• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments?

    2019-11-06 00:45:34WenjunYan閆文君XiaominZeng曾小敏HuanLiu劉歡ChunweiGuo郭春偉MinLing凌敏andHoupanZhou周后盤(pán)
    Chinese Physics B 2019年10期
    關(guān)鍵詞:劉歡

    Wenjun Yan(閆文君),Xiaomin Zeng(曾小敏),Huan Liu(劉歡),Chunwei Guo(郭春偉),Min Ling(凌敏),and Houpan Zhou(周后盤(pán)),§

    1Smart City Research Center,School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China

    2Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    Keywords:α-Fe2O3,ethanol sensor,chemi-resistive,in realistic environment,micro-electro-mechanical systems(MEMS)

    1.Introduction

    Ethanol sensors have been extensively applied in numerous fields,such as chemical industries,the development of fungi and bacteria in foodstuffs,ethanol breath analyzers in drivers’breath,and so on. Gas sensors based on metaloxide-semiconductors have attracted widely attention in the last decades,due to their small size and low cost.[1–5]However,the miniaturized and low-power gas sensors remain deployment for reliable applications in Internet of Things(IoT)in realistic environments.

    Hematite (α-Fe2O3), n-type semiconductor (Eg=2.1 eV),is the most thermodynamically stable iron oxide under ambient conditions.[6]Because of its environmentally friendly,high resistance to corrosion and low cost,α-Fe2O3has widespread applications in various fields,such as magnetic devices,catalysts,electronic materials,gas sensors,biological and medical fields.[7–12]Sensor devices based on α-Fe2O3nanostructures have been reported,for different gas detections,such as volatile organic compounds(VOCs),[7]ethanol,[8,13,14]H2S,[15]and NO2.[16,17]Noteworthily,α-Fe2O3could provide rapid response/recovery gas sensing properties due to its special valence state.[13,18,19]However,the pristine α-Fe2O3-based gas sensors for reliable applications have not received much attention,especially the ones with immunity to humidity in realistic environments.Furthermore,limited reports on the great selectivity of the pristine α-Fe2O3to ethanol are available.[20,21]

    Generally,the ambient humidity varies greatly in realistic environments from case to case,and even in different seasons.The vulnerability to humidity not only makes drift of the gas sensor response,but also deteriorates the long-term stability of gas sensors.For the application in realistic environments,a great immunity to humidity of gas sensors is vital.In previous reports,[22–24]ambient humidity had no obvious effect on the gas sensing properties when the sensor device worked at high temperatures.This is due to that water adsorption is too small at high temperature.

    So as to provide control over the sensing temperature and keep the low-power consumption of a device while heating the sensing material,a microfabricated heater is needed.With the developments of microelectronics and IoT,the device sizes shrink continuously as predicted by Moore’s law.[25,26]The miniaturized,low cost,and low-power(<100 mW)gas sensor could be developed by integrated with a microheater based on micro-electro-mechanical systems(MEMS)technology. The low cost is obtained from batch fabrication of the microheaters.[27]

    Given the challenges of gas sensors for reliable applications in realistic environments and the relative lack of knowledge of the pristine Fe2O3-based gas sensors,an exploration of the gas sensing properties of α-Fe2O3nanorhombs is in order.Here,we report the characterizations of a highly reliable and selective ethanol sensor with immunity to humidity based on α-Fe2O3nanorhombs. The α-Fe2O3nanorhombs are synthesized using solvothermal method.Owing to control the sensing temperature and enhance the sensing response and recovery,α-Fe2O3is integrated onto a microheater.The sensor devices are tested in different humid environments. The relative humidity(RH)dependence on ethanol sensing is experimentally investigated.A cross-sensitivity to other VOCs and ammonia was also performed.A reasonable gas sensing mechanism is discussed.

    2.Materials and methods

    2.1.Synthesis of α-Fe2O3 nanorhombs

    The α-Fe2O3nanorhombs were prepared via a solvothermal route.[18]Typically,0.202 g of Fe(NO3)3·9H2O,0.300 g of poly(N-viny1-2-pyrrolidone) (PVP, Mw=30000), and 0.277-g CH3COONa were dissolved in 30-ml methanol aqueous solution with constant stirring at room temperature.The volume ratio of DI water and methanol is 2:1.After stirring for 1 h,the brownish solution was then turned into a Teflonlined stainless steel autoclave of 50-ml capacity.The sealed tank was put into an oven and heated at 200?C for 24 h.After reaction,the autoclave was cooled to room temperature naturally.The reddish brown precipitates were collected by centrifugation,washed with DI water and ethanol several times,and dried at 60?C in air.Finally,the product was put into a muffle oven for calcination in air atmosphere at 450?C for 4 h with the heating rate of 3?C/min.

    2.2.Characterization

    Transmission electron microscopy(TEM)images were taken with a JEOL JEM-2100 microscope to characterize the morphology of α-Fe2O3nanorhombs.Powder x-ray diffraction(XRD)analyses were performed on a Bruker D8 Advance diffractometer with Cu Kα radiation(λ ≈1.54 ?A).X-ray photoelectron spectra(XPS)were performed on an RBD upgraded PHI-5000 C ESCA system(PerkinElmer).XRD and XPS are used for elemental and structural analyses.

    2.3.Sensor fabrication

    The gas sensor devices were based on an SOI(silicon on insulator)MEMS microheater technology.Figure 1(a)displays the schematic structure of the microheater,and the corresponding optical micrograph is shown in Fig.1(b).The circuitry,both for heater temperature control and sensing layer resistance readout,was integrated on-chip.A pair of heating electrodes to provide highly uniform working temperature of the sensing material at low power,and interdigitated Au electrodes to form a good Ohmic contact with the sensing material were suspended in a dielectric membrane in the microheater device.The gas sensors were prepared by integrating α-Fe2O3nanorhombs onto the center of a microheater.The α-Fe2O3nanorhombs were sonicated into suspension in an aqueous solution of isopropyl alcohol(0.5 mg/mL).A 0.1-μL drop was placed onto the microheater chip with the heater working at 100?C and maintained for 2 h to promote solvent evaporation and material deposition at the center of the microheater.

    2.4.Sensor testing

    The gas sensing properties were evaluated in a homemade measuring system via a static process.For the test,a reference resistor(Rref.)was put in series to form a measurement circuit.The circuit diagram is illustrated in Fig.1(c). The response of the sensor in air or in a target gas could be measured,by monitoring the voltage across the reference resistor.Response is defined by the percentile resistance change when the sensor is exposed to an analyte gas as follows:

    where R0and Rgare the resistances of the sensor before and after exposed to the analyte gas,respectively.

    Fig.1. (a)Schematic structure and(b)optical micrograph of the microheater,(c)the working principle of the gas sensing measurement.

    3.Results and discussion

    3.1.Characterization methods

    Morphology of the as-synthesized α-Fe2O3is characterized using TEM.Figures 2(a)and 2(b)show representative low magnification TEM images of the α-Fe2O3nanorhombs.The nanoparticle size ranges from 45 nm to 65 nm.The measured spacing between the fringes in the lattice is approximately 0.27 nm(Fig.2(c)),which matches well the(104)d-spacing for the α-Fe2O3.The distinct lattice fringes indicate the high crystallinity of the grains.

    The x-ray diffraction pattern(Fig.2(d))shows characteristic peaks for α-Fe2O3at 2θ=24.2?,33.2?,35.7?,40.9?,49.5?,54.1?,62.5?,and 64.1?,which respectively correspond to the(012),(104),(110),(113),(024),(116),(214),and(300)planes of the hexagonal α-Fe2O3(JCPDS 79–0007). This XRD results agree with the previous reports.[28,29]No other phases are observed,indicating the purity and single phase of the prepared α-Fe2O3nanorhombs.The strongest peak at 2θ=33.2?is corresponding to the α-Fe2O3(104),which is consistent with its TEM result(Fig.2(c)).

    The XPS survey spectrum of the α-Fe2O3nanorhombs is shown in Fig.3(a). It reveals the presence of Fe,O,and C elements.According to the Fe 2p high-resolution XPS spectrum in Fig.3(b),the binding energy peaks at 711.4 eV and 724.3 eV with the corresponding satellite peak at 718.6 eV,are attributed to Fe 2p3/2,2p1/2,respectively.[15]The energy positions of these peaks indicate a Fe valence state of+3.Two obvious peaks were observed in the O 1s high resolution XPS spectrum as shown in Fig.3(c),which have the binding energy values of 530.5 eV and 532.7 eV.The peak at 530.5 eV is associated with the lattice oxygen atoms in α-Fe2O3and the peak at 532.7 eV is linked with the chemisorbed oxygen species on the surface of α-Fe2O3.[30]The large peak area of chemisorbed oxygen species means many chemisorbed oxygen species on the surfaces of α-Fe2O3nanorhombs.[15]

    Fig.3.(a)X-ray photoelectron spectroscopy(XPS)survey spectrum,(b)Fe 2p and(c)O 1s high-resolution spectra of the α-Fe2O3 nanorhombs.

    3.2.Gas sensing performances

    The gas sensing performances of the α-Fe2O3sensor are related to the working temperature closely. This is because that the adsorption/desorption rates of oxygen molecules and target gas molecules on the sensing material surface are affected by temperature.The gas sensing properties of the α-Fe2O3sensor are investigated at different operating temperatures of the heater. Nearly linear current versus voltage behaviors at different temperatures suggest an Ohmic contact between α-Fe2O3and sensor electrodes(Fig.4(a)).The decreasing resistance with increasing the working temperature is consistent with a typical behavior of semiconductor.At a low temperature(<180?C),the α-Fe2O3sensor cannot show an obvious resistance change to ethanol,because the ethanol molecules do not have enough thermal energy to react with the adsorbed oxygen.[20]The response values of the α-Fe2O3sensor to 3-ppm ethanol at various working temperatures from 180?C to 310?C are shown in Fig.4(b).The response of the sensor to 3 ppm ethanol increases as the temperature increases,while the response and recovery time decreases.This is due to the high temperature accelerating the adsorption and desorption of ethanol molecules on the α-Fe2O3surface.However,both the response and recovery time are slight at 280?C and 310?C,3 s and 15 s respectively.Considering the response and recovery properties to ethanol and the power consumption of the device,a temperature of 280?C is taken as the optimum operating temperature,with the power of microheater at 60 mW.Further sensing tests are taken at 280?C with the ambient humidity of 30%.

    The α-Fe2O3sensor response to varied concentrations of ethanol from 1 ppm to 20 ppm at 280?C is shown in Fig.5(a).The resistance of the sensor decreases upon exposure to ethanol gas,consistent with n-type behavior.[31]For all different concentrations of ethanol,this gas sensor can be fully recovered(e.g.,returning back to the baseline)after ethanol gas is quickly replaced by air,indicating the excellent reversibility of the α-Fe2O3nanorhombs-based sensor. The response increases monotonically with the ethanol gas concentration increasing in the low concentration level of 1 ppm–7 ppm,while tending to saturate above 20 ppm(Fig.5(b)and Fig.A1 in Appendix A).The response time(tresponse)is defined as the time taken to reach 90%of the full response after the introduction of the target gas.The recovery time(trecovery)is defined as the time taken to return to 90%of the baseline resistance after the flow of target gas is stopped.The sensor has ultra-fast response and recovery times for all ethanol concentrations around 3 s and 15 s,respectively.

    Fig.4.(a)I–V curves of the α-Fe2O3 nanorhombs-based sensor at different working temperatures.(b)Response values of the sensor to 3-ppm ethanol at different working temperatures.

    Fig.5.The α-Fe2O3 nanorhombs-based sensor working at 280 ?C:(a)Resistance versus time for various ethanol concentrations(1 ppm–20 ppm),(b)the corresponding response values,(c)repeatability for 3 ppm ethanol,(d)selectivity for various gases.

    Fig.6.The α-Fe2O3 nanorhombs-based sensor working at 280 ?C:(a)long-term stability to 3-ppm ethanol,and(b)response to various ethanol concentrations(1 ppm–10 ppm)in different humidity conditions.

    Repeated response/recovery measurement of the α-Fe2O3sensor to 3-ppm ethanol gas for 7 cycles are shown in Fig.5(c),which indicates well repeatable behavior. Additionally,the selectivity of the α-Fe2O3sensor is displayed in Fig.5(d)among the gases of methanol,acetone,isopropyl alcohol(IPA),formaldehyde,and ammonia gas at higher concentrations,while the measurement of ethanol gas is at a lower concentration of 3 ppm.The results confirm the great selectivity of the α-Fe2O3sensor to ethanol molecules.

    Excellent long-term stability of gas sensors is another essential requirement for reliable applications.The responses of the α-Fe2O3sensor to 3-ppm ethanol gas were measured over a period of 50 days,while the sensor is always on at the working temperature of 280?C.The response values and the reproducible resistance vs.time are shown in Fig.6(a)and Fig.A2 in Appendix A.An insignificant response average variation of around 4%was observed(Fig.6(a)).Hence,the α-Fe2O3nanorhombs-based sensor exhibits a great long-term stability.

    Humidity is a critical issue for all semiconducting solidstate sensor devices due to the varying humidity in realistic environment.As shown in Fig.6(b),the response and recovery properties of the α-Fe2O3sensor to ethanol gas at relative humidity(RH)of 30%,50%,and 70%were tested.Here,RH was adjusted by humidifier and air conditioner,and monitored by a hygrometer.In this case concentrations were varied from 1 ppm to 10 ppm.Passing from 30%to 70%RH,the response average variation is below 6%for all the analyzed ethanol gas concentrations,indicating saturation of the material with respect to humidity at the operating temperature of 280?C.This means the acceptable immunity to humidity of the α-Fe2O3sensor at 280?C.It can be used to effectively detect ethanol gas in realistic environment,and it is not vital to know the exact RH value.However,baseline of the α-Fe2O3sensor has a slight drift at 70%RH(Fig.A3 in Appendix A).Therefore,ethanol sensing performances of the α-Fe2O3sensor in high humidity should be improved.

    3.3.Gas sensing mechanism

    The gas sensing mechanism of α-Fe2O3sensor has been clarified in many previous reports.[13,31]The model is based on the change in resistance caused by the adsorption and desorption of gas molecules on the surface of sensing films.In air ambient,the oxygen molecules are adsorbed on the α-Fe2O3surface. The adsorbed oxygen molecules capture electrons from the conduction band of the α-Fe2O3surface layer,which results in the formation of chemisorbed oxygen ions O?at the operating temperature of 280?C,according to the following equation:[32]

    Hence,an electron depletion layer is formed on the surface of α-Fe2O3,and a potential barrier is generated contributing to a high resistance state.

    Upon exposure to ethanol gas,the ethanol molecules react with the adsorbed O?ions on α-Fe2O3surface and release the trapped electrons back to conduction band of α-Fe2O3,resulting in a reduced potential barrier energy.Accordingly,the sensor’s resistance is decreased.These can be expressed according to the following reactions:

    According to the previous reports,[33,34]the nanosize of α-Fe2O3possesses large surface-to-volume which is favor for its sensing performances enhancement.Additionally,the α-Fe2O3self could provide efficient and rapid electron exchange between the cations:,contributing to a great resistance change and improved gas sensing performances.[18,19]Due to the weak OH-binding forces at working temperature of 280?C,the α-Fe2O3sensor can be applied to effectively detect ethanol gas in realistic environment with immunity to humidity.[22–24]

    3.4.Gas sensor network

    To demonstrate the feasibility of real application of the α-Fe2O3sensor,the sensor was integrated with a prototype of electronic circuit,which can transmit sensing data to mobile terminal and show the ethanol gas concentration values of the atmosphere.Figure 7 displays the working principle of a gas sensor network.Gas leakage or breath alcohol can be monitored or tested easily.

    Fig.7.Gas sensor network connected by a mobile terminal.The integrated circuit is the picture of real products.

    4.Conclusions

    Highly reliable and selective ethanol sensors based on α-Fe2O3nanorhombs integrated with MEMS microheater were successfully prepared. The α-Fe2O3nanorhombs were synthesized solvothermally.The MEMS gas sensors are found to be power-efficient and on-chip electronic circuit integration is possible.The sensing performances were investigated in the temperature range 180?C–310?C,while the corresponding power of the microheater was in the range 44 mW–70 mW.The optimum operating temperature was found to be at 280?C,with the heater at 60 mW.The sensor showed great selectivity to ethanol gas.The ethanol response was found to be 9%–56%for the concentration range 1 ppm–20 ppm.The response and recovery times were around 3 s and 15 s for all the concentrations(1 ppm–20 ppm)of ethanol,respectively.In the humid conditions(RH of 30%–70%),the α-Fe2O3ethanol sensor was reliable with acceptable immunity to humidity.The sensor showed excellent repeatability and stability for a long term(50 days)towards ethanol.The MEMS sensors based on α-Fe2O3nanorhombs are expected to have numerous applications and develop low cost smart ethanol sensor in realistic environments.

    Acknowledgments

    The authors acknowledge M Ling for help with the TEM,XRD,and XPS characterizations.The authors acknowledge X B Li for support on microheater.The authors acknowledge the 2011 Zhejiang Regional Collaborative Innovation Center for Smart City.

    Appendix A:Supplementary materials

    Some figures for better understanding the text are given below.

    Fig.A1.The α-Fe2O3 nanorhombs-based sensor working at 280 ?C:(a)Resistance versus time for various ethanol concentrations(1 ppm–100 ppm),(b)the corresponding response values.

    Fig.A2.Repeatability for 3-ppm ethanol of the fresh α-Fe2O3-based sensor and the one over working at 280 ?C for 50 days.

    Fig.A3. Resistance versus time for various ethanol concentrations(1 ppm–20 ppm)of the α-Fe2O3-based sensor at 280 ?C&70%RH.

    猜你喜歡
    劉歡
    機(jī)械設(shè)計(jì)制造的數(shù)字化與智能化發(fā)展
    客聯(lián)(2022年3期)2022-05-31 03:58:03
    本報(bào)與BTV科教《記憶》聯(lián)動(dòng)
    家有懶漢劉歡
    愛(ài)你(2018年25期)2018-09-12 09:31:26
    家有懶漢劉歡
    遇見(jiàn)更好的自己
    心理與健康(2018年3期)2018-05-14 10:01:48
    Numerical simulation of flow characteristics for a labyrinth passage in a pressure valve*
    劉歡 音樂(lè)到最后就是拼修養(yǎng)
    劉歡一家愛(ài)廢品
    股骨頭壞死或因嗜酒劉歡這兩年去哪兒了?
    博客天下(2010年10期)2010-09-15 07:46:07
    我曾勸他少喝酒
    博客天下(2010年10期)2010-09-15 07:46:07
    欧美+亚洲+日韩+国产| 草草在线视频免费看| 亚洲熟妇中文字幕五十中出| 最近在线观看免费完整版| 国产aⅴ精品一区二区三区波| 日韩精品中文字幕看吧| 久久亚洲精品不卡| 一个人观看的视频www高清免费观看| 99热6这里只有精品| 亚洲三级黄色毛片| 国产精品亚洲一级av第二区| 欧美黄色片欧美黄色片| 国产成人影院久久av| 久久精品国产99精品国产亚洲性色| 在线国产一区二区在线| 国产爱豆传媒在线观看| 国产欧美日韩精品亚洲av| 日韩高清综合在线| 国产又黄又爽又无遮挡在线| 国产乱人伦免费视频| www日本黄色视频网| 亚洲av电影在线进入| 欧美乱妇无乱码| 国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品成人久久久久久| av在线天堂中文字幕| 无人区码免费观看不卡| 搡老熟女国产l中国老女人| 男人舔奶头视频| 麻豆国产97在线/欧美| 真人一进一出gif抽搐免费| 国产aⅴ精品一区二区三区波| 一级黄色大片毛片| 久久久久久久久久黄片| 国产淫片久久久久久久久 | 91久久精品国产一区二区成人| 神马国产精品三级电影在线观看| 国产高潮美女av| 亚洲国产高清在线一区二区三| 一区二区三区激情视频| 永久网站在线| 日本免费一区二区三区高清不卡| 少妇的逼好多水| 日韩亚洲欧美综合| 国内精品久久久久精免费| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| 久久久久性生活片| netflix在线观看网站| 亚洲精品亚洲一区二区| 我要搜黄色片| 亚洲国产精品久久男人天堂| 成人国产综合亚洲| 久久精品夜夜夜夜夜久久蜜豆| 岛国在线免费视频观看| 国产v大片淫在线免费观看| 欧美+日韩+精品| 午夜福利18| 99国产综合亚洲精品| 两人在一起打扑克的视频| 亚洲午夜理论影院| 久久精品国产自在天天线| 女人十人毛片免费观看3o分钟| 国产v大片淫在线免费观看| 日本熟妇午夜| 亚洲美女视频黄频| 国产精品久久视频播放| 啦啦啦观看免费观看视频高清| 成年女人看的毛片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成a人片在线一区二区| 亚洲,欧美精品.| 天天躁日日操中文字幕| 成人美女网站在线观看视频| 国产精品久久久久久亚洲av鲁大| 性色av乱码一区二区三区2| 亚洲一区高清亚洲精品| 国产精品1区2区在线观看.| 国产精品av视频在线免费观看| 老鸭窝网址在线观看| 国产久久久一区二区三区| 国产精品国产高清国产av| 一区福利在线观看| 少妇的逼好多水| 精品一区二区三区人妻视频| 国产精品久久电影中文字幕| 久99久视频精品免费| 日韩欧美在线二视频| 免费av观看视频| 999久久久精品免费观看国产| av中文乱码字幕在线| 丰满的人妻完整版| 亚洲av日韩精品久久久久久密| 精品久久久久久久末码| 99久久精品国产亚洲精品| 淫妇啪啪啪对白视频| 欧美绝顶高潮抽搐喷水| 又紧又爽又黄一区二区| 国产精品影院久久| 两个人的视频大全免费| 黄色日韩在线| av天堂在线播放| 深夜a级毛片| 欧美+亚洲+日韩+国产| av国产免费在线观看| 国产真实伦视频高清在线观看 | 成人毛片a级毛片在线播放| av在线蜜桃| 美女大奶头视频| 搡老妇女老女人老熟妇| 午夜福利成人在线免费观看| 国产精品1区2区在线观看.| 国产欧美日韩一区二区三| 嫩草影院新地址| 极品教师在线视频| 亚洲人成网站在线播放欧美日韩| 国产av不卡久久| 国产成人aa在线观看| 赤兔流量卡办理| 亚洲成人精品中文字幕电影| 99riav亚洲国产免费| 午夜精品一区二区三区免费看| 国产高潮美女av| 久久久精品欧美日韩精品| 久久久国产成人精品二区| 激情在线观看视频在线高清| 欧美精品国产亚洲| 国产精品亚洲av一区麻豆| 白带黄色成豆腐渣| 宅男免费午夜| 日本a在线网址| 欧美午夜高清在线| 国产午夜福利久久久久久| 亚洲乱码一区二区免费版| 十八禁网站免费在线| 午夜精品一区二区三区免费看| 乱码一卡2卡4卡精品| 亚洲男人的天堂狠狠| 看黄色毛片网站| 国产精品久久久久久久电影| 深夜a级毛片| 淫秽高清视频在线观看| 久久性视频一级片| 日本撒尿小便嘘嘘汇集6| 国产av一区在线观看免费| 国产精品永久免费网站| 9191精品国产免费久久| 一级a爱片免费观看的视频| 成人无遮挡网站| 日韩大尺度精品在线看网址| 亚洲自拍偷在线| 嫩草影院入口| 国产精品电影一区二区三区| 欧美在线黄色| 18禁黄网站禁片午夜丰满| 一个人看视频在线观看www免费| 丰满的人妻完整版| x7x7x7水蜜桃| 午夜两性在线视频| 淫秽高清视频在线观看| 国产aⅴ精品一区二区三区波| 久久精品人妻少妇| 午夜老司机福利剧场| 免费人成在线观看视频色| 国产三级在线视频| 青草久久国产| 国产午夜精品论理片| 亚洲美女视频黄频| 两人在一起打扑克的视频| 免费av不卡在线播放| www.999成人在线观看| 欧美色欧美亚洲另类二区| 亚洲色图av天堂| 亚洲18禁久久av| 性欧美人与动物交配| 欧美绝顶高潮抽搐喷水| av国产免费在线观看| a在线观看视频网站| 久久精品国产亚洲av天美| 亚洲国产精品合色在线| 欧美性猛交黑人性爽| 亚洲成a人片在线一区二区| 国产大屁股一区二区在线视频| 深爱激情五月婷婷| 一本久久中文字幕| 97人妻精品一区二区三区麻豆| 亚洲一区二区三区色噜噜| 一a级毛片在线观看| 男女视频在线观看网站免费| 高清在线国产一区| 夜夜看夜夜爽夜夜摸| 男人舔奶头视频| 亚洲精品粉嫩美女一区| 嫁个100分男人电影在线观看| 村上凉子中文字幕在线| 88av欧美| av视频在线观看入口| aaaaa片日本免费| 91在线观看av| 精品国产三级普通话版| 狠狠狠狠99中文字幕| 久9热在线精品视频| av黄色大香蕉| 成人高潮视频无遮挡免费网站| 精品人妻视频免费看| 狠狠狠狠99中文字幕| 亚洲久久久久久中文字幕| 国产午夜福利久久久久久| 五月玫瑰六月丁香| 在现免费观看毛片| 国内久久婷婷六月综合欲色啪| 老司机深夜福利视频在线观看| 此物有八面人人有两片| 国产一区二区激情短视频| 桃红色精品国产亚洲av| 日韩欧美国产在线观看| 日韩国内少妇激情av| 嫩草影视91久久| 成人特级av手机在线观看| 久久九九热精品免费| 国产久久久一区二区三区| 国产精品亚洲美女久久久| 在线观看av片永久免费下载| 国产精品一区二区三区四区久久| 亚洲av熟女| 国产v大片淫在线免费观看| 亚洲国产日韩欧美精品在线观看| 精品人妻偷拍中文字幕| 男女床上黄色一级片免费看| 69av精品久久久久久| 国产精品亚洲av一区麻豆| 久久久久久久久中文| 日本黄色视频三级网站网址| 久久久久久久久大av| 性色avwww在线观看| 精品人妻一区二区三区麻豆 | 黄色女人牲交| 成人无遮挡网站| 十八禁国产超污无遮挡网站| 成年女人看的毛片在线观看| 国产91精品成人一区二区三区| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人| 人人妻人人澡欧美一区二区| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 亚洲国产日韩欧美精品在线观看| 久久这里只有精品中国| 免费人成视频x8x8入口观看| 精品99又大又爽又粗少妇毛片 | 老司机深夜福利视频在线观看| 日韩欧美精品v在线| 中文字幕熟女人妻在线| 最后的刺客免费高清国语| 亚洲精品乱码久久久v下载方式| 国产毛片a区久久久久| 久久精品人妻少妇| 亚洲精品粉嫩美女一区| 亚洲国产精品久久男人天堂| 亚洲精品成人久久久久久| 国产麻豆成人av免费视频| 女同久久另类99精品国产91| 久久亚洲真实| 成人国产综合亚洲| 嫩草影院精品99| 午夜精品一区二区三区免费看| av欧美777| 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 长腿黑丝高跟| 国产久久久一区二区三区| 国产三级在线视频| 热99re8久久精品国产| 国产精品1区2区在线观看.| 一级毛片久久久久久久久女| 亚洲av中文字字幕乱码综合| 国产欧美日韩精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 久久人人精品亚洲av| 亚洲人成电影免费在线| 日本黄大片高清| 久久亚洲真实| 成人永久免费在线观看视频| 久久久久久大精品| 欧美一级a爱片免费观看看| av欧美777| 久久久国产成人精品二区| 一区二区三区高清视频在线| 一夜夜www| 人妻丰满熟妇av一区二区三区| 亚洲国产高清在线一区二区三| 97超视频在线观看视频| 99国产精品一区二区蜜桃av| 色av中文字幕| 欧美+日韩+精品| 久久精品夜夜夜夜夜久久蜜豆| 97热精品久久久久久| 又爽又黄a免费视频| 日韩欧美 国产精品| 丰满乱子伦码专区| 免费看日本二区| 一个人看的www免费观看视频| 久久这里只有精品中国| 日本 欧美在线| 亚洲三级黄色毛片| 日韩欧美精品v在线| 久久性视频一级片| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩无卡精品| 91久久精品国产一区二区成人| 国产精品永久免费网站| 亚洲精品一区av在线观看| 99在线人妻在线中文字幕| 成人av在线播放网站| 韩国av一区二区三区四区| 日本与韩国留学比较| 久久天躁狠狠躁夜夜2o2o| 成人欧美大片| 少妇丰满av| 欧美日韩福利视频一区二区| 看十八女毛片水多多多| 精品午夜福利在线看| x7x7x7水蜜桃| 婷婷精品国产亚洲av| 九色成人免费人妻av| 亚洲欧美激情综合另类| 在线天堂最新版资源| 美女xxoo啪啪120秒动态图 | 色在线成人网| 国产三级黄色录像| 亚洲最大成人手机在线| 啦啦啦观看免费观看视频高清| 国产三级在线视频| 成人无遮挡网站| 观看免费一级毛片| 午夜影院日韩av| 嫩草影院入口| 欧美潮喷喷水| www日本黄色视频网| 男人和女人高潮做爰伦理| 91在线观看av| 男女做爰动态图高潮gif福利片| 成人av在线播放网站| 内射极品少妇av片p| 精品久久久久久久久亚洲 | www.www免费av| 免费人成在线观看视频色| 婷婷六月久久综合丁香| 成人av在线播放网站| 757午夜福利合集在线观看| 国产精品一区二区三区四区久久| 免费在线观看亚洲国产| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 亚洲成av人片免费观看| 黄色一级大片看看| 亚洲熟妇熟女久久| 婷婷丁香在线五月| 国产一区二区三区视频了| 成人午夜高清在线视频| 一本精品99久久精品77| 自拍偷自拍亚洲精品老妇| a在线观看视频网站| 国产伦一二天堂av在线观看| 国产精品一及| 首页视频小说图片口味搜索| 国内精品美女久久久久久| 男女之事视频高清在线观看| 免费在线观看日本一区| 久久久成人免费电影| 青草久久国产| 小蜜桃在线观看免费完整版高清| 国产不卡一卡二| 成年女人毛片免费观看观看9| 亚洲国产精品合色在线| 五月玫瑰六月丁香| 一级av片app| ponron亚洲| 99riav亚洲国产免费| 99国产精品一区二区三区| 五月玫瑰六月丁香| 国产精品久久久久久久久免 | 亚洲av免费在线观看| 很黄的视频免费| 国语自产精品视频在线第100页| 国产三级黄色录像| 欧美国产日韩亚洲一区| 午夜福利高清视频| 狠狠狠狠99中文字幕| 免费在线观看日本一区| 亚洲美女视频黄频| 很黄的视频免费| 婷婷精品国产亚洲av| 美女xxoo啪啪120秒动态图 | 国产蜜桃级精品一区二区三区| 国产成人aa在线观看| 国产精品电影一区二区三区| 精华霜和精华液先用哪个| 成年人黄色毛片网站| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲 | 日韩亚洲欧美综合| 伊人久久精品亚洲午夜| 欧美一区二区国产精品久久精品| 黄色丝袜av网址大全| 精品一区二区三区人妻视频| 久久久久久久午夜电影| 如何舔出高潮| 国产爱豆传媒在线观看| 亚洲精华国产精华精| 国产伦在线观看视频一区| 国产三级黄色录像| 中文字幕人妻熟人妻熟丝袜美| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 国产伦精品一区二区三区四那| 国产主播在线观看一区二区| 一边摸一边抽搐一进一小说| av专区在线播放| 欧美+亚洲+日韩+国产| 天美传媒精品一区二区| 中文字幕免费在线视频6| 嫩草影视91久久| 中亚洲国语对白在线视频| 国产精品电影一区二区三区| 深夜a级毛片| 国产成人aa在线观看| 不卡一级毛片| 性插视频无遮挡在线免费观看| 天天一区二区日本电影三级| 亚洲av成人av| 国产av一区在线观看免费| 亚洲精品成人久久久久久| 成年免费大片在线观看| 老熟妇仑乱视频hdxx| 久久九九热精品免费| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩卡通动漫| netflix在线观看网站| 久久精品影院6| 国产成人a区在线观看| 久久精品国产清高在天天线| 精品99又大又爽又粗少妇毛片 | 免费电影在线观看免费观看| 国产av一区在线观看免费| 国产主播在线观看一区二区| 91麻豆av在线| 亚洲自拍偷在线| 色视频www国产| 日韩精品青青久久久久久| 亚洲人成电影免费在线| 我的老师免费观看完整版| 给我免费播放毛片高清在线观看| 小说图片视频综合网站| 一夜夜www| 免费人成在线观看视频色| 国产精品一区二区三区四区久久| 黄色丝袜av网址大全| 五月伊人婷婷丁香| 精品久久久久久久末码| av专区在线播放| 美女高潮喷水抽搐中文字幕| 日韩欧美在线二视频| 在线观看av片永久免费下载| 午夜精品在线福利| 亚洲 欧美 日韩 在线 免费| 老熟妇仑乱视频hdxx| 看免费av毛片| 97超视频在线观看视频| 日本撒尿小便嘘嘘汇集6| 人妻夜夜爽99麻豆av| 日本一二三区视频观看| 国产亚洲精品av在线| 99在线人妻在线中文字幕| 夜夜躁狠狠躁天天躁| 国产欧美日韩一区二区三| 非洲黑人性xxxx精品又粗又长| 两人在一起打扑克的视频| 国产老妇女一区| 99久久无色码亚洲精品果冻| 在线十欧美十亚洲十日本专区| 国产精品精品国产色婷婷| 欧美+日韩+精品| 国产一区二区激情短视频| 国产 一区 欧美 日韩| 人人妻人人澡欧美一区二区| 51国产日韩欧美| 亚洲一区二区三区色噜噜| 国产美女午夜福利| 午夜a级毛片| 亚洲在线自拍视频| 噜噜噜噜噜久久久久久91| 国产激情偷乱视频一区二区| 丰满的人妻完整版| xxxwww97欧美| 亚洲中文字幕一区二区三区有码在线看| 日本免费a在线| 99久久精品一区二区三区| 久久亚洲精品不卡| 99久国产av精品| 五月伊人婷婷丁香| 内地一区二区视频在线| 最新中文字幕久久久久| 首页视频小说图片口味搜索| 99国产极品粉嫩在线观看| 51国产日韩欧美| 91午夜精品亚洲一区二区三区 | 日本一二三区视频观看| 人人妻人人澡欧美一区二区| 午夜久久久久精精品| 亚洲av日韩精品久久久久久密| 成人国产综合亚洲| 久99久视频精品免费| 久久精品国产自在天天线| 脱女人内裤的视频| av视频在线观看入口| 麻豆久久精品国产亚洲av| 首页视频小说图片口味搜索| 88av欧美| 伊人久久精品亚洲午夜| 国产欧美日韩一区二区精品| 欧美在线黄色| 美女被艹到高潮喷水动态| 亚洲av第一区精品v没综合| 精品一区二区三区视频在线观看免费| 亚洲一区高清亚洲精品| 欧美黄色片欧美黄色片| 熟妇人妻久久中文字幕3abv| 国产亚洲精品久久久com| 村上凉子中文字幕在线| 淫妇啪啪啪对白视频| 男女之事视频高清在线观看| 人妻夜夜爽99麻豆av| 亚洲av不卡在线观看| www.999成人在线观看| 亚洲va日本ⅴa欧美va伊人久久| 一本一本综合久久| eeuss影院久久| 美女被艹到高潮喷水动态| 国产精品久久久久久人妻精品电影| 一进一出抽搐gif免费好疼| 色综合欧美亚洲国产小说| 哪里可以看免费的av片| 国产白丝娇喘喷水9色精品| 亚洲人与动物交配视频| 色综合亚洲欧美另类图片| 在线播放无遮挡| 最后的刺客免费高清国语| 人人妻人人澡欧美一区二区| 亚洲在线自拍视频| 女人十人毛片免费观看3o分钟| ponron亚洲| 国产精品永久免费网站| 俄罗斯特黄特色一大片| 亚洲一区二区三区色噜噜| 色av中文字幕| 九九热线精品视视频播放| 99视频精品全部免费 在线| 国产精品亚洲av一区麻豆| 日本精品一区二区三区蜜桃| 国产毛片a区久久久久| 国产麻豆成人av免费视频| 香蕉av资源在线| 一本综合久久免费| 麻豆国产av国片精品| 搡老岳熟女国产| 国产欧美日韩精品一区二区| 国产精品久久视频播放| 国产男靠女视频免费网站| 淫妇啪啪啪对白视频| 亚洲最大成人av| 久久久久国产精品人妻aⅴ院| 性插视频无遮挡在线免费观看| 日韩精品中文字幕看吧| 亚洲av熟女| 在线观看免费视频日本深夜| 免费观看的影片在线观看| 亚洲中文字幕日韩| 亚洲国产色片| 精品人妻1区二区| 老司机午夜福利在线观看视频| 黄色女人牲交| 久久久精品大字幕| 综合色av麻豆| 黄色配什么色好看| 午夜老司机福利剧场| 日韩欧美 国产精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美性感艳星| 我的老师免费观看完整版| 亚洲国产精品久久男人天堂| 欧美一区二区亚洲| 一区二区三区高清视频在线| 精品久久久久久久久久久久久| 99国产综合亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 欧洲精品卡2卡3卡4卡5卡区| 欧美性感艳星| 一区二区三区高清视频在线| 日韩欧美国产在线观看| 国产高清有码在线观看视频| 久久欧美精品欧美久久欧美| 淫妇啪啪啪对白视频| 欧美成人a在线观看| 亚洲自拍偷在线| a级一级毛片免费在线观看| 亚洲欧美清纯卡通| 精品久久久久久久久亚洲 | 免费在线观看影片大全网站| 亚洲一区高清亚洲精品| 久久99热这里只有精品18| 亚洲人成网站在线播|