体验| 亚洲在久久综合| av福利片在线观看| 日韩欧美 国产精品| 亚洲激情五月婷婷啪啪| 深夜a级毛片| 菩萨蛮人人尽说江南好唐韦庄| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美成人午夜免费资源| 又爽又黄a免费视频| 国产淫语在线视频| 人人妻人人爽人人添夜夜欢视频 | 男女边吃奶边做爰视频| 我要看黄色一级片免费的| 大又大粗又爽又黄少妇毛片口| 边亲边吃奶的免费视频| 一区在线观看完整版| 亚州av有码| 亚洲国产精品一区三区| 大片免费播放器 马上看| 美女cb高潮喷水在线观看| 最近2019中文字幕mv第一页| 韩国av在线不卡| 亚洲美女搞黄在线观看| 国产免费又黄又爽又色| 日日摸夜夜添夜夜添av毛片| 国产高清不卡午夜福利| 22中文网久久字幕| 成人国产麻豆网| 99久久中文字幕三级久久日本| 亚洲精品国产成人久久av| 久久国产亚洲av麻豆专区| 国产成人aa在线观看| 自线自在国产av| 在线观看免费视频网站a站| 欧美激情国产日韩精品一区| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品视频女| 中国三级夫妇交换| 少妇猛男粗大的猛烈进出视频| 乱系列少妇在线播放| 91精品国产九色| 男人添女人高潮全过程视频| 久久久久国产网址| 纵有疾风起免费观看全集完整版| 久久精品国产自在天天线| 大片电影免费在线观看免费| 在线观看免费高清a一片| 51国产日韩欧美| 新久久久久国产一级毛片| 欧美高清成人免费视频www| 亚洲成色77777| 久久99精品国语久久久| 久久久久视频综合| 最近中文字幕高清免费大全6| 女性被躁到高潮视频| 嘟嘟电影网在线观看| 老女人水多毛片| 亚洲在久久综合| 成人毛片a级毛片在线播放| 看非洲黑人一级黄片| 黑人猛操日本美女一级片| 午夜老司机福利剧场| 中文字幕免费在线视频6| 看十八女毛片水多多多| 91aial.com中文字幕在线观看| 精品午夜福利在线看| 久久6这里有精品| 欧美xxxx性猛交bbbb| 精品亚洲乱码少妇综合久久| 国产精品国产av在线观看| 肉色欧美久久久久久久蜜桃| 亚洲精品日韩av片在线观看| 成人国产av品久久久| 亚洲欧美成人综合另类久久久| 日本猛色少妇xxxxx猛交久久| 成人无遮挡网站| 午夜激情福利司机影院| 观看免费一级毛片| 日本黄色日本黄色录像| 中文天堂在线官网| 久久久久久伊人网av| 久久青草综合色| 欧美精品亚洲一区二区| 国产一区有黄有色的免费视频| 内射极品少妇av片p| 永久网站在线| 久久国产乱子免费精品| 各种免费的搞黄视频| 卡戴珊不雅视频在线播放| 最近的中文字幕免费完整| 国产色爽女视频免费观看| 性高湖久久久久久久久免费观看| 亚洲精品,欧美精品| 精品久久国产蜜桃| 精品少妇内射三级| 久久精品夜色国产| 极品少妇高潮喷水抽搐| 极品少妇高潮喷水抽搐| 国产欧美另类精品又又久久亚洲欧美| 搡老乐熟女国产| 国产黄片视频在线免费观看| 在线 av 中文字幕| 成人二区视频| 久久久精品免费免费高清| 久久热精品热| 亚洲内射少妇av| 一区二区三区乱码不卡18| 国产精品久久久久久精品古装| 一级爰片在线观看| 波野结衣二区三区在线| 国产一区二区三区av在线| 久久ye,这里只有精品| 国产精品嫩草影院av在线观看| 中文字幕免费在线视频6| 日韩在线高清观看一区二区三区| 午夜福利在线观看免费完整高清在| 精品国产一区二区久久| 欧美性感艳星| 国产美女午夜福利| 国产色爽女视频免费观看| 大香蕉久久网| 日本色播在线视频| 一级毛片电影观看| 国产片特级美女逼逼视频| 少妇精品久久久久久久| 大陆偷拍与自拍| 看非洲黑人一级黄片| 观看美女的网站| 少妇人妻精品综合一区二区| 观看免费一级毛片| 亚洲经典国产精华液单| 精品国产乱码久久久久久小说| 青春草亚洲视频在线观看| 狂野欧美激情性bbbbbb| 久久国产精品男人的天堂亚洲 | 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 狠狠精品人妻久久久久久综合| 伊人久久精品亚洲午夜| 久久久亚洲精品成人影院| 精品久久国产蜜桃| 久久久久网色| 亚洲丝袜综合中文字幕| 亚洲av欧美aⅴ国产| 各种免费的搞黄视频| 精品卡一卡二卡四卡免费| 18禁动态无遮挡网站| 在线播放无遮挡| 欧美xxⅹ黑人| 十分钟在线观看高清视频www | 99热6这里只有精品| 亚洲丝袜综合中文字幕| 日韩成人av中文字幕在线观看| 久久久久精品性色| 青春草视频在线免费观看| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 91在线精品国自产拍蜜月| 一级av片app| 亚洲,欧美,日韩| 久久99蜜桃精品久久| 欧美性感艳星| 免费看日本二区| 色5月婷婷丁香| 国产真实伦视频高清在线观看| 99九九线精品视频在线观看视频| 韩国av在线不卡| 欧美人与善性xxx| 观看av在线不卡| av在线播放精品| 国产亚洲av片在线观看秒播厂| 老司机影院毛片| 桃花免费在线播放| 国产精品久久久久成人av| 精品久久久噜噜| 寂寞人妻少妇视频99o| 亚州av有码| 曰老女人黄片| 人妻 亚洲 视频| 中文天堂在线官网| 我要看日韩黄色一级片| 国产视频内射| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 王馨瑶露胸无遮挡在线观看| 少妇熟女欧美另类| 99re6热这里在线精品视频| 久久国产乱子免费精品| 精品少妇内射三级| av线在线观看网站| 在线天堂最新版资源| 少妇的逼好多水| 久久久久精品性色| 中文资源天堂在线| 亚洲天堂av无毛| 亚洲婷婷狠狠爱综合网| 91成人精品电影| 国产精品一区二区性色av| 最近最新中文字幕免费大全7| 午夜91福利影院| 久久精品熟女亚洲av麻豆精品| 亚洲激情五月婷婷啪啪| 一级毛片电影观看| 国产亚洲一区二区精品| 亚洲久久久国产精品| 桃花免费在线播放| 欧美日韩av久久| 亚洲性久久影院| 日本与韩国留学比较| 91久久精品国产一区二区成人| 丁香六月天网| 人妻夜夜爽99麻豆av| 国产高清国产精品国产三级| 香蕉精品网在线| 国产av精品麻豆| 亚洲av福利一区| 国产视频内射| 97超碰精品成人国产| 日本色播在线视频| 精品国产国语对白av| 日本91视频免费播放| 国产成人精品无人区| 搡老乐熟女国产| 在线观看www视频免费| 国产在线免费精品| 亚洲一级一片aⅴ在线观看| 国产精品熟女久久久久浪| 午夜免费男女啪啪视频观看| 成人黄色视频免费在线看| 大片免费播放器 马上看| 午夜影院在线不卡| 国产亚洲5aaaaa淫片| 亚洲色图综合在线观看| 午夜影院在线不卡| 汤姆久久久久久久影院中文字幕| 国产成人免费无遮挡视频| 国产成人一区二区在线| 中国三级夫妇交换| 欧美日韩av久久| 黄色配什么色好看| 亚洲av福利一区| 亚洲精品中文字幕在线视频 | 一级,二级,三级黄色视频| 久久精品久久精品一区二区三区| 国产色爽女视频免费观看| 2022亚洲国产成人精品| 国产免费视频播放在线视频| 久久国产精品男人的天堂亚洲 | 国产 精品1| 久久久久久久久久成人| 777米奇影视久久| 亚洲av综合色区一区| 亚洲欧美精品自产自拍| 国产综合精华液| 久久久久久久亚洲中文字幕| 91aial.com中文字幕在线观看| 欧美日韩国产mv在线观看视频| 日韩一区二区视频免费看| 精品国产乱码久久久久久小说| 男人爽女人下面视频在线观看| 国产精品99久久久久久久久| 亚洲欧洲国产日韩| 简卡轻食公司| 久久久国产精品麻豆| 欧美另类一区| 老熟女久久久| 最新的欧美精品一区二区| 日韩欧美精品免费久久| 蜜桃在线观看..| 最近最新中文字幕免费大全7| a级毛色黄片| 人体艺术视频欧美日本| 久久影院123| videos熟女内射| 国产极品天堂在线| 免费观看的影片在线观看| 内射极品少妇av片p| 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| av网站免费在线观看视频| 黄色毛片三级朝国网站 | 十分钟在线观看高清视频www | 国产日韩欧美在线精品| 免费看光身美女| 又粗又硬又长又爽又黄的视频| 久热久热在线精品观看| 男女免费视频国产| 在线观看美女被高潮喷水网站| 99热这里只有是精品50| 国产亚洲5aaaaa淫片| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 少妇人妻久久综合中文| 国产视频内射| 国产有黄有色有爽视频| 日本av手机在线免费观看| 亚洲第一av免费看| 婷婷色综合大香蕉| 国产精品一区www在线观看| h日本视频在线播放| 国产视频首页在线观看| 一个人免费看片子| 婷婷色综合大香蕉| 狂野欧美激情性bbbbbb| 国产av精品麻豆| 青春草亚洲视频在线观看| 成人美女网站在线观看视频| 精品国产乱码久久久久久小说| 老司机影院成人| 老司机影院毛片| 亚洲情色 制服丝袜| 乱人伦中国视频| 免费高清在线观看视频在线观看| 2021少妇久久久久久久久久久| 九草在线视频观看| 久久久久人妻精品一区果冻| av在线老鸭窝| 看非洲黑人一级黄片| 简卡轻食公司| 不卡视频在线观看欧美| 十分钟在线观看高清视频www | 国产黄片视频在线免费观看| 最近的中文字幕免费完整| 精品久久久噜噜| 欧美xxⅹ黑人| 少妇的逼好多水| 特大巨黑吊av在线直播| av网站免费在线观看视频| 一区二区三区四区激情视频| 国产日韩欧美在线精品| 免费播放大片免费观看视频在线观看| 久久精品国产亚洲网站| 一级毛片黄色毛片免费观看视频| 日日爽夜夜爽网站| 人人妻人人爽人人添夜夜欢视频 | 精品少妇内射三级| 亚洲国产精品999| 97在线视频观看| 日韩视频在线欧美| 丰满人妻一区二区三区视频av| 内地一区二区视频在线| 国产午夜精品久久久久久一区二区三区| 国内精品宾馆在线| 久久久久久久久久人人人人人人| 最近中文字幕高清免费大全6| 人人妻人人看人人澡| 五月玫瑰六月丁香| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 少妇熟女欧美另类| 国内少妇人妻偷人精品xxx网站| 午夜老司机福利剧场| 女人久久www免费人成看片| 人人澡人人妻人| 日本欧美视频一区| 久久久久视频综合| 精品亚洲成a人片在线观看| 国产极品粉嫩免费观看在线 | 免费久久久久久久精品成人欧美视频 | 大片免费播放器 马上看| 99国产精品免费福利视频| 亚洲av电影在线观看一区二区三区| 国产一区有黄有色的免费视频| 亚洲国产精品专区欧美| 欧美成人精品欧美一级黄| 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 久久久亚洲精品成人影院| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费 | 美女cb高潮喷水在线观看| 精品国产一区二区三区久久久樱花| 91久久精品国产一区二区成人| 99国产精品免费福利视频| 人人澡人人妻人| 亚洲国产精品999| 99九九线精品视频在线观看视频| 亚洲人成网站在线观看播放| 亚洲欧洲日产国产| 青春草视频在线免费观看| 久久人人爽人人爽人人片va| 黄色欧美视频在线观看| 日韩三级伦理在线观看| 在线观看一区二区三区激情| 国产精品国产三级国产av玫瑰| 十八禁高潮呻吟视频 | 韩国高清视频一区二区三区| 国产极品天堂在线| 狂野欧美激情性bbbbbb| 男女边摸边吃奶| 国产乱来视频区| av播播在线观看一区| 国产一级毛片在线| 少妇被粗大猛烈的视频| 国产欧美日韩一区二区三区在线 | 美女主播在线视频| 午夜精品国产一区二区电影| 精品国产乱码久久久久久小说| 晚上一个人看的免费电影| 少妇丰满av| 91成人精品电影| 精品午夜福利在线看| 精品一品国产午夜福利视频| 亚洲精品国产成人久久av| kizo精华| 青青草视频在线视频观看| 一个人看视频在线观看www免费| 91在线精品国自产拍蜜月| 国产精品一区二区三区四区免费观看| 日日爽夜夜爽网站| 国产高清不卡午夜福利| 99久久精品国产国产毛片| 成人毛片60女人毛片免费| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 妹子高潮喷水视频| 少妇丰满av| 久久久国产欧美日韩av|