• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter identification and state-of-charge estimation approach for enhanced lithium–ion battery equivalent circuit model considering influence of ambient temperatures*

    2019-11-06 00:46:38HuiPang龐輝LianJingMou牟聯(lián)晶andLongGuo郭龍
    Chinese Physics B 2019年10期

    Hui Pang(龐輝),Lian-Jing Mou(牟聯(lián)晶),and Long Guo(郭龍)

    School of Mechanical and Precision Instrument Engineering,Xi’an University of Technology,Xi’an 710048,China

    Keywords:lithium–ion battery,parameter identification,state of charge,ambient temperature

    1.Introduction

    Recently,lithium–ion batteries(LIBs)have been widely and extensively used in electric vehicles(EVs)due to their merits such as high energy density,no memory effect,low selfdischarge,and long lifespan as opposed to the other types of batteries including lead acid,nickel metal hydride,and nickel cadmium.[1–6]To guarantee the safe and reliable operation of battery packs,it is essential to provide accurate and prompt battery state information like terminal output voltage(TOV)and state of charge(SOC)through battery management system(BMS).Moreover,it should be noticed that due to variable operating conditions for EVs,especially at higher or lower ambient temperatures,battery capacity,internal resistance,and other parameters will accordingly change,which brings about some difficulties in predicting the battery internal stats and SOC.

    To estimate battery SOC,many scholars have developed various model-based estimation approaches like electrochemical models[7–10]and equivalent circuit models(ECMs).[11–14]Here in this paper,the electrochemical models are based on the first-principles theory,which describe the micro-reactions inside LIBs in depth,and have a clearer physical meaning.However,they have a complex structure based on partial differential equations,often necessitating model simplification or reduction.[8,15,16]The ECMs are commonly used in the BMS because they can reduce the complexities in parameter identification,SOC estimation,and control design for battery various operations.Nevertheless,the parameters of the ECMs are derived from empirical electric circuit structure and have no immediate electrochemical meaning,which could cause larger errors especially at low SOC region.[17,18]

    Besides,in recent years,many studies on the battery temperature have been found in the relevant literature.[19–22]Chuang et al.[19]proposed a temperature-compensated model of lithium–ion polymer batteries for SOC estimation in medical devices by considering temperature effects in a range from 37°C to 40°C.Liu et al.[20]designed a temperaturecompensated battery model with a dual-particle-filter estimator to improve the SOC estimation against parameter perturbations caused by the ambient temperature and noise interference caused by the drift current. Lu et al.[21]proposed an integrated SOC algorithm that combines an advanced amperehour counting method and multistate open-circuit voltage(OCV)method.Luo et al.[22]proposed an offset item to develop the observer equation in the estimation model to address the precision at lower ambient temperatures.Therefore,it is easily concluded that ambient temperature is a considerable factor for battery TOV and SOC estimation.

    However,a few of issues have been rarely discussed in the existing literature. First,the variation of OCV–SOC is practically dependent on the ambient temperature,while it is usually ignored.In other words,the OCV–SOC relationship at a certain temperature would yield a lager error if it is employed in the other ambient temperature.Second,the battery parameter,especially battery impedance,is greatly affected by the ambient temperature.[23]Yet,it is always assumed to be a constant in most of the existing literature. Third,the differences between the OCV–SOCs for a battery under charge and discharge conditions are seldom considered and discussed in previous literature,and the hysteresis phenomena of battery OCV are usually neglected during different cycles.

    To address these problems,Xing et al.[24]developed an off-line OCV–SOC temperature table based on the internal resistance model to describe only the effects of ambient temperature on OCV.The experimental results indicated that the estimation based on the developed model provides more accurate SOC with smaller root mean squared error(RMSE)and mean absolute error(MAE)at various temperatures.Yang et al.[25]established a correction scheme for the temperature dependence of OCV,capacity,and resistor–capacitor(RC)parameters in the estimator,but it is only suitable for transient response of LIBs with short time constant.Du et al.[26]established a temperature-compensation model in a wide temperature range from 0°C to 40°C,in which fully considered are the effects of SOC and ambient temperature on the Ohmic internal resistance and polarization capacitance,but it did not reflect the effects of ambient temperature on the polarization capacitance with a long time constant.And the OCV hysteresis phenomenon caused by charge and discharge conditions and C-rate was ignored. To sum up,accurate battery model can provide SOC estimation for the model-based SOC estimation method with higher accuracy,especially when considering the influence of ambient temperature.

    Consequently,this study focuses on constructing an enhanced equivalent circuit model(ECM)considering the influence of ambient temperature on the open-circuit voltage for a lithium–ion battery,which is derived from the second order resistor–capacitor equivalent circuit model(2RC-ECM).The main contributions of this study are summarized as follows.(i)By considering the influence of ambient temperature characteristics on the electrical dynamics performances of LIBs,a temperature-sensitive resistor Rtempis added to the 2RCECM to describe the change of battery impedance with ambient temperature;(ii)By considering the charge and discharge OCV–SOC relationship under different ambient temperatures,the parameter identification and SOC estimation are conducted with the help of exponential function fitting(EFF)method and extended Kalman filter(EKF)algorithm,respectively.

    The remainder of this paper is organized as follows.In Section 2 introduced are the battery experiment and data capturing under different test scenarios. The battery modeling and parameter identification are depicted in Section 3. And the EKF-based SOC estimation procedure is presented in Section 4.Some conclusions are drawn from this study in Section 5.

    2.Battery experiment and data capturing

    The battery experimental setup is shown in Fig.1,which consists of i)SONY lithium nickel-manganese-cobalt(NMC)oxide 18650 cylindrical cells(SONY Inc,Tokyo,Japan)with graphite anode;ii)a battery test system(ITS 5300,ITECH Inc,manufactured in Nanjing,China);iii)a thermal chamber for controlling the ambient temperature;iv)a host computer with monitoring software for data capturing;v)MATLAB 2016b(the MathWorks,Inc.,Natick,MA,USA)for data analysis.In this work,the key specifications of the employed NMC battery cell are shown in Table 1,and three separate test schedules are conducted on this experimental setup of battery,which includes the capacity characteristic tests in charge–discharge experiments,i.e.,the hybrid pulse power characterization(HPPC),the standard US06 driving cycle(US06)and the OCV–SOC at 5°C,25°C,30°C,and 45°C separately.For brevity,only the test profiles of HPPC and US06 condition at 25°C are presented in Figs.2(a)and 2(b)and Figs.2(c)and 2(d),meanwhile,the local enlarged drawing of the first pulse in Fig.2(b)is presented in Fig.2(f).

    Fig.1.Schematic diagram of battery experimental setup.

    Table 1.Key specifications of employed test battery.

    It should be particularly pointed out that the OCV–SOC trajectories are generally dependent on the ambient temperature,[24,25,27]and the test procedure at each temperature is described as follows.

    Step 1The battery cell is fully charged by using a constant current constant voltage(CCCV)protocol of 1 C-rate until battery TOV reaches to the upper cut-off voltage of 4.2 V;

    Step 2The battery cell is fully discharged at a constant rate of C/20 until battery TOV reaches a lower cut-off voltage of 2.0 V;

    Step 3The battery cell is fully charged to 4.2 V at a constant rate of C/20,which corresponds to 100%SOC.After repeating the above Steps 1 to Step 3 at 5°C,25°C,30°C,and 45°C,separately,one can obtain the OCV–SOC at each ambient temperature as shown in Fig.2(e).Moreover,it is noted that the HPPC profiles are used to perform the parameter identification by using a sequence of pulse containing discharge 10%of capacity at 5°C,25°C,30°C,and 45°C,respectively.And the HPPC test is recommended by Freedom CAR Battery Test Manual in US.[28]Additionally,the US06 drive cycles are used to validate the identified parameters based on the proposed battery model.

    Fig.2.Plots of(a)input current and(b)voltage versus time of HPPC condition at 25 °C,(c)input current and(d)voltage versus time of US06 condition at 25 °C,(e)the OCV–SOC at 5 °C,25 °C,30 °C,and 45 °C,and(f)the local enlarged voltage versus time of the first pulse in panel(b).

    3.Battery modeling and parameter identification

    3.1.Enhanced battery model

    The common 2RC-ECM is widely used in LIBs modeling and SOC estimation due to these merits like higher calculation efficiency,easy implementation in engineering,and better simulation of battery dynamics behaviors.[1–3,18,29]As can be seen from Fig.2(e),the variations of the OCV–SOC trajectories at different ambient temperatures almost coincide with each other in the 10%-to-100%SOC range,whereas there exists significant difference in the low SOC range less than 10%.In other words,under different ambient temperatures(denoted by symbol T),the same OCV may correspond to different values of battery SOC,especially when SOC is less than 10%.Additionally,we can conclude that the ambient temperature has great influence on the battery electrical dynamics behavior,and the SOC estimation is highly dependent on the accurate modeling of LIB.Therefore,it is necessary to derive an enhanced lithium–ion battery equivalent circuit model considering the influence of ambient temperatures,which is shown in Fig.3.

    Fig.3. Enhanced second-order resistor–capacitor equivalent circuit model.

    Unlike the common 2RC-ECM of LIB cell,Rtempis used to describe the change of battery impedance with ambient temperature,and the OCV is considered as a function of battery SOC and ambient temperature,which is denoted by UOC(SOC,T),thus this enhanced battery model is composed of Rtemp,Ohmic internal resistance R0,two parallel RC networks connected in series(i.e.,R1–C1and R2–C2),and the battery TOV denoted as Ut,with the applied current density being It.

    Here in this work,according to the Kirchhoff’s laws,we can construct the state-space equations for describing the relationships among capacitor,voltage,and current of this battery,and are described mathematically as follows:

    3.2.Parameter identification and validation

    3.2.1.EFF-based model parameter identification

    In this part,the HPPC test profiles are utilized to perform the parameters identification and the hysteresis phenomenon of battery OCV under charging and discharging profiles are taken into account.For R0,when the battery is discharged at each pulse,the battery TOV will drop instantaneously,denoted by UA–UB,on the contrary,when the battery is charged at each pulse,the battery TOV will jump instantaneously,denoted by UC–UD,see Fig.2(f).Under this situation,the value of R0can be acquired from the following equations:[30–33]

    where R0,Discand R0,Charefer to the values of R0at the discharge and charge conditions,respectively.

    According to Eq.(1),the battery TOV in the relaxation period(zero-input response period)can be expressed as

    where τ1=R1C1and τ2=R2C2.

    Moreover,according to Eq.(4),the other parameters,i.e.,R1,C1,R2,C2,and Rtempcan be obtained by the EFF method.And the battery TOV during the relaxation period can be fitted to the exponential function form expressed as

    where m0,m1,m2,λ1,and λ2are the coefficients to be determined,which can be obtained by the EFF method.

    By comparing the corresponding coefficients between Eq.(4)and Eq.(5),the values of R1,C1,R2,C2,and Rtempcan be acquired as follows:

    Table 2.Identified parameters of LIB cell under charge profile.

    Table 3.Identified parameters of LIB cell under discharge profile.

    According to the above-mentioned procedure,we can further obtain the identified parameters under charging and discharging as listed in Tables 2 and 3,respectively,in which,the corresponding values of Rtempare obtained only by using the proposed battery ECM at 5°C,25°C,30°C,and 45°C,separately.It is worth noting that the parameter identification is performed for the enhanced battery ECM and the common 2RC-ECM by using those nine pulses discharge and charge profiles with the help of EFF method,and the finally obtained parameters are the averaged values of the identified parameters under each pulse profile.On the one hand,according to the related parameters listed in Tables 2 and 3,we can obtain the plots of Fig.4 to reveal the identified parameters varying with SOC values under the discharge/charge conditions at 25°C,respectively.It can be concluded from Fig.4 that both R0and Rtempdecrease with SOC increasing;the variations of R1and C1have greater fluctuations in the lower SOC range of(0%–30%)and have a smooth tendency in the other SOC range(30%–100%);moreover,the variations of R2and C2have a decreasing tendency with SOC increasing on the whole.

    Fig.4.Variations of obtained parameters with SOC value under charge and discharge conditions at 25 °C.

    On the other hand,to further reveal the variations of the final identified parameters with ambient temperature,the curves of R0,Rtemp,R1,C1,R2,and C2versus T are fitted by using the cubic polynomials under discharge and charge conditions as shown in Fig.5,which is useful for improving the adaptability of this enhanced battery model.

    Note that the left and right values in each row for Tables 2 and 3 refer to the identified parameters for 2RC-ECM and proposed battery model,respectively.

    It is noted that the blue asterisk(*)and magenta circle(○)denote the identified parameter values in Tables 2 and 3 from the proposed battery model;and the blue and purple solid lines denote the fitted function relationships of each parameters with regarding to T in terms of the identified parameters under charge and discharge conditions.For example,the function of Rtemp(T)in Fig.5 can be used to estimate Rtempat any arbitrary ambient temperature,thus improving the practicability of the enhanced battery model.

    Additionally,it is observed from Fig.5 that the variations of R0and Rtempboth have an obvious decreasing tendency with T increasing;the variation of R1has a slower decreasing tendency,and its corresponding capacitor C1increases significantly with T increasing;moreover,the variation of R2and C2are both significantly increased with T increasing.

    3.2.2.Model validation and evaluation

    To verify the accuracy of the identified parameters,the measured and estimated battery TOV from the 2RC-ECM and this enhanced model under HPPC and US06 profiles at 25°C are shown in Figs.6(a)and 7(a),respectively,and the corresponding TOV errors are also shown in Figs.6(b)and 7(b),respectively.

    It can be observed that the enhanced battery model can well predict the battery TOV,especially from Figs.6(b)and 7(b),and that the TOV errors of the proposed battery ECM are obviously less than those of the 2RC-ECM under the same test profiles.It should be noted that the HPPC profiles ranges just from 100%to 10%,i.e.,from higher to lower SOC range,and both the battery TOV curves and the TOV errors show that the proposed battery ECM is more accurate than the common 2RC-ECM in predicting battery TOV.

    Fig.5.Variations of obtained parameters versus T from curve fitting method under charge and discharge conditions.

    Fig.6.(a)Battery voltage and(b)voltage error varying with time under HPPC test profile at 25 °C.

    Note that the left and right values in each row of Tables 4 and 5 represent the MAE and RMSE for 2RC-ECM and the enhanced battery model,respectively.

    Fig.7.(a)Battery voltage and(b)voltage error varying with time under US06 test profile at 25 °C.

    Moreover,in order to obtain the accuracy of SOC estimation for the enhanced battery ECM and the common 2RCECM,in Tables 4 and 5 listed are the comparisons between MAE and RMSE for battery TOV under HPPC and US06 profiles at 25°C,respectively.It is seen from Tables 4 and 5 that no matter the test is carried out under HPPC or US06 test profiles,the values of MAE and RSME for the enhanced battery model are less than those of the 2RC-ECM under the same operation at the arbitrary ambient temperatures,which indicates that our enhanced battery model has higher estimation accuracy.

    Table 4.Comparisons between MAE and RMSE under HPPC profile at 25 °C.

    Table 5.Comparisons between MAE and RMSE under US06 at 25 °C.

    4.SOC estimation based on EKF algorithm

    4.1.EKF-based on SOC estimation algorithm

    Due to its merits of providing higher accuracy and lower calculation cost,the EKF algorithm has been widely used to perform the parameter identification and SOC estimation in BMS.[34,35]It should be noted that the key point of the EKF algorithm is to minimize the error between the measured result and the simulated model output through a Kalman gain for a nonlinear Gaussian noise system with recursive algorithm.In order to apply EKF algorithm to the SOC estimation of the enhanced battery model,we need to present a general framework for the discrete-time state and measurement dynamic equations as follows:

    First,for the enhanced battery model shown in Fig.3,the discrete form of Eq.(1)is obtained as

    where Tsis the sampling interval.

    Next,define the system state,the measured valueand the input matrixas

    where SOCkis the observation of SOC in time step k,which is given by

    Note that Ccapis the nominal capacity shown in Table 1,η represents the Coulomb efficiency that is assumed to be 1 and 0.98 at charging and discharging stages,respectively,and It,kindicates the applied current.

    Finally,the discrete-time state-space equations of the enhanced battery model are depicted as

    where α is the slope of OCV–SOC curve at ambient temperature,and it is usually calculated by virtue of the local linear interpolation method based on the OCV–SOC relationship shown in Fig.2(e).

    To facilitate the understanding of the EKF-based SOC estimation procedure,we present the implementation flowchart of the EKF-based SOC estimation approach used in this enhanced battery model,which is shown in Fig.8. It should be noted that the input is the test profiles of LIB at different ambient temperatures,and then the EKF algorithm provides a Kalman gain to update the state estimate measurement

    Fig.8.Implementation flowchart of EKF-based SOC estimation.

    4.2.Results and discussion

    In this subsection,to reveal the advantages of this enhanced battery model with respect to the SOC estimation,the values of SOC are estimated from the 2RC-ECM and the enhanced battery model by incorporating the EKF approach,which is denoted as SOCest,i. Meanwhile the experimental SOC is obtained by the Coulomb counting(ampere-hour counting)based on the measured test data in Section 2,which is denoted as SOCexp.The relative SOC error is defined as

    where i=1 is for the battery 2RC-ECM and i=2 for the enhanced battery model.

    Figures 9 and 10 show the comparisons between battery SOC and SOC errors with the 2RC-ECM and the enhanced model under HPPC and US06 test profiles at 5°C,25°C,and 45°C,respectively. Figures 9 and 10 show apparently that the battery SOC estimation with the enhanced model can well track the SOCexpin the entire test profiles. Moreover,it is clear that the SOC errors with the enhanced model are overall less than those of the common 2RC-ECM without considering the influence of ambient temperature,and the SOC estimation errors are maintained in the ranges of 0%–2.10%,?1.43%–0.15%,and 0.38%–3.12%for the enhanced battery model,at each ambient temperature under the HPPC condition.In the US06 profiles,the SOC estimation errors are maintained in the ranges of ?0.38%–0.11%,?0.87%–0.04%,and 0.08%–0.13%for the enhanced battery model at each ambient temperature.Besides,it is obvious that the SOC error of the enhanced battery model yields comparatively minor fluctuations in comparison with that of the battery 2RC-ECM,which further implies that our enhanced battery model with the identified parameters has higher accuracy in estimating battery SOC under HPPC or US06 test profile.

    Fig.9.Comparisons between SOC and SOC error based on two different models by using OCV–SOC curve at(a)5 °C,(b)25 °C,and(c)45 °C under HPPC test profile.

    Fig.10.Comparisons between SOC and SOC error based on two different models by using OCV–SOC curve at(a)5 °C,(b)25 °C,and(c)45 °C under US06 test profile.

    5.Conclusions

    As is well known,the ambient temperature usually exerts a significant influence on the model parameters and SOC estimation for lithium–ion battery.In this paper,an enhanced battery model is proposed with considering the influence of ambient temperature on the battery OCV.A temperature-sensitive resistor is introduced to describe the influence of ambient temperature on the change of battery impedance.Besides,the EEF method is adopted to identify the offline battery internal states,and a cubic polynomial function is utilized to fit the highly nonlinear relationship between the identified parameters set(R0,Rtemp,R1,C1,R2,and C2)and T. An SOC estimation based on EKF algorithm is then conducted by using the measured HPPC and US06 test profiles. The experimental and simulated results show that this enhanced battery model can well predict the variations of battery SOC with a maximum error less than 2.0%and 0.25%,respectively,which illustrates that our enhanced battery model can simultaneously improve the battery SOC estimation accuracy,compared with the general 2RC-ECM for lithium–ion battery.Future work will focus on finding a comprehensive description of the battery dynamic behavior and achieving the precise and stable SOC estimation.

    久久精品国产亚洲av天美| 国产熟女欧美一区二区| 国产高清不卡午夜福利| 精品国产露脸久久av麻豆| 国产成人精品久久久久久| 成人毛片a级毛片在线播放| 亚洲精品乱码久久久久久按摩| av在线观看视频网站免费| 男女啪啪激烈高潮av片| 久久99蜜桃精品久久| 日韩伦理黄色片| 我的女老师完整版在线观看| 亚洲国产欧美在线一区| 多毛熟女@视频| 久久人人爽av亚洲精品天堂 | 精品亚洲乱码少妇综合久久| 久久久久久久亚洲中文字幕| 免费人成在线观看视频色| 亚洲丝袜综合中文字幕| 久久av网站| 岛国毛片在线播放| 亚洲电影在线观看av| 久久热精品热| 一区在线观看完整版| 免费播放大片免费观看视频在线观看| 日韩大片免费观看网站| 麻豆国产97在线/欧美| 我要看日韩黄色一级片| 啦啦啦视频在线资源免费观看| 国模一区二区三区四区视频| 成年人午夜在线观看视频| 成年免费大片在线观看| av线在线观看网站| 男女无遮挡免费网站观看| 中国美白少妇内射xxxbb| h日本视频在线播放| 国产女主播在线喷水免费视频网站| 亚洲欧美日韩无卡精品| 国产真实伦视频高清在线观看| 日本av免费视频播放| 免费不卡的大黄色大毛片视频在线观看| 久久午夜福利片| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜| av国产免费在线观看| 偷拍熟女少妇极品色| 在线免费观看不下载黄p国产| 在线观看免费视频网站a站| 寂寞人妻少妇视频99o| 亚州av有码| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久久丰满| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄| 久久97久久精品| 成人二区视频| 欧美日韩综合久久久久久| 久久久久久久久大av| 一区二区三区免费毛片| 久久精品熟女亚洲av麻豆精品| 日本黄大片高清| 99久久精品热视频| 精品久久久久久久久av| 精品一区在线观看国产| 少妇猛男粗大的猛烈进出视频| 一区二区三区乱码不卡18| 日韩 亚洲 欧美在线| 亚洲欧美日韩另类电影网站 | 不卡视频在线观看欧美| 久久久久久久久久久免费av| 中文字幕av成人在线电影| 亚洲美女黄色视频免费看| 亚州av有码| 久久人人爽av亚洲精品天堂 | 日本免费在线观看一区| 亚洲精品视频女| 亚洲欧美成人综合另类久久久| 亚洲自偷自拍三级| 色视频在线一区二区三区| 纵有疾风起免费观看全集完整版| 国产精品福利在线免费观看| 日日撸夜夜添| 狂野欧美激情性xxxx在线观看| 免费观看无遮挡的男女| 亚洲精品日本国产第一区| 欧美3d第一页| 在线观看一区二区三区激情| 人人妻人人爽人人添夜夜欢视频 | 欧美高清成人免费视频www| av天堂中文字幕网| 婷婷色麻豆天堂久久| 少妇丰满av| 一级a做视频免费观看| 高清不卡的av网站| 国产人妻一区二区三区在| 99热这里只有精品一区| 国产午夜精品一二区理论片| .国产精品久久| 国产精品无大码| xxx大片免费视频| 国产av国产精品国产| 国产人妻一区二区三区在| 久久精品国产亚洲av天美| 日韩成人伦理影院| 肉色欧美久久久久久久蜜桃| 精品人妻视频免费看| 777米奇影视久久| 91在线精品国自产拍蜜月| 丝袜脚勾引网站| 亚洲av在线观看美女高潮| 中国美白少妇内射xxxbb| 天堂中文最新版在线下载| 最黄视频免费看| a级毛片免费高清观看在线播放| 性色avwww在线观看| 欧美 日韩 精品 国产| 亚洲人成网站在线观看播放| 精品国产一区二区三区久久久樱花 | 亚洲av中文av极速乱| 一本—道久久a久久精品蜜桃钙片| 欧美一区二区亚洲| 老司机影院成人| 亚洲精品国产av蜜桃| 亚洲精品一二三| 亚洲av日韩在线播放| 国产午夜精品久久久久久一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 男人和女人高潮做爰伦理| 午夜精品国产一区二区电影| 国产午夜精品一二区理论片| 人体艺术视频欧美日本| 少妇人妻一区二区三区视频| 国产男女内射视频| 王馨瑶露胸无遮挡在线观看| 久久精品久久久久久久性| 夜夜爽夜夜爽视频| 亚洲成色77777| 国产精品成人在线| 免费久久久久久久精品成人欧美视频 | 久久久久久久久大av| 国产黄片视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 在线观看人妻少妇| 久久鲁丝午夜福利片| 亚洲精品乱码久久久久久按摩| 国产一区亚洲一区在线观看| 啦啦啦视频在线资源免费观看| 人妻系列 视频| 中文字幕久久专区| 精品国产一区二区三区久久久樱花 | 美女国产视频在线观看| 久久久久久久精品精品| 一级黄片播放器| 成年女人在线观看亚洲视频| 亚洲电影在线观看av| 国产精品秋霞免费鲁丝片| 久久综合国产亚洲精品| 亚洲欧美日韩另类电影网站 | 久久热精品热| xxx大片免费视频| 一级毛片我不卡| 久久久久久人妻| 99re6热这里在线精品视频| 亚洲av中文av极速乱| 国产男女内射视频| 一本一本综合久久| 熟妇人妻不卡中文字幕| 小蜜桃在线观看免费完整版高清| 精品熟女少妇av免费看| 日韩中字成人| 国内精品宾馆在线| 中国美白少妇内射xxxbb| 国产精品秋霞免费鲁丝片| 亚洲国产色片| 成人亚洲精品一区在线观看 | 伊人久久国产一区二区| 国产精品成人在线| 亚洲欧美中文字幕日韩二区| 久久女婷五月综合色啪小说| 国产高清国产精品国产三级 | 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 国产深夜福利视频在线观看| 成人午夜精彩视频在线观看| 国产男女超爽视频在线观看| 少妇丰满av| 亚洲成人手机| 久久久久久久久久久丰满| 亚洲中文av在线| 久久精品久久久久久噜噜老黄| 久久97久久精品| 91精品国产九色| 日韩免费高清中文字幕av| 如何舔出高潮| 久久久久久久久久成人| 这个男人来自地球电影免费观看 | 我要看黄色一级片免费的| 18禁动态无遮挡网站| 亚洲国产高清在线一区二区三| 国产视频首页在线观看| 麻豆精品久久久久久蜜桃| 精品一品国产午夜福利视频| 亚洲中文av在线| 欧美bdsm另类| av国产久精品久网站免费入址| 少妇的逼水好多| 国产伦精品一区二区三区视频9| 一本久久精品| videos熟女内射| 精品酒店卫生间| av播播在线观看一区| 国模一区二区三区四区视频| 日韩国内少妇激情av| 在线观看三级黄色| 亚洲精品成人av观看孕妇| 18+在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 精品国产三级普通话版| 一二三四中文在线观看免费高清| 超碰97精品在线观看| 在线精品无人区一区二区三 | 久久人人爽人人片av| 久久久欧美国产精品| 中文字幕av成人在线电影| 精品久久国产蜜桃| 熟女人妻精品中文字幕| av视频免费观看在线观看| 国产高潮美女av| 亚洲内射少妇av| 国产人妻一区二区三区在| 久热这里只有精品99| 国内少妇人妻偷人精品xxx网站| 国产亚洲欧美精品永久| 国产人妻一区二区三区在| 久久久精品免费免费高清| 中文字幕av成人在线电影| a级毛片免费高清观看在线播放| 97精品久久久久久久久久精品| 18+在线观看网站| 久久99精品国语久久久| 欧美性感艳星| 成人二区视频| 久久亚洲国产成人精品v| 欧美日韩在线观看h| 91久久精品国产一区二区三区| 成年免费大片在线观看| 制服丝袜香蕉在线| 丰满少妇做爰视频| 国产白丝娇喘喷水9色精品| 久久ye,这里只有精品| 少妇熟女欧美另类| 女性生殖器流出的白浆| 天美传媒精品一区二区| 国产片特级美女逼逼视频| av在线app专区| av天堂中文字幕网| 日韩三级伦理在线观看| 极品教师在线视频| 国产亚洲5aaaaa淫片| 99久久精品国产国产毛片| 国产欧美亚洲国产| 搡老乐熟女国产| 老女人水多毛片| 一区在线观看完整版| 国产黄色视频一区二区在线观看| 国产免费福利视频在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人精品一区二区| 亚洲av福利一区| 精品99又大又爽又粗少妇毛片| 2022亚洲国产成人精品| 国产美女午夜福利| 男女免费视频国产| 久久国内精品自在自线图片| 夫妻性生交免费视频一级片| 免费观看无遮挡的男女| 日本黄色日本黄色录像| 国产综合精华液| 日韩一区二区视频免费看| 99久久中文字幕三级久久日本| 18禁动态无遮挡网站| 久久久午夜欧美精品| 久久久色成人| 在线天堂最新版资源| 啦啦啦中文免费视频观看日本| 亚洲av中文字字幕乱码综合| 日本猛色少妇xxxxx猛交久久| av黄色大香蕉| 久久99热这里只有精品18| 亚洲精品456在线播放app| 亚洲精品自拍成人| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 高清不卡的av网站| 欧美激情极品国产一区二区三区 | 黄色日韩在线| 亚洲成人手机| 黄色一级大片看看| 亚洲,一卡二卡三卡| 国产精品人妻久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 夜夜看夜夜爽夜夜摸| 久久 成人 亚洲| 中文资源天堂在线| 成人漫画全彩无遮挡| 久久婷婷青草| 亚洲国产欧美人成| 免费人成在线观看视频色| 亚洲一级一片aⅴ在线观看| 亚洲美女搞黄在线观看| 国内揄拍国产精品人妻在线| 晚上一个人看的免费电影| 自拍偷自拍亚洲精品老妇| 久久久久精品性色| 国产精品久久久久久久电影| 成人漫画全彩无遮挡| 又爽又黄a免费视频| 免费av不卡在线播放| 国产亚洲欧美精品永久| 天堂俺去俺来也www色官网| 网址你懂的国产日韩在线| 中国三级夫妇交换| 成年人午夜在线观看视频| 99国产精品免费福利视频| 国产成人91sexporn| 久久精品夜色国产| 色综合色国产| 大码成人一级视频| 国产精品一区www在线观看| 免费看不卡的av| 成人国产麻豆网| 在线免费十八禁| 不卡视频在线观看欧美| 一本色道久久久久久精品综合| 久久人人爽人人片av| 五月开心婷婷网| 爱豆传媒免费全集在线观看| 人妻系列 视频| 国产精品.久久久| 99久国产av精品国产电影| 午夜免费观看性视频| av国产免费在线观看| 少妇精品久久久久久久| 丰满迷人的少妇在线观看| 一区二区三区四区激情视频| 成年人午夜在线观看视频| 欧美高清性xxxxhd video| 国产在线一区二区三区精| 精品酒店卫生间| 国产一区二区三区av在线| 深爱激情五月婷婷| 最近2019中文字幕mv第一页| 又黄又爽又刺激的免费视频.| 五月开心婷婷网| 国产伦精品一区二区三区视频9| 激情五月婷婷亚洲| 亚洲国产色片| 午夜免费观看性视频| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 99久久精品一区二区三区| 在线观看av片永久免费下载| 亚洲欧洲日产国产| 在线免费观看不下载黄p国产| 另类亚洲欧美激情| 亚洲精品日韩在线中文字幕| 国产成人精品婷婷| 女性被躁到高潮视频| 久久久久久久亚洲中文字幕| 亚洲av日韩在线播放| 深爱激情五月婷婷| 男人添女人高潮全过程视频| 亚洲欧美日韩无卡精品| 大香蕉97超碰在线| 97超碰精品成人国产| av免费在线看不卡| 免费在线观看成人毛片| 精品国产露脸久久av麻豆| 久久人人爽av亚洲精品天堂 | 欧美日韩在线观看h| 国产精品女同一区二区软件| 欧美 日韩 精品 国产| 国产成人精品福利久久| 欧美日韩精品成人综合77777| av卡一久久| 国产v大片淫在线免费观看| 中国美白少妇内射xxxbb| 日本午夜av视频| 日韩欧美精品免费久久| 欧美97在线视频| freevideosex欧美| 久久青草综合色| 老女人水多毛片| 久久久亚洲精品成人影院| 成人漫画全彩无遮挡| 特大巨黑吊av在线直播| 亚洲中文av在线| 日韩大片免费观看网站| 中文乱码字字幕精品一区二区三区| a级一级毛片免费在线观看| 只有这里有精品99| 色视频在线一区二区三区| 欧美丝袜亚洲另类| 97超碰精品成人国产| 精品国产三级普通话版| 日本一二三区视频观看| 国产av一区二区精品久久 | 久久久久视频综合| 亚洲精品日本国产第一区| 久热这里只有精品99| 欧美精品一区二区免费开放| 在线观看免费高清a一片| 一个人免费看片子| 亚洲精品乱码久久久久久按摩| 美女xxoo啪啪120秒动态图| 精品99又大又爽又粗少妇毛片| 亚洲成色77777| 精品午夜福利在线看| 狂野欧美激情性bbbbbb| 日韩成人伦理影院| 男女下面进入的视频免费午夜| 一二三四中文在线观看免费高清| 亚洲精品乱码久久久v下载方式| 大陆偷拍与自拍| 青春草亚洲视频在线观看| av在线app专区| 亚洲av日韩在线播放| 搡老乐熟女国产| 99热这里只有精品一区| 大话2 男鬼变身卡| 狂野欧美激情性xxxx在线观看| 欧美成人精品欧美一级黄| 久久女婷五月综合色啪小说| 十分钟在线观看高清视频www | 少妇丰满av| 在现免费观看毛片| 国产精品人妻久久久久久| 99热国产这里只有精品6| 午夜老司机福利剧场| 亚洲人成网站在线观看播放| 99热国产这里只有精品6| 99久久精品国产国产毛片| 久久久精品免费免费高清| 欧美日韩视频精品一区| 最近手机中文字幕大全| 少妇的逼水好多| av免费观看日本| 毛片女人毛片| 尾随美女入室| 国产精品av视频在线免费观看| 色婷婷久久久亚洲欧美| 免费看光身美女| xxx大片免费视频| 久久99热6这里只有精品| 黄色欧美视频在线观看| 日韩视频在线欧美| 街头女战士在线观看网站| 91精品伊人久久大香线蕉| 联通29元200g的流量卡| 亚洲精品日韩av片在线观看| 国内精品宾馆在线| 中国美白少妇内射xxxbb| 99久久精品热视频| 国产中年淑女户外野战色| 女人久久www免费人成看片| 国产精品免费大片| 女的被弄到高潮叫床怎么办| 肉色欧美久久久久久久蜜桃| 少妇裸体淫交视频免费看高清| av线在线观看网站| 成人毛片a级毛片在线播放| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 男人舔奶头视频| 高清不卡的av网站| videos熟女内射| av在线观看视频网站免费| 嫩草影院入口| 国产精品国产av在线观看| 亚洲av成人精品一二三区| 在线免费观看不下载黄p国产| 亚洲色图av天堂| 亚洲精品色激情综合| 亚洲av综合色区一区| 久久人妻熟女aⅴ| 啦啦啦视频在线资源免费观看| 免费人成在线观看视频色| 国产 一区精品| 久久久色成人| 五月开心婷婷网| 国产视频首页在线观看| 精品亚洲乱码少妇综合久久| 身体一侧抽搐| 少妇猛男粗大的猛烈进出视频| 国产午夜精品一二区理论片| 久久久久久伊人网av| a级毛色黄片| 国产高潮美女av| 最后的刺客免费高清国语| 亚洲中文av在线| 久久人人爽av亚洲精品天堂 | 久久国产乱子免费精品| 一本一本综合久久| h日本视频在线播放| 青春草亚洲视频在线观看| 国产成人a区在线观看| 日韩中字成人| 久久久久性生活片| 中文天堂在线官网| 国产免费一区二区三区四区乱码| 国产成人一区二区在线| 少妇的逼好多水| 国产成人a区在线观看| 久久久久久久久大av| 晚上一个人看的免费电影| 久久精品人妻少妇| 女性被躁到高潮视频| 欧美日韩综合久久久久久| 亚洲aⅴ乱码一区二区在线播放| 日韩在线高清观看一区二区三区| 777米奇影视久久| 国产高清三级在线| 国产精品一及| 99热这里只有精品一区| 久久99蜜桃精品久久| 99热6这里只有精品| 91久久精品电影网| 日韩免费高清中文字幕av| 日韩国内少妇激情av| 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| 国产一区亚洲一区在线观看| 特大巨黑吊av在线直播| 纵有疾风起免费观看全集完整版| 日韩欧美精品免费久久| 国产男女超爽视频在线观看| 啦啦啦中文免费视频观看日本| 久久精品熟女亚洲av麻豆精品| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 国产精品成人在线| 免费黄色在线免费观看| 国产av码专区亚洲av| 成人无遮挡网站| 国产精品一区二区在线观看99| 色视频在线一区二区三区| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产成人久久av| 在线观看人妻少妇| 九九久久精品国产亚洲av麻豆| 妹子高潮喷水视频| 黄片无遮挡物在线观看| 午夜激情福利司机影院| 高清黄色对白视频在线免费看 | 久久韩国三级中文字幕| 麻豆成人av视频| 国产精品女同一区二区软件| 人人妻人人看人人澡| 伦理电影免费视频| 蜜桃在线观看..| 久久久久久久精品精品| 欧美激情极品国产一区二区三区 | 少妇人妻久久综合中文| 直男gayav资源| 亚洲伊人久久精品综合| 97在线人人人人妻| 亚洲国产av新网站| 国产深夜福利视频在线观看| 精品久久久久久电影网| 亚洲图色成人| 少妇被粗大猛烈的视频| 在线亚洲精品国产二区图片欧美 | 国产91av在线免费观看| 国产精品av视频在线免费观看| 亚洲不卡免费看| 久久久久久伊人网av| 涩涩av久久男人的天堂| 久久久久久伊人网av| 国产成人a区在线观看| 一级a做视频免费观看| 精品一品国产午夜福利视频| 各种免费的搞黄视频| 少妇精品久久久久久久| 亚洲精品色激情综合| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| 国产精品麻豆人妻色哟哟久久| 日韩三级伦理在线观看| 欧美97在线视频| 午夜激情久久久久久久| 亚洲三级黄色毛片| 国产精品爽爽va在线观看网站| 日韩成人伦理影院| 精品少妇久久久久久888优播| 伊人久久精品亚洲午夜| 在线观看免费高清a一片| 99视频精品全部免费 在线| 精品一区二区三区视频在线| 在线观看av片永久免费下载| 在线免费观看不下载黄p国产| 一区二区三区精品91| 超碰97精品在线观看| 观看av在线不卡| 国产乱人偷精品视频| 97超视频在线观看视频| 美女中出高潮动态图| 中国国产av一级| 国产一区二区三区综合在线观看 | 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 麻豆精品久久久久久蜜桃| av免费观看日本|