• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells?

    2019-11-06 00:46:34ChangFuLi李長(zhǎng)富KaiJuShi時(shí)凱居MingShengXu徐明升XianGangXu徐現(xiàn)剛andZiWuJi冀子武
    Chinese Physics B 2019年10期

    Chang-Fu Li(李長(zhǎng)富), Kai-Ju Shi(時(shí)凱居), Ming-Sheng Xu(徐明升),Xian-Gang Xu(徐現(xiàn)剛), and Zi-Wu Ji(冀子武),?

    1School of Microelectronics,Shandong University,Jinan 250100,China

    2School of Physics and Electronic Engineering,Taishan University,Taian 271000,China

    3Key Laboratory of Functional Crystal Materials and Devices(Ministry of Education),Shandong University,Jinan 250100,China

    Keywords:photoluminescence,multiple quantum wells,localization effect,light-emitting diodes

    1.Introduction

    White light-emitting diodes(WLEDs)have exhibited more extensive applications in liquid crystal display backlighting and solid-state general lighting in recent years.[1–5]However,the most common WLEDs are LED-plus-phosphorbased,and they suffer an unavoidable Stokes energy loss and have a low color-rendering index(CRI).[2,6,7]Therefore,it is necessary to find a new method of preparing prototype phosphor-free monolithic WLEDs as an alternative to phosphor-based WLEDs. The entire spectral range of a nitride system can be obtained by tuning the indium composition in an InGaN alloy,so the InGaN alloys have become materials having significant potential to be used as active layers in LEDs.[8–11]It has been reported that monolithic WLEDs can be achieved by stacking dual-wavelength emitting InGaN/GaN multiple quantum wells(MQWs)in GaN p–n junctions.[12,13]

    Currently, the preparation technology of InGaN/GaN MQW-based blue LEDs has become relatively mature,and a high-efficiency(84.3%)blue LED based on InGaN/GaN MQWs has been achieved.[14]However, the InGaN/GaN MQW-based long-emitting-wavelength LED,such as green LED,is still in its inception in research and development terms;moreover,the optimal parameters for the growth of a high-In-content InGaN epilayer on GaN remain uncertain.The difficulty in preparing high-In-content InGaN epilayers is due mainly to the fact that indium and gallium have a significant discrepancy in atomic size,and the lattice mismatch between InN and GaN is as high as 11%, which may cause slight compositional fluctuations or strong phase separation.[8]These In-rich regions in this kind of structure serve as localization centers of carriers to improve the radiation recombination rate of the carriers,but at the same time they also lead the structural defects to be generated and light emission efficiency to be reduced.[9]Moreover,a quantumconfined Stark effect(QCSE)triggered by a piezoelectric polarization field in the high-In-content InGaN/GaN QW due to the large lattice mismatch between GaN and InGaN,also results in an increase in the spatial separation of electrons and holes and a decrease in the radiative recombination efficiency of the carriers in the MQW.Therefore,although monolithic WLEDs simultaneously emitting two colors have been achieved by growing two InGaN/GaN MQW-based active regions with different indium content on a single substrate,the long-wavelength components demonstrated quite a low internal quantum efficiency(IQE).[12,13]Hence,it is necessary to improve the understanding of the emission mechanism of blue and green dual-wavelength InGaN/GaN MQW epitaxial structures,thus preparing high-performance phosphor-free monolithic WLEDs that emit photons at different wavelengths with an appropriate power ratio.

    Photoluminescence(PL)measurements are an effective method to analyze the characteristics of InGaN/GaN MQWs.They can clearly reflect the effects of impurities/defects,composition fluctuation,and strain on optical properties of the MQWs.Here,in order to ascertain the effects of the indium content on the emission mechanism in InGaN/GaN MQWs and the mechanism of interrelation between two active regions grown on a single sapphire substrate,an InGaN/GaN MQW structure containing two active regions with lower(blue MQWs)and higher(green MQWs)indium content,is grown,while dependence of the PL spectrum on temperature(T)and excitation power for the two active regions are investigated in a large range of temperature and excitation power.

    2.Experiment

    Through using the metal-organic chemical vapor deposition(MOCVD),one has grown an InGaN/GaN MQW sample on a sapphire substrate oriented to(0001). Before the process,the substrates were thermally annealed at 1100?C in a hydrogen atmosphere to remove surface contamination from the sapphire substrate. In the process of growth,a 25-nm-thick GaN nucleation layer was deposited at 530?C,followed by forming a 4-μm-thick undoped GaN layer and a 3-μm-thick Si-doped GaN layer at 1080?C.Then,three pairs of InxGa1?xN/GaN(x ≈0.05)strain relief layers(SRLs)with 1-nm-thick InGaN wells and 5-nm-thick GaN barriers were grown at 800?C.Two InGaN/GaN MQW active regions,blue MQW(BMQW)and green MQW(GMQW),were formed at the same trimethylindium(TMIn)flow rate and in an N2ambient atmosphere after growing SRL:firstly,three pairs of InxGa1?xN/GaN(x ≈0.15)BMQWs with 3-nmthick InGaN wells(750?C)and 17-nm-thick GaN barriers(850?C)separately were grown,followed by growing nine pairs of InyGa1?yN/GaN(y ≈0.22)GMQW with InGaN wells(725?C,3-nm thick)and GaN barriers(850?C,17-nm thick).

    For the measurement of PL dependence on excitation power and temperature,the sample was placed in a closedcycle He cryostat to control the temperature changing from 6 K to 300 K.A 405-nm continuous wave(CW)semiconductor laser with a spot size of approximately 300μm was adopted to excite the PL signals, and the excitation power was varied between 0.005 mW and 100 mW.A Jobin–Yvon iHR320 monochromator and a thermo-electrical cooled Synapse charge-coupled device(CCD)detector were used for the dispersion and detection of PL signals from the sample.

    3.Results and discussion

    Figure 1 shows a typical PL spectrum of sample obtained at 100-mW excitation power and 300 K.Two emission peaks related to InGaN matrix can be found at approximate 2.603 eV(476 nm)and 2.338 eV(530 nm),which are assigned to the near-band-edge transitions(denoted by PBand PG)related to the BMQW matrix and GMQW matrix,respectively.To reveal the transfer and recombination mechanism of carriers in the two active regions,the dependence of their PL spectra on temperature and excitation power are presented and discussed below.

    Fig.1.Measured PL spectrum of sample at 100 mW and 300 K.

    Figure 2 shows the dependence of peak energy for the two emissions(PBand PG)on temperature at 0.005-mW excitation power.It can be found from Fig.2 that no dependence follows Varshni’s equation[15]

    where α=0.329 meV/K and β=972 K for PB,and α=0.294 meV/K and β=878 K for PG,while they are“Sshaped”.[9]It was also found(from Fig.2)that the peak energy conforms to Varshni’s equation only when the temperature exceeds ~160 K for PBand ~180 K for PG.Also,the temperature-dependent behavior of the PGpeak energy shows a larger localization depth(~22 meV)than that of the PBpeak energy(~5 meV).[8,16]These behaviors indicate that carrier localization effects originating from the compositional fluctuation in InGaN well layers are present in both the BMQW and GMQW,[17]but the latter is found to have a higher localization effect than the former.This may be due to the stronger compositional fluctuation in the green multiple InGaN/GaN quantum well with its higher indium content.The presence of the higher In-content and stronger compositional fluctuation in the green multiple InGaN/GaN quantum well is mainly attributed to the lower growth temperature(725?C)and the strain release induced by the underlying BMQW layer of the green multiple InGaN/GaN quantum well.

    Fig.2.Temperature-dependent peak energy for PB and PG,measured at 0.005 mW.

    Fig.3. Dependence of PB peak energy and full-width at half-maximum(FWHM)on excitation power,measured at 6 K(a)and 300 K(b).

    Figures 3(a)and 3(b)show excitation-power-dependent PBpeak energy and line-width at 6 K and 300 K,respectively.As shown in Fig.3(a),when the excitation power increases from 0.005 mW to 100 mW at 6 K,the peak energy tends to increase monotonically,showing a narrowing line-width below 2 mW and then a broadening line-width above 2 mW.The former is explained by the Coulomb screening of the QCSE in the BMQW,and the latter is mainly because of the band filling of the localized centers in the higher excitation power range due to the reduction of the QCSE.[9,18–20]At 300 K,as seen in Fig.3(b),comparing with the situation at 6 K,both initial increase in the peak energy and the initial narrowing in the peak line-width,which is a function of the excitation power,become less significant in a lower range of excitation power below ~0.05 mW.This phenomenon may be attributed to the combined effect of Coulomb screening and non-radiative recombination,since the defect-related non-radiative centers in the BMQW are thermally activated at 300 K.Nevertheless,as the excitation power increases to greater than ~0.05 mW,a trend similar to that observed in Fig.3(a)is seen in Fig.3(b)as non-radiative centers become saturated.

    Figures 4(a) and 4(b) show the excitation-powerdependent PGpeak energy and line-width,measured at 6 K and 300 K,respectively. Figure 4(a)shows that at 6 K,unlike the case of the PBpeak energy at 6 K in Fig.3(a),when the excitation power rises within an excitation power range below ~0.2 mW,both the PGpeak energy and line-width significantly decrease.This happens because of an strengthened scattering effect of carriers,which results in carriers being transferred from shallow localized states downwards deeper states through tunneling effect when the excitation power is increased.[21,22]The aforementioned experimental result(Fig.2)evinces this point:a GMQW has a stronger potential inhomogeneity and localized characteristic for recombination of carriers than a BMQW;however,when the excitation power exceeds 0.2 mW,the scattering effect of carriers is inhibited because deep localized states are saturated,so a similar phenomenon(Fig.3(a)for PB)is observed across a higher excitation power range above ~0.2 mW in Fig.4(a)for PG.However,at 300 K,it can be seen from Fig.4(b)that unlike the situation at 6 K(Fig.4(a)),the PGpeak energy increases slightly as the excitation power increases from 0.005 mW to~0.02 mW.Apart from this,the peak line-width exhibits that it narrows down to 59.0 meV at 300 K,which is markedly larger than that(17.6 meV)at 6 K in the range of evaluating excitation power.This happens because at the higher temperature(300 K),localized carriers in the GMQW are thermally activated;activated carriers partially occupy the localized states at higher energy levels and partially shift from localized states into conduction and valence bands.As a result,when the excitation power is increased from 0.005 mW to 0.02 mW,the scattering effect of localized carriers and Coulomb screening effect of free carriers together play a dominant role in the recombining of the GMQW,and this leads to a very slight increase in the peak energy,in addition to significant narrowing of the line-width. Nevertheless,if the excitation power exceeds ~0.02 mW,the Coulomb screening effect of free carriers gradually diminishes and scattering effect of localized carriers is enhanced since the conduction and valence band of the GMQW structure gradually become flat. Hence,a phenomenon similar to that described in Fig.4(a)occurs at excitation powers above 0.02 mW(Fig.4(b)).

    Fig.4.Dependence of PG peak energy and FWHM on excitation power at 6 K(a)and 300 K(b).

    For assessing and comparing the strengths of QCSE in the two aforementioned MQWs,the excitation-power-dependent PL peak energy and line-widths shown in Figs.3 and 4,will be further analyzed. As discussed above for both MQWs in Figs.3 and 4,the dominant carrier recombination mechanism is excitation-power-dependent,and the carrier recombination process contains several possible mechanisms combining dominant and non-dominant positions,such as i)Coulomb screening of QCSE,ii)band filling for localized states,iii)carrier-scattering,and iv)defect-related non-radiative recombination,as mentioned above.Although the different recombination mechanisms result in the different excitation-powerdependent behaviors of the PL spectra,i.e.,the above mechanism i)(mechanism ii))results in a peak blue-shift(blue-shift)together with the line-width narrowing(broadening),and the above mechanism iii)(mechanism iv))results in a peak redshift(red-shift)together with the line-width narrowing(broadening),the strengths of QCSE of these two MQWs can be compared with each other based on the experimental fact that when the excitation power is increased from 0.005 mW to 100 mW,the total blue-shift(narrowing)of peak position(line-width)is about 70 meV(3.0 meV)for the PGemission,and 37 meV(?10.3 meV)for the PBemission at 6 K,and is about 75 meV(?29.1 meV)for the PGemission and 37 meV(?49.5 meV)for the PBemission at 300 K.That is,the total blue-shift(narrowing)of peak positions(line-width)for the PGemission is more significant than that for the PBemission in the range of excitation powers evaluated at both 6 K and 300 K.The results show that the GMQW has a stronger QCSE than the BMQW.

    Figure 5(a)shows integrated PL intensity(I)varying with excitation power(P)for PBemission and PGemission at 300 K.Usually,the relationship between I and P is expressed as[8,9]

    where parameter F mirrors the diverse processes involved in the recombination from a physical perspective.As shown in Fig.5(a),F has a higher value(2.22)for PGemission than that(1.66)for the PBemission,indicating that the GMQW has more non-radiative recombination centers than the BMQW due to fact that the higher the In content,the higher the dislocation density induced in the InGaN layers will be.[8,9]

    Fig.5.Integrated PL intensities(a)and internal quantum efficiencies(b)for the BMQW and the GMQW(shown as functions of excitation power).

    Figure 5(b)shows the excitation-power-dependent IQE of the BMQW and GMQW.IQE is defined here as the ratio of integrated PL intensity at 300 K to that at 6 K.[9,23]As shown in Fig.5(b),IQE for the BMQW and GMQW gradually increase as the excitation power is increased from 0.005 mW to 100 mW.This behavior is attributed to the fact that at 300 K,when the excitation power increases,non-radiative recombination gradually weakens but radiative recombination gradually increases because the non-radiative centers gradually become saturated.This leads the IQE to gradually increase for both the BMQW and the GMQW.In addition,as shown in Fig.5(b),the GMQW demonstrates lower IQE within the selected measurement range than the BMQW.This can be mainly attributed to the more non-radiative centers in the GMQW than in the BMQW,due to the marked deterioration of the crystalline quality of the GMQW with higher indium content.

    4.Conclusions

    In this work,an InGaN/GaN MQW sample containing two active regions,BMQW and GMQW(the latter is deposited on the former),is grown. In addition,the PL spectra of the sample are studied at excitation powers in a range between 0.005 mW and 100 mW and temperatures ranging from 6 K to 300 K.It is found that the peak energy of PGemission demonstrates stronger dependence in an“S-shape”on temperature than that of PBemission,and an excitationpower-dependent carrier-scattering effect is observed only in the PGemission;when the excitation power is increased from 0.005 mW to 100 mW separately at 6 K and 300 K,the total blue-shift(narrowing)of peak position(line-width)for the PGemission is more significant than that for PBemission;the GMQW has a lower IQE than the BMQW.All of these results can be attributed to the fact that the GMQW has higher indium content than the BMQW,and the higher indium content in the GMQW induces a more significant compositional fluctuation and localized character of the carrier recombination,a stronger QCSE,and more non-radiative centers.The reason why more indium elements are incorporated into the GMQW is considered mainly because the GMQW is grown at a lower temperature(725?C).Additionally,the BMQW underlying layer,acting as a layer for strain release,also facilitates the incorporation of In into the GMQW and the In compositional fluctuation therein.

    人人妻人人澡人人爽人人夜夜| 亚洲国产中文字幕在线视频| 真人做人爱边吃奶动态| 亚洲欧美激情在线| 午夜福利乱码中文字幕| 亚洲av日韩精品久久久久久密| 大型av网站在线播放| 亚洲欧美精品自产自拍| 丝袜美腿诱惑在线| 中文字幕人妻丝袜一区二区| 美女午夜性视频免费| 久久国产精品男人的天堂亚洲| 国产精品久久久av美女十八| 丁香六月天网| 日韩精品免费视频一区二区三区| 久久久精品免费免费高清| 久久久精品免费免费高清| 亚洲国产精品999| 久久久水蜜桃国产精品网| 国产三级黄色录像| 视频区欧美日本亚洲| 丝袜美腿诱惑在线| 丝袜人妻中文字幕| 国产高清videossex| 欧美人与性动交α欧美软件| 免费少妇av软件| 国产成人精品在线电影| 操美女的视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 成人av一区二区三区在线看 | 99久久国产精品久久久| 精品国内亚洲2022精品成人 | www.熟女人妻精品国产| 色老头精品视频在线观看| 精品人妻一区二区三区麻豆| 午夜福利在线免费观看网站| 99热网站在线观看| 精品久久久精品久久久| videos熟女内射| 日韩熟女老妇一区二区性免费视频| 国产黄频视频在线观看| 亚洲国产中文字幕在线视频| 亚洲精品第二区| 男人添女人高潮全过程视频| 69av精品久久久久久 | 黑人操中国人逼视频| 老熟妇仑乱视频hdxx| 久久天堂一区二区三区四区| 美女大奶头黄色视频| 亚洲综合色网址| 无限看片的www在线观看| 人人妻,人人澡人人爽秒播| 亚洲精品国产精品久久久不卡| 久久性视频一级片| 午夜免费鲁丝| 91字幕亚洲| 亚洲av美国av| 免费看十八禁软件| 男女高潮啪啪啪动态图| 黄网站色视频无遮挡免费观看| 日韩欧美一区视频在线观看| 国产黄色免费在线视频| 精品一区在线观看国产| 国产精品久久久久久精品古装| 亚洲成人国产一区在线观看| 欧美日韩成人在线一区二区| 久久人人爽av亚洲精品天堂| 悠悠久久av| www.999成人在线观看| 免费人妻精品一区二区三区视频| 高清在线国产一区| 丰满饥渴人妻一区二区三| 国产一卡二卡三卡精品| 国产欧美日韩一区二区精品| 国产成人免费无遮挡视频| 不卡一级毛片| 午夜福利在线免费观看网站| 18禁裸乳无遮挡动漫免费视频| 黑人操中国人逼视频| 嫩草影视91久久| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 亚洲国产欧美网| 成人国产一区最新在线观看| 亚洲九九香蕉| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利影视在线免费观看| 久久精品熟女亚洲av麻豆精品| 满18在线观看网站| 国产人伦9x9x在线观看| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 国产黄频视频在线观看| 99国产精品99久久久久| 在线观看人妻少妇| 男女免费视频国产| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| kizo精华| 欧美日韩福利视频一区二区| 夜夜骑夜夜射夜夜干| 精品人妻一区二区三区麻豆| 在线看a的网站| 可以免费在线观看a视频的电影网站| 免费日韩欧美在线观看| 国产精品久久久人人做人人爽| 亚洲激情五月婷婷啪啪| 久久热在线av| 成人av一区二区三区在线看 | 老司机影院成人| 午夜影院在线不卡| 大香蕉久久成人网| 丁香六月欧美| 欧美av亚洲av综合av国产av| 亚洲美女黄色视频免费看| 精品第一国产精品| 99久久人妻综合| 啦啦啦 在线观看视频| 最黄视频免费看| 日日夜夜操网爽| av在线app专区| 狠狠婷婷综合久久久久久88av| 亚洲综合色网址| 亚洲专区国产一区二区| 亚洲成人国产一区在线观看| 国产精品秋霞免费鲁丝片| 一本综合久久免费| 午夜福利一区二区在线看| 汤姆久久久久久久影院中文字幕| 美女福利国产在线| 久久精品熟女亚洲av麻豆精品| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久| 欧美精品亚洲一区二区| 欧美+亚洲+日韩+国产| 国产精品久久久av美女十八| 亚洲国产精品999| 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 美女午夜性视频免费| 1024视频免费在线观看| 窝窝影院91人妻| 亚洲少妇的诱惑av| 亚洲av国产av综合av卡| 中文字幕高清在线视频| 欧美97在线视频| 最新的欧美精品一区二区| 我的亚洲天堂| 无遮挡黄片免费观看| 欧美精品一区二区大全| 免费在线观看日本一区| 国产淫语在线视频| 亚洲熟女精品中文字幕| 超碰成人久久| 国产欧美日韩一区二区三 | 国产成+人综合+亚洲专区| avwww免费| 成人手机av| 99久久综合免费| 国产xxxxx性猛交| 纵有疾风起免费观看全集完整版| 在线av久久热| 91九色精品人成在线观看| 国产一级毛片在线| 久久久欧美国产精品| 女性生殖器流出的白浆| 国产一区二区三区av在线| 久久ye,这里只有精品| 黄色视频在线播放观看不卡| 亚洲国产看品久久| 日韩欧美免费精品| 热99re8久久精品国产| 国产1区2区3区精品| 妹子高潮喷水视频| 91麻豆精品激情在线观看国产 | 免费av中文字幕在线| 岛国在线观看网站| 美女午夜性视频免费| 国产精品成人在线| 亚洲午夜精品一区,二区,三区| 黄片小视频在线播放| 免费高清在线观看视频在线观看| 久久午夜综合久久蜜桃| 欧美成人午夜精品| 国产91精品成人一区二区三区 | 免费人妻精品一区二区三区视频| 久久国产精品人妻蜜桃| 亚洲精品成人av观看孕妇| 国产精品九九99| 大片电影免费在线观看免费| www.自偷自拍.com| 久久性视频一级片| 两性午夜刺激爽爽歪歪视频在线观看 | 色94色欧美一区二区| 美女扒开内裤让男人捅视频| 黄色 视频免费看| 国产一区二区三区在线臀色熟女 | 精品福利永久在线观看| 黄片播放在线免费| 极品少妇高潮喷水抽搐| 国产免费福利视频在线观看| 欧美久久黑人一区二区| 久久久久久人人人人人| 国内毛片毛片毛片毛片毛片| www.精华液| 国产精品免费视频内射| 精品人妻熟女毛片av久久网站| 十分钟在线观看高清视频www| 精品久久久精品久久久| 亚洲成人国产一区在线观看| 精品一区二区三区四区五区乱码| 免费在线观看视频国产中文字幕亚洲 | 久久免费观看电影| xxxhd国产人妻xxx| 亚洲精品国产av蜜桃| 亚洲国产精品一区二区三区在线| 国产日韩一区二区三区精品不卡| av天堂在线播放| 亚洲人成电影观看| 啦啦啦中文免费视频观看日本| 精品亚洲乱码少妇综合久久| 中亚洲国语对白在线视频| 国产1区2区3区精品| 亚洲国产毛片av蜜桃av| 亚洲五月婷婷丁香| 一区二区三区乱码不卡18| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| av不卡在线播放| 午夜免费成人在线视频| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 国产精品九九99| 精品久久蜜臀av无| 侵犯人妻中文字幕一二三四区| 亚洲第一欧美日韩一区二区三区 | 我要看黄色一级片免费的| 美女午夜性视频免费| 嫁个100分男人电影在线观看| av又黄又爽大尺度在线免费看| 天堂俺去俺来也www色官网| 精品少妇久久久久久888优播| 亚洲少妇的诱惑av| 啪啪无遮挡十八禁网站| 色视频在线一区二区三区| 秋霞在线观看毛片| 精品亚洲成a人片在线观看| 亚洲少妇的诱惑av| 国产91精品成人一区二区三区 | 国产一区有黄有色的免费视频| 欧美老熟妇乱子伦牲交| 亚洲欧美一区二区三区黑人| 午夜老司机福利片| 黑人欧美特级aaaaaa片| 老司机亚洲免费影院| av天堂在线播放| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 法律面前人人平等表现在哪些方面 | 久热爱精品视频在线9| 精品一区二区三卡| av福利片在线| 99热全是精品| 日韩视频一区二区在线观看| 国产一区二区三区av在线| 亚洲第一欧美日韩一区二区三区 | 精品久久蜜臀av无| 精品少妇内射三级| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆| 97精品久久久久久久久久精品| 久久av网站| 中亚洲国语对白在线视频| 黄片播放在线免费| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 欧美一级毛片孕妇| 飞空精品影院首页| 亚洲激情五月婷婷啪啪| 亚洲成人手机| 国产av一区二区精品久久| 两性夫妻黄色片| 色视频在线一区二区三区| 国产高清videossex| 国产亚洲欧美精品永久| 天天躁日日躁夜夜躁夜夜| 天天躁日日躁夜夜躁夜夜| 亚洲专区中文字幕在线| 高清视频免费观看一区二区| 久久免费观看电影| 国产成人啪精品午夜网站| 一本久久精品| 免费少妇av软件| 性色av乱码一区二区三区2| 日本vs欧美在线观看视频| 久久久久久久精品精品| 黄网站色视频无遮挡免费观看| 人妻 亚洲 视频| 亚洲国产欧美一区二区综合| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 国产伦人伦偷精品视频| 一级毛片精品| 午夜福利一区二区在线看| 视频区图区小说| 不卡av一区二区三区| 亚洲,欧美精品.| 成人三级做爰电影| 少妇粗大呻吟视频| 大型av网站在线播放| 久久99热这里只频精品6学生| 亚洲国产欧美日韩在线播放| 亚洲精品日韩在线中文字幕| 国产免费一区二区三区四区乱码| 久久亚洲国产成人精品v| 亚洲国产精品成人久久小说| 国产亚洲av片在线观看秒播厂| 日韩大码丰满熟妇| 亚洲精品久久久久久婷婷小说| 十分钟在线观看高清视频www| av免费在线观看网站| 91成年电影在线观看| 日本猛色少妇xxxxx猛交久久| 在线亚洲精品国产二区图片欧美| 成年人黄色毛片网站| 高清欧美精品videossex| www.999成人在线观看| 国产日韩一区二区三区精品不卡| av在线老鸭窝| 精品国产一区二区久久| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久久久久婷婷小说| 咕卡用的链子| 国产欧美日韩精品亚洲av| 成人18禁高潮啪啪吃奶动态图| 国产在线一区二区三区精| 麻豆av在线久日| 午夜日韩欧美国产| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 亚洲中文日韩欧美视频| 久久久久久久大尺度免费视频| 女人久久www免费人成看片| 亚洲成国产人片在线观看| 又紧又爽又黄一区二区| 十八禁网站网址无遮挡| 久久中文看片网| 婷婷丁香在线五月| 国产在线观看jvid| bbb黄色大片| 曰老女人黄片| 岛国毛片在线播放| 人人澡人人妻人| 日韩 欧美 亚洲 中文字幕| 久久久国产成人免费| 欧美精品啪啪一区二区三区 | 国产成人精品久久二区二区91| 日日夜夜操网爽| 久久精品国产亚洲av香蕉五月 | 一区二区日韩欧美中文字幕| 国产亚洲午夜精品一区二区久久| 极品少妇高潮喷水抽搐| 国产国语露脸激情在线看| 国产精品一区二区精品视频观看| 亚洲黑人精品在线| 夜夜骑夜夜射夜夜干| 亚洲第一av免费看| 免费女性裸体啪啪无遮挡网站| 久久毛片免费看一区二区三区| 亚洲中文av在线| 日韩大码丰满熟妇| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 久久久水蜜桃国产精品网| 大香蕉久久成人网| 欧美久久黑人一区二区| 热re99久久精品国产66热6| 1024香蕉在线观看| 免费看十八禁软件| 777米奇影视久久| 中文字幕高清在线视频| 老熟妇仑乱视频hdxx| 天堂中文最新版在线下载| 国产99久久九九免费精品| av视频免费观看在线观看| 久久久久国产一级毛片高清牌| 亚洲国产欧美日韩在线播放| 国产极品粉嫩免费观看在线| 国产精品久久久久久精品古装| 国产精品久久久久久人妻精品电影 | 在线观看免费日韩欧美大片| 亚洲va日本ⅴa欧美va伊人久久 | 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| tocl精华| 久热爱精品视频在线9| 亚洲精品久久久久久婷婷小说| 国产老妇伦熟女老妇高清| 亚洲av日韩精品久久久久久密| 美女扒开内裤让男人捅视频| 99国产极品粉嫩在线观看| 国产极品粉嫩免费观看在线| 欧美亚洲日本最大视频资源| 最新的欧美精品一区二区| 在线十欧美十亚洲十日本专区| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 国产精品二区激情视频| 黄片播放在线免费| 精品乱码久久久久久99久播| 亚洲精品国产色婷婷电影| 日本欧美视频一区| 色婷婷av一区二区三区视频| 丝袜在线中文字幕| 波多野结衣一区麻豆| 自线自在国产av| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| 中文字幕另类日韩欧美亚洲嫩草| 欧美性长视频在线观看| 成人亚洲精品一区在线观看| 精品国内亚洲2022精品成人 | 女人精品久久久久毛片| 亚洲 国产 在线| 成人黄色视频免费在线看| 亚洲精品第二区| 国产av又大| 秋霞在线观看毛片| 亚洲av国产av综合av卡| 不卡一级毛片| 最黄视频免费看| 热re99久久精品国产66热6| 交换朋友夫妻互换小说| 国产精品国产三级国产专区5o| cao死你这个sao货| 热99国产精品久久久久久7| 国产欧美亚洲国产| 国产av国产精品国产| 高清视频免费观看一区二区| 亚洲av成人一区二区三| 亚洲精品粉嫩美女一区| 国产99久久九九免费精品| 日韩熟女老妇一区二区性免费视频| 黄色毛片三级朝国网站| 午夜免费观看性视频| 色精品久久人妻99蜜桃| 大香蕉久久网| 老司机福利观看| 中文字幕制服av| 欧美激情高清一区二区三区| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 国产精品九九99| 成人国产av品久久久| 久久久国产成人免费| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲成人国产一区在线观看| 精品国产一区二区久久| 国产又爽黄色视频| 亚洲综合色网址| 欧美在线黄色| 一级片'在线观看视频| 蜜桃在线观看..| 欧美精品av麻豆av| 青春草视频在线免费观看| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 午夜免费鲁丝| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 欧美日本中文国产一区发布| 国产成人av激情在线播放| a级片在线免费高清观看视频| 国产精品免费大片| 精品人妻在线不人妻| 丰满人妻熟妇乱又伦精品不卡| 少妇被粗大的猛进出69影院| 一级毛片电影观看| 宅男免费午夜| 中文字幕av电影在线播放| 十八禁网站免费在线| 午夜免费鲁丝| 精品人妻熟女毛片av久久网站| 9191精品国产免费久久| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 最近最新免费中文字幕在线| 一级黄色大片毛片| 桃红色精品国产亚洲av| 精品人妻一区二区三区麻豆| 一本色道久久久久久精品综合| 亚洲第一av免费看| 我的亚洲天堂| 精品久久久久久久毛片微露脸 | 亚洲少妇的诱惑av| 国产精品欧美亚洲77777| av视频免费观看在线观看| 国产精品一区二区在线不卡| 国产男女超爽视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久欧美国产精品| 高清在线国产一区| 91成年电影在线观看| 美国免费a级毛片| 久久中文字幕一级| 热99国产精品久久久久久7| 青草久久国产| 不卡一级毛片| 精品国产乱码久久久久久小说| 巨乳人妻的诱惑在线观看| 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 久久久久久久久久久久大奶| 欧美亚洲 丝袜 人妻 在线| av又黄又爽大尺度在线免费看| 老汉色∧v一级毛片| 一级片免费观看大全| 亚洲自偷自拍图片 自拍| 国产成人精品久久二区二区91| 97人妻天天添夜夜摸| 久久九九热精品免费| 黄色 视频免费看| 视频区图区小说| 亚洲精品久久成人aⅴ小说| 国产男女内射视频| 久热这里只有精品99| 成人18禁高潮啪啪吃奶动态图| 久久天堂一区二区三区四区| 久久久精品94久久精品| 高清视频免费观看一区二区| 男男h啪啪无遮挡| 美女大奶头黄色视频| 一边摸一边做爽爽视频免费| 免费高清在线观看视频在线观看| 国产亚洲一区二区精品| 香蕉国产在线看| 蜜桃国产av成人99| 日本wwww免费看| 日韩欧美国产一区二区入口| 精品国产一区二区久久| 国产欧美日韩一区二区三 | 不卡av一区二区三区| 久久99一区二区三区| 美国免费a级毛片| 91精品三级在线观看| 欧美乱码精品一区二区三区| 超色免费av| 日韩 亚洲 欧美在线| 国产av又大| 一级a爱视频在线免费观看| 亚洲人成电影观看| 91成人精品电影| 欧美另类一区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 日本撒尿小便嘘嘘汇集6| 午夜福利一区二区在线看| 亚洲欧美日韩高清在线视频 | 99香蕉大伊视频| 老熟女久久久| 国产一区二区 视频在线| 美女高潮到喷水免费观看| 丝袜脚勾引网站| 中文欧美无线码| 精品一区二区三卡| 久久久精品94久久精品| 国产精品av久久久久免费| 在线 av 中文字幕| 午夜老司机福利片| 欧美av亚洲av综合av国产av| 日日夜夜操网爽| 欧美日韩亚洲综合一区二区三区_| 热re99久久精品国产66热6| 国产国语露脸激情在线看| 亚洲第一av免费看| 日日爽夜夜爽网站| 亚洲欧美一区二区三区黑人| 下体分泌物呈黄色| 国产麻豆69| 日韩 欧美 亚洲 中文字幕| 丁香六月欧美| 狠狠狠狠99中文字幕| 丰满饥渴人妻一区二区三| 人妻久久中文字幕网| 18禁国产床啪视频网站| 久久热在线av| 亚洲精品美女久久久久99蜜臀| 王馨瑶露胸无遮挡在线观看| 免费女性裸体啪啪无遮挡网站| 午夜视频精品福利| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费av在线播放| av在线播放精品| 欧美激情高清一区二区三区| 国产老妇伦熟女老妇高清| 最新的欧美精品一区二区| 午夜精品国产一区二区电影| 法律面前人人平等表现在哪些方面 | 别揉我奶头~嗯~啊~动态视频 | 色婷婷av一区二区三区视频| 欧美午夜高清在线| 免费一级毛片在线播放高清视频 | 一边摸一边抽搐一进一出视频| 亚洲欧美成人综合另类久久久| 国产精品香港三级国产av潘金莲| 久久久久久久精品精品| 久久天躁狠狠躁夜夜2o2o| 国产成人欧美| 18禁裸乳无遮挡动漫免费视频| 国产一区二区三区综合在线观看| 亚洲精品国产av成人精品| 一区在线观看完整版|