• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Expansion dynamics of a spherical Bose–Einstein condensate*

    2019-11-06 00:45:32RuiZongLi李睿宗TianYouGao高天佑DongFangZhang張東方ShiGuoPeng彭世國LingRanKong孔令冉XingShen沈星andKaiJunJiang江開軍
    Chinese Physics B 2019年10期
    關(guān)鍵詞:天佑

    Rui-Zong Li(李睿宗), Tian-You Gao(高天佑), Dong-Fang Zhang(張東方), Shi-Guo Peng(彭世國),Ling-Ran Kong(孔令冉), Xing Shen(沈星), and Kai-Jun Jiang(江開軍),2,?

    1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China

    2Center for Cold Atom Physics,Chinese Academy of Sciences,Wuhan 430071,China

    3School of Physics,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:Bose–Einstein condensate,spherical trap,free expansion

    1.Introduction

    In the ultracold Bose–Einstein condensate(BEC),the interatomic interaction modifies the system behaviors to deviate from the ideal gas,[1]which provides a platform to explore exotic quantum phenomena such as low-energy excitations,[2–4]phase transitions in optical lattices,[5–7]artificial gauge potential,[8,9]low-dimension physics,[10,11]and many others.Due to the small in-situ size of the condensate in the trap,the cold atomic sample is usually probed after certain free expansion time.[12]The interatomic interaction plays an important role to determine the expansion dynamics.After the condensate being released from the trap,the interaction energy is converted to the kinetic energy and the initial acceleration after switching off the trap is determined by the gradient of the interaction energy.[13–15]The expansion behaviors of the condensate are dependent on the shape of the external trap,namely,the initial condition of the system. Previously the condensate is mostly produced in an anistotropic trap(i.e.,ε1,where ε is the aspect ratio between the axial and radial frequencies)due to the technical challenge,which leads to an increased degree of complexity in the study of the free expansion. In this case,the expansion behaviors could not be analytically solved without approximation because solving different coupled second-order differential equations is required.[1,15–17]Obtaining the quantum system with an analytic solution allows a more lucid description of the condensate dynamics and an immediate comparison between experiment and theory.Condensate in an isotropic trap(i.e.,ε=1)is a special case that the expansion behavior can be analytically solved.Here we only need to solve one differential equation due to the spherical symmetry.Nevertheless,the experimental study of this expansion is still lacking.

    Previously,Hodby et al. were able to modify the aspect ratio(ε=2.83–1.6)in a magnetic trap while keeping the confinement tight.[18]However they did not report achieving a fully isotropic trap. Lobser and his colleagues realized an isotropic magnetic trap with the aid of the gravity force.[19]But the weak confinement(the trapping frequency ω ≈2π×9 Hz)in their work is disadvantageous to obtain a pure condensate.

    In this paper,we produce a spherical rubidium condensate in an optical dipole trap with an asphericity of 0.037.The large trapping frequency(2π×77.5 Hz)is favorite to produce a pure condensate.Then we measure the condensate widths in the expansion process as well as the interaction energy of the condensate in the trap. We find that the condensate expansion is isotropic and the experimental results agree well with the analytic solution based on the spherical symmetry,which are different from our previous study[20]and other group’s works[1,21–23]on the non-spherical BEC.We explore the expansion dynamics in which the the interaction energy is gradually converted into the kinetic energy and after a long time the expansion velocity reaches a constant value.

    The paper is organized as follows. We first present the production of a spherical rubidium condensate in Section 2.Then we introduce the expansion behaviors of the condensate in Section 3.Subsequently the interaction energy of the condensate in the trap is obtained in Section 4.Finally,the conclusions are summarized in Section 5.

    2.Production of a spherical Bose condensate

    The experimental setup is composed of double magnetooptical traps(MOTs),which is similar to that in our previous works.[20,24,25]87Rb atoms are cooled and trapped in the first MOT and then transferred to the second MOT with a series of optical pushing pulses.In the second MOT,the atom number is 8.5(9)×108and the temperature is 320(40)μK.The atom temperature is further reduced to 130(20)μK after a sub-Doppler cooling process.Then the atoms are loaded into a magnetic trap,where the atom number is 2.0(7)×108and the temperature is 210(25)μK.Subsequently the atoms are cooled with the radio frequency(RF)induced evaporation cooling to 15(3)μK and then transferred into a hybrid trap composed of magnetic and optical dipole fields.[16]Finally we transfer the cold atoms into an optical dipole trap by gradually switching off the magnetic trap.

    We produce a spherical87Rb BEC in an optical dipole trap in which the trapping frequencies along x,y,z directions are the same.As shown in Fig.1(a),the optical dipole trap is composed of two far red-detuned laser beams with the wavelength λ=1064 nm.The Rayleigh length,is much longer than the beam waist w0. For a single laser beam,the trapping frequency in the radial direction is about 200 times larger than that in the axial direction.So the trapping effect along the propagation direction can be neglected.To produce a fully isotropic trap,the gravity force should be included.[18,19]The trapping potential,which is composed of the optical dipole trap and the gravity,is given by

    where w1x(w2y)and w1z(w2z)are the waists of the optical beam propagating along the y(x)direction,and U1and U2are the peak potential energies of the two beams,respectively.By expanding Eq.(1)in the potential minimum(0,0,z0)to the second order,forming a spherical BEC should satisfy the conditions

    Now we can discuss the solutions of Eqs.(2)and(3)for a spherical trap.(i)If the confinement in the vertical direction is stronger than that in the horizontal direction for the optical dipole trap(i.e.,a>1),it can be weakened by the gravity sag so that the trapping frequencies along x,y,z directions can be identical.In this condition,there exists a solution for Eqs.(2)and(3). (ii)If the confinement in the vertical direction is equivalent to or weaker than that in the horizontal direction(i.e.,a ≤1),the trapping frequency in the vertical direction is always smaller than that in the horizontal direction under the gravity sag.In this condition,there is no solution.(iii)If neglecting the gravity term in Eq.(1)(for example,the gravity is compensated by an appropriate gradient magnetic field),the condition of forming a spherical trap will change to the equation.But it is a big technical challenge to accurately satisfy this equation by adjusting the relative shapes of the two laser beams.So in our experiment,we choose the condition a>1 to form a spherical trap.

    Fig.1.(a)Experimental setup.The optical dipole trap is composed of two focused red-detuned laser beams in x and y directions. The gravity is in?z direction.Ultracold atoms are simultaneously probed in the vertical and horizontal directions.(b)Measuring the trapping frequencies by probing the oscillations of the centers of mass along three directions respectively.Each experimental data is the average of three measurements.The solid line is the fitting with a sinusoidal wavefunction.

    We measure the trapping frequency by probing the centerof-mass(COM)motion of the atomic cloud in the trap.After displacing atoms away from the equilibrium position for 2 ms,the COMs of the atomic cloud along x,y,and z directions are monitored,respectively.The experimental results are shown in Fig.1(b).Using a sinusoidal wavefunction ri=Aisin(ωit+φi)(i=x,y,z and ri→i)to fit the experimental data,we get the trapping frequencies ωx=2π×76.7(14)Hz,ωy=2π×76.5(6)Hz,and ωz=2π×79.4(12)Hz.The frequency uncertainties are from the fitting process. The mean trapping frequency=2π×77.5 Hz)is much larger than that in Ref.[19]. The asphericity A=where ωmaxand ωminare the maximum and minimum trapping frequencies along the three directions,respectively.The tight confinement here is favorite to produce a pure condensate with negligible thermal gases and obtain experimental data with a large signal-to-noise ratio.We improve the position stability of the optical trap beam to be better than 3μm,keeping the condensate well in a spherical shape.The atoms stay in the spin stateThe atom number is 1.2(2)×105and the temperature is 80(5)nK.The BEC is well in the hydrodynamic limit with an adimensional parameter,[27]where asis the swave scattering length,is the harmonic oscillator length of the trap,and N is the atom number.

    It should be noted that one limitation of the optical trap is the anharmonicity,which is specially serious for a big condensate. Fortunately,the atomic cloud in the trap is small(R ≈7.3μm)due to the large trapping frequency in our experiment,greatly softening the anharmonicity.The small anharmonicity does not affect the key features of the experimental results.

    After suddenly switching off the optical trap,we measure the aspect ratio η(t)of the condensate during the free expansion.The experimental results are shown in Fig.2.The condensate width Ri(t)during the expansion is obtained by fitting the optical density of the image with a Thomas–Fermi(TF)distribution.For the images probed in the horizontal direction,η(t)=R‖(t)/Rz(t),where R‖(t)and Rz(t)are the TF radii in the horizontal and vertical directions,respectively.For the images probed in the vertical direction,η(t)=Rx(t)/Ry(t),where Rx(t)and Ry(t)are the TF radii in the x and y directions,respectively. η(t)remains unity during the free expansion,which is unique for a spherical BEC.For an non-spherical BEC,the expansion is anisotropic and the aspect ratio η(t)approaches an asymptotic value dependent on the ratio of the trapping frequencies.[1,15,21–23]

    Fig.2.Isotropic expansion of the condensate.(a)Exemplary images probed in the vertical direction for five expansion times.(b)The aspect ratio η(t)versus the expansion time t.The black squares(red circles)are for the images probed in the horizontal(vertical)direction. Each error bar indicates the uncertainty of three measurements.The dashed line denotes the value of unity.

    3.Expansion behavior of the condensate

    Interatomic interaction plays an important role to determine the expansion dynamics of BEC.Figure 3(a)briefly indicates variations of different energy components in the expansion process.[1,13,16]The chemical potentialμ=Ekin+Ep+2Eintis composed of kinetic energy Ekin,potential energy Ep,and interaction energy Eint.In the trap,Ekinis negligibly small and Ep=1.5Eintaccording to the Virial relation 2Ekin?2Ep+3Eint=0.After BEC being released from the trap,Epis switched off and Eintstarts to be converted into Ekingradually,which makes the release energy Erel=Ekin+Eintkeep constant during the expansion.After a long-time expansion,the interaction energy is completely converted to the kinetic energy.This provides a efficient way to measure the interaction energy of BEC in the trap by probing the long-time expansion velocity,which will be followed in Section 4.

    Fig.3. (a)Schematics of energy components during the free expansion.The trapping potential is switched off at t=0.Ep is the potential energy,Erel is the release energy,Ekin is the kinetic energy,Eint is the interaction energy,andμis the chemical potential.After a long-time expansion(t>t1),the interaction energy is completely converted to the kinetic energy.(b)The scaling factor λ(τ)=R(τ)/R(0)versus the scaling expansion time τ.R(0)is the TF radius of the BEC in the trap and τ=ωt.The black solid curve denotes the calculation with Eq.(5)for the whole expansion process.The blue dotted curve indicates the calculation with Eq.(6)for the short-time expansion.The red dashed curve is the calculation with Eq.(7)for the long-time expansion.

    During the expansion,the atomic cloud experiences just a free dilatation.Three scaling factors,i.e.,(i=x,y,z),may be introduced as in Refs.[1],[15],[21],and[22]which describe the trajectory of any infinitesimally small fraction at the position r(t)of the moving cloud. For an axially symmetric BEC(i.e.,mostly produced previously,it is required to solve two coupled secondorder differential equations to get the evolution of the scaling factors,[1,15–17]where the analytic solution is generally absent.While for a spherical BEC withthe two coupled differential equations simply merge into one

    The solution can be obtained analytically as

    where τ=ωt,Γ(·)is the Gamma function,and2F1(a,b,c,z)is the hypergeometric function.

    According to Eq.(5),we can easily obtain the asymptotic behavior of the scaling factor λ(τ)for a short-or long-time expansion

    The scaling factor of the condensate in the expansion process is shown in Fig.3(b). For the short-time expansion(τ →0),?λ/?τ ≈τ and ?2λ/?τ2≈1 ?2τ2. This means that after the trap being switched off,the expansion is speeding and the acceleration decreases versus the expansion time.These behaviors can be understood that the interaction energy is gradually converted into the kinetic energy and decreases during the expansion.[1,16,23]For the long-time expansion(τ →∞),In this region,the interaction energy has been completely converted to the kinetic energy and the expansion velocity finally reaches a constant value.The intermediate region with τ ≈1 indicates the crossover from the acceleration regime to the linear expansion. The quantitative calculations in Fig.3(b)provide a lucid description of the expansion dynamics.Under the TF approximation,the complete conversion time of the interaction energy into kinetic energy is roughly determined by the trapping frequency(t ≈1/ω)and has no dependence on the scattering length.The effect of the scattering length is included in the initial density distribution of the condensate.

    Fig.4.Scaling factor λ(τ)in the long-time expansion.The black solid curve is the calculation with Eq.(5).The red dashed curve is the calculation with Eq.(7)for the long-time expansion. Blue squares,red circles,and green diamonds denote the measurements with atom numbers of 0.55×105,0.66×105,and 1.40×105,respectively.Each error bar is the uncertainty of three measurements.

    In Fig.4, we measure the scaling factor during the expansion. The size of the cloud is defined as R(τ)=[Rx(τ)+Ry(τ)+Rz(τ)]/3,where Ri(τ)(i=x,y,z)is the TF radius of the condensate,and λ(τ)=R(τ)/R(0).Under the TF approximation,R(0)is calculated from the atom number and trapping frequency,and R(τ)is measured in the experiment.The experimental results with three atomic numbers are consistent with the theoretical prediction of Eq.(5).Due to the limited resolution of the imaging system(?r ≈7.6μm),[25]we show the experimental data for expansion time larger than 7 ms(i.e.,τ>3.4).In this region,the interaction energy of the condensate has been completely converted to the kinetic energy.So our current experimental results only demonstrate the long-time expansion behavior as predicted with Eq.(7).In order to observe the short-time expansion with τ ≤1,an imaging system with a larger numerical aperture is required.

    4.Interaction energy of the condensate

    During the expansion,the interaction energy is gradually converted into the kinetic energy Ekin.After atoms being releasing from the trap,Ekincan be written in the following integral:

    It was shown in Ref.[15]that the densitystill satisfies the generalized TF distribution for a time-dependent problem,which takes the form

    As shown in Fig.3,the interaction energy is completely converted to the kinetic energy after a long-time expansion.So the interaction energy Eintat t →0 is roughly equivalent to the kinetic energy Ekinat t →∞.

    We can check the validity of Eq.(11).From Eq.(7),the size of the cloud R(t)at t →∞should behave as

    where R(0)is the size at t=0.Then the interaction energy of the condensate in the trap becomes

    whereμ=mω2R(0)2/2 is the chemical potential in the trap.Equation(13)is consistent with the well-known result Eint=2μ/7.[1]

    In the experiment,we extract the expansion velocity for the long-time expansion by linearly fitting the TF radii of the condensate.One example of this fitting process is shown in the inset of Fig.5.The expansion time is long with t>14 ms(i.e.,τ>6.8),which ensures that the expansion velocity has approached the constant value(see Fig.3(b)).Then the interaction energy of the condensate in the trap can be calculated with Eq.(11).

    Fig.5.Interaction energy of the condensate in the trap versus the atom number.The solid curve is the theoretical calculation with Eq.(14).The measurements are for atom numbers of 0.55×105,0.66×105,and 1.40×105.The error bar is the uncertainty in fitting the expansion velocity.The inset shows an example for linearly fitting the measured TF radii of the condensate with the atom number of 1.40×105.

    On the other hand,the chemical potential of the condensate in the trap can be calculated with[1,13–15]

    The interaction energy of the condensate in the trap versus the atom number is ploted in Fig.5.The experimental measurements are consistent with the theoretical prediction with Eq.(14).

    5.Conclusion and prospect

    In conclusion,we experimentally observe the expansion behaviors of a spherical Bose condensate.A spherical rubidium condensate is produced in an optical dipole trap and the characteristic isotropic expansion is observed in the experiment.The condensate widths in the expansion process as well as the interaction energy of the condensate in the trap are measured.We find that the expansion in the short time is speeding and then after a long time the expansion velocity reaches a constant value.The intrinsic mechanics of this behavior is that the interaction energy is converted into the kinetic energy at the beginning of the expansion and the kinetic energy saturates after a long-time expansion.All the measurements agree well with the analytic solution based on the spherical symmetry.

    The spherical condensate has unique features due to the spherical symmetry,which paves the way of our future research. First,we will study the exotic quantum state in the spin–orbital–angular-momentum(SOAM)coupled condensate in which the rotation symmetry is required.[24,28,29]Secondly,the excitation spectrum of the condensate is simplified by degeneracy.[1,27,30]The well-defined symmetry facilitates the studies of coupling between collective modes and their Landau damping rates.[31]Quantitative calculations of these processes currently have been carried out.[30,32–34]We will accurately measure the collective mode of the spherical condensate in the finite-temperature regime,extracting subtle manybody effects like thermal and quantum fluctuations.[35–38]In addition,compared to a magnetic trap,the spherical trap composed of the optical field is advantageous to study the nonequilibrium dynamics,where fast modulation of the confinement strength is generally applied.

    猜你喜歡
    天佑
    幸福時(shí)光曲
    古有訓(xùn)
    《邊城之江舟橫渡》
    伏龍肝
    百花園(2022年1期)2022-05-30 19:19:06
    萬灶炊煙 “花”下相逢
    天佑中華
    戲劇之家(2020年21期)2020-07-30 14:07:45
    天佑中華·雷火迎春
    青年生活(2020年21期)2020-07-06 10:41:47
    Pasión por la medicina
    天佑草原
    草原歌聲(2017年3期)2017-04-23 05:13:50
    櫻花燦爛的日子
    參花(上)(2013年3期)2013-04-29 05:17:59
    国产探花在线观看一区二区| 中文字幕av成人在线电影| 亚洲欧美精品专区久久| 国产国拍精品亚洲av在线观看| 91精品伊人久久大香线蕉| 免费在线观看成人毛片| 国产欧美日韩精品一区二区| 在线a可以看的网站| 日韩中字成人| 乱人视频在线观看| 成年免费大片在线观看| 大又大粗又爽又黄少妇毛片口| 色网站视频免费| 黄片wwwwww| 视频中文字幕在线观看| 啦啦啦啦在线视频资源| 国产精品99久久久久久久久| 永久免费av网站大全| 亚洲av男天堂| 99久久精品国产国产毛片| 亚洲图色成人| 99视频精品全部免费 在线| 亚洲av成人精品一二三区| 免费大片18禁| 国产精品久久久久久久久免| 久久久久久久久久成人| av免费观看日本| 一级二级三级毛片免费看| 国产黄色视频一区二区在线观看| 免费观看精品视频网站| 日韩欧美 国产精品| 黑人高潮一二区| 欧美激情在线99| 免费看日本二区| 亚洲,欧美,日韩| 日日啪夜夜撸| 视频中文字幕在线观看| 欧美高清性xxxxhd video| 一个人看视频在线观看www免费| 亚洲精品久久久久久婷婷小说| 日韩av免费高清视频| 六月丁香七月| 国产综合懂色| 高清午夜精品一区二区三区| 亚洲av男天堂| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 男的添女的下面高潮视频| 精品午夜福利在线看| 男女视频在线观看网站免费| 亚洲人成网站在线播| 免费av观看视频| 久久精品人妻少妇| 国产黄a三级三级三级人| 久久久色成人| 亚洲人成网站在线观看播放| 日韩av不卡免费在线播放| 国产成人精品婷婷| 老司机影院成人| 亚洲在线观看片| 免费观看av网站的网址| av又黄又爽大尺度在线免费看| 性色avwww在线观看| 久久精品国产鲁丝片午夜精品| 久久鲁丝午夜福利片| 亚洲av国产av综合av卡| 久久精品夜夜夜夜夜久久蜜豆| 少妇人妻一区二区三区视频| 亚洲国产精品专区欧美| 国内揄拍国产精品人妻在线| 亚洲成人久久爱视频| 性色avwww在线观看| 中文乱码字字幕精品一区二区三区 | 偷拍熟女少妇极品色| 国产黄色小视频在线观看| 嫩草影院入口| 国内精品宾馆在线| 三级毛片av免费| 免费人成在线观看视频色| 寂寞人妻少妇视频99o| 亚洲欧美成人综合另类久久久| 两个人视频免费观看高清| 欧美 日韩 精品 国产| 一个人看视频在线观看www免费| 婷婷色综合大香蕉| 久久6这里有精品| 久久草成人影院| 国产一区二区三区综合在线观看 | 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 午夜激情福利司机影院| 99久久九九国产精品国产免费| 日韩不卡一区二区三区视频在线| av国产久精品久网站免费入址| 精品人妻一区二区三区麻豆| 成年女人看的毛片在线观看| 日韩av免费高清视频| 午夜激情欧美在线| www.av在线官网国产| 久久久久精品久久久久真实原创| 欧美成人a在线观看| 99久久人妻综合| 黄色日韩在线| 国产成人福利小说| 成人二区视频| 亚洲成人av在线免费| 丰满人妻一区二区三区视频av| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验| 亚洲成人精品中文字幕电影| 欧美激情在线99| 尤物成人国产欧美一区二区三区| 国产一级毛片七仙女欲春2| 久久人人爽人人爽人人片va| 亚洲成人久久爱视频| av在线亚洲专区| 美女大奶头视频| 欧美激情在线99| 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 久久久精品欧美日韩精品| 超碰97精品在线观看| 黄色一级大片看看| 国产亚洲91精品色在线| 啦啦啦啦在线视频资源| 国产精品久久久久久久电影| 国产成人福利小说| 99久国产av精品| .国产精品久久| 在线免费观看的www视频| 亚洲欧美中文字幕日韩二区| 欧美激情国产日韩精品一区| 免费av毛片视频| 国产精品熟女久久久久浪| 美女被艹到高潮喷水动态| 亚洲av国产av综合av卡| 能在线免费看毛片的网站| 国产 一区 欧美 日韩| 1000部很黄的大片| 一夜夜www| 亚洲精品乱码久久久v下载方式| 99视频精品全部免费 在线| 2018国产大陆天天弄谢| 成人二区视频| 精品一区二区三区人妻视频| 91久久精品国产一区二区三区| 美女高潮的动态| 波野结衣二区三区在线| 搡老乐熟女国产| 亚洲av不卡在线观看| 三级男女做爰猛烈吃奶摸视频| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲网站| 精品国产一区二区三区久久久樱花 | 80岁老熟妇乱子伦牲交| 精品人妻视频免费看| 91精品伊人久久大香线蕉| 99热这里只有是精品50| 亚洲精品成人久久久久久| 亚洲国产最新在线播放| 免费看不卡的av| 亚洲成人中文字幕在线播放| 亚洲精品国产av成人精品| 晚上一个人看的免费电影| 亚洲国产日韩欧美精品在线观看| 日本午夜av视频| 有码 亚洲区| 永久免费av网站大全| 午夜福利在线在线| 女人十人毛片免费观看3o分钟| 亚洲人成网站高清观看| 精品人妻视频免费看| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 亚洲欧洲国产日韩| 在现免费观看毛片| 特级一级黄色大片| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 人妻一区二区av| 免费播放大片免费观看视频在线观看| 成人av在线播放网站| 免费av观看视频| 日本wwww免费看| av女优亚洲男人天堂| 麻豆成人av视频| 日韩制服骚丝袜av| 秋霞在线观看毛片| av天堂中文字幕网| 天美传媒精品一区二区| 国产色爽女视频免费观看| 国产av在哪里看| 97热精品久久久久久| 国产激情偷乱视频一区二区| 男女下面进入的视频免费午夜| 大香蕉97超碰在线| 黄色配什么色好看| 丰满乱子伦码专区| 日本三级黄在线观看| 日韩一本色道免费dvd| 两个人视频免费观看高清| 成人综合一区亚洲| 亚洲欧洲国产日韩| 亚洲一区高清亚洲精品| 毛片一级片免费看久久久久| 国产亚洲av片在线观看秒播厂 | 插阴视频在线观看视频| 精品少妇黑人巨大在线播放| 国产精品一及| 国产乱来视频区| 免费av不卡在线播放| 色哟哟·www| 中文字幕制服av| 国产免费福利视频在线观看| 日本av手机在线免费观看| 久久久久久久亚洲中文字幕| 久久国产乱子免费精品| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 舔av片在线| 国产乱人偷精品视频| 久久精品人妻少妇| 国产精品嫩草影院av在线观看| 国产成人freesex在线| 国产成年人精品一区二区| 国产亚洲一区二区精品| av.在线天堂| 欧美日韩视频高清一区二区三区二| videos熟女内射| 日产精品乱码卡一卡2卡三| 性色avwww在线观看| 人妻一区二区av| 亚洲18禁久久av| 男人狂女人下面高潮的视频| 我的老师免费观看完整版| 搡老妇女老女人老熟妇| 亚洲丝袜综合中文字幕| 日韩三级伦理在线观看| 尤物成人国产欧美一区二区三区| 亚洲欧美精品专区久久| 97精品久久久久久久久久精品| 亚洲经典国产精华液单| 青青草视频在线视频观看| 又黄又爽又刺激的免费视频.| 亚洲熟女精品中文字幕| 国产精品美女特级片免费视频播放器| 插逼视频在线观看| 久久6这里有精品| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 丝瓜视频免费看黄片| 日韩精品青青久久久久久| 一本久久精品| 欧美不卡视频在线免费观看| 美女xxoo啪啪120秒动态图| 最近最新中文字幕大全电影3| av播播在线观看一区| 精品一区二区三区视频在线| 99视频精品全部免费 在线| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品 | 婷婷色av中文字幕| 亚洲精品久久久久久婷婷小说| 美女cb高潮喷水在线观看| 搞女人的毛片| 舔av片在线| 精品一区二区三卡| 久久久成人免费电影| 男人狂女人下面高潮的视频| 久久久午夜欧美精品| 春色校园在线视频观看| 在线a可以看的网站| 一个人免费在线观看电影| 大又大粗又爽又黄少妇毛片口| 久久99热这里只有精品18| 建设人人有责人人尽责人人享有的 | 三级毛片av免费| 26uuu在线亚洲综合色| 国产成人aa在线观看| 高清午夜精品一区二区三区| 在线观看免费高清a一片| 在线播放无遮挡| 一边亲一边摸免费视频| 日日啪夜夜爽| 成人国产麻豆网| 国产乱来视频区| 纵有疾风起免费观看全集完整版 | 99re6热这里在线精品视频| 天堂√8在线中文| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 人妻少妇偷人精品九色| 大话2 男鬼变身卡| 久久久久九九精品影院| 国产av码专区亚洲av| 久久精品久久精品一区二区三区| 91狼人影院| 少妇的逼好多水| av黄色大香蕉| 日本wwww免费看| 99久国产av精品| 免费高清在线观看视频在线观看| 在线免费十八禁| 精品不卡国产一区二区三区| 一夜夜www| 国产伦精品一区二区三区四那| 七月丁香在线播放| videos熟女内射| 久久这里只有精品中国| 亚洲精品国产av蜜桃| 亚洲成人精品中文字幕电影| 99热这里只有是精品在线观看| av在线蜜桃| 成人无遮挡网站| 不卡视频在线观看欧美| 国产综合精华液| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 日韩电影二区| 热99在线观看视频| 高清毛片免费看| 免费看a级黄色片| 国产人妻一区二区三区在| 国产精品一区二区在线观看99 | 赤兔流量卡办理| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕免费在线视频6| 日韩av在线免费看完整版不卡| 成年人午夜在线观看视频 | 高清av免费在线| 亚洲av成人精品一区久久| 久久久久精品久久久久真实原创| 久久久久久久国产电影| 搡女人真爽免费视频火全软件| 久久99热6这里只有精品| 国产女主播在线喷水免费视频网站 | 天堂影院成人在线观看| 99久久精品热视频| 免费黄网站久久成人精品| 日韩中字成人| 亚洲精品国产av蜜桃| 日本色播在线视频| 久久99热6这里只有精品| freevideosex欧美| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 婷婷色综合www| 国产男女超爽视频在线观看| 精品久久久精品久久久| av福利片在线观看| 成人无遮挡网站| av福利片在线观看| 春色校园在线视频观看| 日本-黄色视频高清免费观看| 国模一区二区三区四区视频| 高清午夜精品一区二区三区| 毛片女人毛片| av在线蜜桃| 亚洲精品日本国产第一区| 亚洲第一区二区三区不卡| 日韩av在线大香蕉| 网址你懂的国产日韩在线| 日本av手机在线免费观看| 高清视频免费观看一区二区 | 国产精品一区二区在线观看99 | 日韩欧美精品免费久久| 美女脱内裤让男人舔精品视频| 丝袜美腿在线中文| 尾随美女入室| 亚洲美女视频黄频| 国产av国产精品国产| 99久国产av精品| 日本熟妇午夜| 亚洲精品成人久久久久久| 青青草视频在线视频观看| 中文字幕制服av| 欧美日韩综合久久久久久| 国产精品国产三级国产av玫瑰| 亚洲一区高清亚洲精品| 人体艺术视频欧美日本| av又黄又爽大尺度在线免费看| 国产中年淑女户外野战色| 伊人久久精品亚洲午夜| 日韩制服骚丝袜av| 国产视频内射| 高清午夜精品一区二区三区| 舔av片在线| 亚洲久久久久久中文字幕| 久久久午夜欧美精品| 国语对白做爰xxxⅹ性视频网站| 日韩欧美一区视频在线观看 | 免费看不卡的av| 激情 狠狠 欧美| 国产伦在线观看视频一区| 日韩成人av中文字幕在线观看| 国产伦一二天堂av在线观看| 久久精品久久精品一区二区三区| 亚洲成色77777| 亚洲va在线va天堂va国产| 精品熟女少妇av免费看| 国产美女午夜福利| 亚洲成人精品中文字幕电影| 亚洲久久久久久中文字幕| 亚洲伊人久久精品综合| 伊人久久国产一区二区| 欧美精品国产亚洲| 波多野结衣巨乳人妻| 中国国产av一级| 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 国产熟女欧美一区二区| 老司机影院成人| 日韩人妻高清精品专区| 国产视频内射| 免费播放大片免费观看视频在线观看| 观看免费一级毛片| 午夜激情久久久久久久| 夜夜爽夜夜爽视频| 久久久精品94久久精品| 亚洲性久久影院| 一夜夜www| 网址你懂的国产日韩在线| 69av精品久久久久久| 网址你懂的国产日韩在线| 久久久久九九精品影院| 日韩人妻高清精品专区| 一级av片app| 欧美bdsm另类| 国产综合懂色| 欧美另类一区| 天堂网av新在线| 高清日韩中文字幕在线| 国产淫语在线视频| 精品久久国产蜜桃| 国产伦精品一区二区三区四那| 精品一区在线观看国产| 人妻制服诱惑在线中文字幕| 国产在视频线精品| 中文天堂在线官网| 亚洲精品成人av观看孕妇| 亚洲精品日韩av片在线观看| 极品少妇高潮喷水抽搐| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片| 亚洲国产av新网站| 啦啦啦韩国在线观看视频| 国产精品精品国产色婷婷| 黄色配什么色好看| 国产亚洲精品久久久com| 日韩一本色道免费dvd| 一级av片app| 亚洲欧洲国产日韩| 大又大粗又爽又黄少妇毛片口| 国产高清国产精品国产三级 | 日韩电影二区| 在线观看美女被高潮喷水网站| 成年版毛片免费区| 久久国内精品自在自线图片| 日产精品乱码卡一卡2卡三| 亚洲av电影不卡..在线观看| 精品午夜福利在线看| 97超碰精品成人国产| 欧美激情在线99| 免费观看av网站的网址| 国产精品国产三级国产专区5o| 91av网一区二区| av在线播放精品| 中文资源天堂在线| 一区二区三区免费毛片| 纵有疾风起免费观看全集完整版 | av网站免费在线观看视频 | 日韩精品青青久久久久久| 极品教师在线视频| 爱豆传媒免费全集在线观看| 中国美白少妇内射xxxbb| 国产精品久久久久久av不卡| 中文天堂在线官网| 欧美日韩亚洲高清精品| 亚洲综合色惰| 国产精品人妻久久久久久| 亚洲aⅴ乱码一区二区在线播放| 日本-黄色视频高清免费观看| 韩国av在线不卡| 日韩不卡一区二区三区视频在线| 午夜精品一区二区三区免费看| 国产亚洲最大av| 天天一区二区日本电影三级| 午夜免费激情av| 亚洲精品视频女| 中文字幕免费在线视频6| 777米奇影视久久| 国产成人一区二区在线| 久久午夜福利片| 永久免费av网站大全| 国产单亲对白刺激| 我的女老师完整版在线观看| 80岁老熟妇乱子伦牲交| 久久韩国三级中文字幕| 人妻夜夜爽99麻豆av| 又爽又黄无遮挡网站| 免费电影在线观看免费观看| 亚洲三级黄色毛片| 在线观看美女被高潮喷水网站| 国产黄片美女视频| 狂野欧美白嫩少妇大欣赏| 男女下面进入的视频免费午夜| 99热这里只有是精品50| 观看美女的网站| av.在线天堂| 国产亚洲一区二区精品| 美女黄网站色视频| 国产午夜精品一二区理论片| 国产免费视频播放在线视频 | 免费黄色在线免费观看| eeuss影院久久| 国产一区有黄有色的免费视频 | 极品少妇高潮喷水抽搐| 欧美另类一区| 三级男女做爰猛烈吃奶摸视频| 51国产日韩欧美| 国产精品av视频在线免费观看| 久久这里有精品视频免费| 一二三四中文在线观看免费高清| 久久久久久九九精品二区国产| 欧美极品一区二区三区四区| 久久人人爽人人爽人人片va| 九草在线视频观看| 五月天丁香电影| 美女主播在线视频| 亚洲丝袜综合中文字幕| 色播亚洲综合网| 日韩人妻高清精品专区| 直男gayav资源| 国产亚洲最大av| 大陆偷拍与自拍| 国产精品国产三级国产专区5o| 99热网站在线观看| 91狼人影院| 国产亚洲精品久久久com| 日韩欧美精品v在线| 99热这里只有是精品50| 日本爱情动作片www.在线观看| 身体一侧抽搐| 欧美成人精品欧美一级黄| 高清av免费在线| 欧美不卡视频在线免费观看| 三级毛片av免费| 亚洲综合色惰| 高清视频免费观看一区二区 | 亚洲成人精品中文字幕电影| 国产精品麻豆人妻色哟哟久久 | 九九在线视频观看精品| 啦啦啦啦在线视频资源| 国产男人的电影天堂91| 伦理电影大哥的女人| 狂野欧美白嫩少妇大欣赏| 国产成人91sexporn| 18+在线观看网站| 亚洲综合精品二区| 日本黄大片高清| 亚洲国产精品国产精品| freevideosex欧美| 亚洲自偷自拍三级| 国产高清三级在线| 麻豆国产97在线/欧美| kizo精华| 免费观看性生交大片5| 欧美最新免费一区二区三区| 麻豆成人午夜福利视频| 亚洲精品视频女| 免费看av在线观看网站| 久久精品久久久久久噜噜老黄| 久久精品国产鲁丝片午夜精品| av又黄又爽大尺度在线免费看| 美女被艹到高潮喷水动态| 国产黄a三级三级三级人| 免费人成在线观看视频色| 亚洲最大成人av| 99re6热这里在线精品视频| 国产高清有码在线观看视频| 国产精品一区二区在线观看99 | 国产乱来视频区| 精品久久久久久久久亚洲| 久久精品国产鲁丝片午夜精品| xxx大片免费视频| 免费av观看视频| 欧美激情在线99| 夜夜看夜夜爽夜夜摸| 国产精品美女特级片免费视频播放器| 久久99精品国语久久久| 精品久久久久久成人av| 亚洲精品色激情综合| 成年女人在线观看亚洲视频 | 97热精品久久久久久| 边亲边吃奶的免费视频| 韩国高清视频一区二区三区| 热99在线观看视频| 国产免费又黄又爽又色| 狂野欧美激情性xxxx在线观看| 搞女人的毛片| 一本久久精品| 亚洲精品乱码久久久久久按摩| 女的被弄到高潮叫床怎么办| 国产精品一及| 亚洲人成网站在线观看播放| 国产av国产精品国产| 亚洲欧美精品自产自拍| 99热这里只有是精品在线观看| 免费播放大片免费观看视频在线观看| 国产一区有黄有色的免费视频 | 成年av动漫网址| 国产av不卡久久| 亚洲最大成人中文|