• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-pressure electrides:From design to synthesis

    2019-11-06 00:45:26BiaoWan萬(wàn)彪JingwuZhang張靜武LaileiWu吳來(lái)磊andHuiyangGou緱慧陽(yáng)
    Chinese Physics B 2019年10期

    Biao Wan(萬(wàn)彪),Jingwu Zhang(張靜武),Lailei Wu(吳來(lái)磊),and Huiyang Gou(緱慧陽(yáng))

    1Key Laboratory of Metastable Materials Science and Technology,College of Material Science and Engineering,Yanshan University,Qinhuangdao 066004,China

    2Center for High Pressure Science and Technology Advanced Research,Beijing 100094,China

    Keywords:electrides,high pressure,CALYPSO,structural search

    1.Introduction

    As an emerging class of unconventional ionic solids,electrides have attracted considerable attention in recent years.In electrides,the excess electrons are confined in the vacant crystallographic sites of the lattices,serving as anions.[1–3]These anionic electrons are originated from cations and independent of any particular atom or molecule in the host structures. Due to the loose binding nature of anionic electrons,electrides exhibit many interesting physical and chemical properties,such as high electronic mobility,[4–6]ultra-low work functions,[7,8]and anisotropic electronic and optical responses,[9,10]which make electrides the promising materials in high performance catalysts,[11–14]organic light-emitting diodes(OLEDs),[15,16]superconductors[17–19]and novel electrode materials for batteries.[20,21]The first crystalline electride of Cs+(18C6)2e?was found in organic compounds by Dye et al. in 1983,[22]which are constituted by alkali elements and organic complexant. Afterwards,several organic electrides have been discovered,e.g.,K+(cryptand-2.2.2)e?,[23][Cs+(15C5)(18C6)e?]6(18C6),[24]and Li+(cryptand-2.1.1)e?.[25]However,the very poor thermal stability, extreme air- and water-sensitivity of organic electrides inhibits their potential applications. In 2003, the first room-temperature stable inorganic electrides of [Ca24Al28O64]4+(e?)4(termed C12A7:e?) was synthesized through generating two oxygen defects in[(12CaO·7Al2O3)2].[5]There are four electrons left in two cages(per unit cell)eventually. The features of low work function and high electron mobility render C12A7:e?a great candidate for ammonia synthesis[11]and electron-injection material.[15]In 2003, high-pressure electride Na-hP4 was synthesized successfully.[26]Later on, a layered electride[Ca2N]+e?was discovered in 2013,where the anionic electrons are trapped in the interlayer spaces of Ca2N.[27]Since then,a large number of inorganic electrides have been proposed.

    Based on the dimensionality of the anionic electrons and interstitial voids where the anionic electrons are confined,electrides can be classified into zero-dimensional(0-D),one-dimensional(1-D),two-dimensional(2-D),and threedimensional(3-D)electrides. The representative 0-D electrides are C12A7,[5]Li12Mg3Si4,[28]and Ti2O,[29]in which the anionic electrons are trapped in atomic cages.The highly localized anionic electrons in 0-D electride lead to a narrow band in the band structure,termed as‘interstitial band’or‘cage states’.[30]1-D electrides are exemplified by Na3S,[31]andin which the anionic electrons are distributed in the channel voids,forming 1-D electron gas.2-D electrides are revealed in Ca2N,[27]YCl,[7]and Y2C,[35]in which the anionic electrons are trapped in 2-D interstitial voids having 2-D electron gas.In 2-D electrides,the anionic electrons having higher dimensionality exhibit much delocalized energy band in comparison with 0-D electrides.3-D electrides are reported rarely;Li4N[36]and Ca2C[37]were reported theoretically to be 3-D electrides,however,3-D electrides are still not confirmed in experiment.

    High pressure is an effective way to discover or modify materials with intriguing physical and chemical properties.[38–42]Extensive theoretical and experimental efforts greatly enrich the variety of high-pressure electrides(HPEs). For example, elemental electrides of Li,[43–45]and new compounds of Na2He,[51]Ca5C2,[52]Li6P,[18]Na2K,[53]and Ti2O.[29]Under compression,moreover,some electrides undergo interesting physical and chemical alternations,such as metal-to-semiconductor transition in Ca2N.[54,55]Thus,exploring new electrides and their electronic properties under pressure is very interesting.In the past few years,advanced structural searching methodologies were used to explore new electrides,[56–59]which significantly accelerate the discovery of HPEs. The swarm-intelligence based CALYPSO structure searching method[60–62]is one of effective means to design and discover HPEs. In this review,we focus on the CALYPSO-assisted HPEs discovery to gain the basic understanding of discovery and characterization of HPEs.

    2.High-pressure electrides: formation mechanism

    Under strong compression,sodium is found to exhibit surprising ionic state when metal–insulator transition occurred over 100 GPa.[64]This intriguing phenomenon is confirmed by subsequent DFT calculations and experimental observations,and the proposed high-pressure phase of Na-hP4 is revealed to be an electride.[26,46,65,66]The insulating Na-hP4 nature is further verified by HSE06 calculations with a band gap of about 9.5 eV at 1.75 TPa.[66]Elemental electrides are also observed in Li,[43–45]K,[45,47]Cs,[48]Al,[49]and C,[50]under extreme compression up to 650 TPa.To understand the underlying origin of alkali metals under compression,Rousseau and Ashcroft[67]proposed the rc/rsparameters(positively correlated with pressure)to describe the compression ratio,where the rcis the core sphere of metals and rsis the Wigner–Seitz radius. When the rc/rsratio increases,the electron charge density at the interstitial voids tends to deviate from the free electron gas,leading to the formation of localized electrons in the interstitial voids.In terms of band structure,the increased rc/rsratio significantly reduces the band width,which leads to metal-to-semiconductor transformation under pressure.

    To further interpret the formation mechanism of highpressure electrides(HPEs),Miao and Hoffman proposed a unified theory of HPEs by treating electrons in the interstitial voids as interstitial quasi-atom(ISQ).[63,68,69]In the ISQ model,the energy levels of ISQ and valence orbitals of atoms vary significantly under pressure(Fig.1). When the energy level of ISQ shows lower energy at certain pressure,the electrons transfer from the atomic orbitals to the interstitial voids to form the interstitial electrons.Such phenomenon is exemplified by the group IA(Li→Cs),IIA(Be→Sr),and Al and B elements.Under compression,the energy level of both s-and p-orbitals increases more significantly compared with those of ISQ;while d orbitals show the opposite tendency.Through the investigation of the variation of orbital energy level in different elements;three general rules were proposed:(1)the ionization potential(IP)of the frontier electrons shows the negative effect on the formation of HPE.(2)Elements having frontier s or p electrons associated with incompressible core are easier to form ISQ.(3)Elements with valence d electrons is difficult to form ISQ.These aspects give a good description for the HPEs formation and provide a direct understanding of the high-pressure electrides.

    Fig.1.Pressure induced enthalpy variation of atomic valence orbitals compared with ISQ levels. Adapted with permission from Ref.[63]and full reference therein.

    3.Exploring HPEs:from design to experimental synthesis

    Advanced structural searches, effective indicators for electrides,and high pressure experimental confirmations provide the great opportunities to quickly search and discover new HPEs.Here,the scheme for the exploration of new HPEs is illustrated in Fig.2 from pre-design to experimental synthesis assisted by CALYPSO methodology.The detailed descriptions of these aspects are discussed below.

    Fig.2.Scheme for exploring new HPEs from pre-design,CALYPSO assisted structural searching,indicators for electrides,to experimental synthesis.

    3.1.Design principles

    The searching of metal-rich stoichiometries with the possible charge imbalanced compounds is helpful to discover new electrides.Those compounds,which do not have intrinsically excess valence electrons,may also form electrides only when the anionic elements are aggregated(forming pairs or polyhedron)in the lattice to be the electron-rich systems.The constituted elements in the host structures are also found to have significantly effects on the formation of electrides.Using CALYPSO method,Zhang et al.carried out extensive structure search to explore electrides in the systems of A2B and AB(A=electrons donor,B=electrons acceptor).[37]89 compounds were suggested to be potential electrides. It was also found that the electronegativity of elements is critical to the formation possibilities of electrides(proportion of electrides in all the generated phases within CALYPSO structural searches),since it is a direct measurement of electron affinity of an atom.For the anionic elements,the formation of electrides was surveyed in Ca2X systems(X=anionic elements)(Fig.3(a)).In all the electron-rich Ca2X(X is the group of VA(N →Sb),VIA(O →Te),and VIIA(F →I)elements)compounds,the formation possibility is extremely high(approximate 100%).On the other hand,Ca2X(X=B,C,Si,Ge)compounds show lower possibilities of electrides(less than 50%),which are caused by the intrinsic electron-poor or charge balanced characters.The possibility of cationic elements to form electrides in metal nitrides is illustrated in Fig.3(b).The alkali and alkali earth metal elements,early transition metal elements(group IIB elements)and Al atom,having the low electronegativity,are easier to form electrides in nitrides(Fig.3(b)). According to the ISQ model,the energy level of interstitial electrons is found to decrease under compression in comparison with the frontier s-or p-orbital electrons. Thus,the system containing alkali or alkaline earth metal elements,early transition metal elements(such as Sc,Y,Hf)tends to form high-pressure electrides.Furthermore,the elements of Ac,Ti,and Zr with lower formation possibilities of electrides are easier to form electrides under strong compression.These results provide an empirical rule to guide the design of high-pressure electrides.

    Fig.3. Possibility to form electrides in Ca2X systems(X=anionic elements)(a)and metal nitrides(b).[37]

    3.2.Structural searches

    Based on the constituted elements and compositions for pre-designed compounds,one can carry out extensive structural searches to explore the potential high-pressure electrides at specific pressure. Within CALYPSO method,the particle swarm optimization(PSO)algorithm has exhibited significant advantages in the electride searching,e.g.,rapid convergence and few parameters to input.[61,70,71]Benefitting from these advantages,the CALYPSO method has made great success in exploring new HPEs,such as the noble gas containing electrides of Mg–NG(NG=Xe,Kr,Ar);[40]3-D Li4N electride;[36]Ti oxides electride;[29]and superconducting Li6P electride(Tc=39.1 K).[18]To assist the experimental highpressure phases for electrides,‘X-ray diffraction data assisted structural prediction’in CALYPSO code can significantly facilitate the materials discovery under pressure.[72]

    3.3.Electrides identification

    Identifying an electride in practice is not an easy task,since the localized electrons in the interstitial voids are difficult to detect in experiment.Nevertheless,the‘a(chǎn)nionic electrons’can be still inferred from the experimental methods,e.g.,angle resolved photoemission spectroscopy.[73]On the other hand,theoretical calculation can provide a direct and feasible way to resolve the experimental challenges,which has been widely used to identify electrides.Although the excess valence electrons in host lattices can be found out through predesign process;however,in some cases,the separation of the excess valence electrons and the metal–metal bonding is difficult in the generated compounds.Thus,the additional indicators to identify an electride are discussed below.

    (i)Atomic voids. One of the most challenges to identify electrides is to separate the anionic electrons and metal–metal multi-center bonding. To form anionic electrons,the host structures need to have enough atomic voids to accommodate the excess electrons.Although the high electron density can also be observed in some interstitial voids,the relatively smaller interstitial voids preclude the formation of electride,due to the contributions of the metal–metal multi-center bonding. In our previous yttrium and scandium chlorides,the interstitial-voids topology is proposed for the discovery of potential electrides.[7]The F-center interstitial voids are most common interstitial voids,which can accommodate the excess electrons. In particular,it is valid for the transition metal containing inorganic electrides. In yttrium and scandium chlorides,there are five electrides identified,2-D electrides of YCl and ScCl;1-D electrides of Y2Cl3,Sc5Cl8,and Sc7Cl10. All these compounds possess the irregular metal octahedrons with large scale volumes,forming the layer-like(YCl and ScCl),channel-like(Y2Cl3and Sc5Cl8)or double channel-like(Sc7Cl10)voids in the host structures.The nearest octahedrons also form a metal tetrahedron. High charge densities are observed in both the metal octahedrons and metal tetrahedrons.However,the smaller interstitial volume in the metal tetrahedrons cannot accommodate the anionic electrons,as we suggested.Detailed electronic analysis reveals that these electrons observed in the metal tetrahedrons stem from metal–metal π bonding;while the electrons in the metal octahedrons are confirmed to be the anionic electrons,which stays far away from the metal atoms and metal–metal bonds.

    (ii)Electron localization function(ELF).ELF is an efficient way to measure the electron localization.[74,75]Highly localized electrons such as cores,bonds,and lone pairs have great ELF values close to 1,while the homogeneous electron gas is corresponding to the ELF value of 0.5. In electrides,the anionic electrons can be directly observed through the ELF analysis,since the highly localized interstitial electrons can result in the great ELF values that are far away from the nuclei and metal–metal bonds.Such criteria for electrides identifications is also suggested by Zhu et al.[76]They proposed that the ELF topology in electrides was characterized by the ELF attractor(non-center ELF maxima)in the interstitial voids. Through the ELF analysis,the inorganic electride of C12A7:2e?was identified theoretically. Martinez-Canales et al.also identified the high pressure electrides carbon in FCC lattice by checking the ELF maxima in the vacancy voids.[50]Subsequently,great ELF values off the nuclei have been widely used to describe electrides.

    (iii)Density of states(DOS)and band structure.Anionic electrons have high charge density in the interstitial voids,which can be reflected in the DOS and band structure. In the band structure,the anionic electrons may be distributed in the interstitial bands or projected onto the bands of the neighboring real atoms,e.g.,LaCoSi,LaRuSi,and CaRuSi.[14,77]Through the visualization of the electron density in these bands,where the anionic electrons were confined,one can unambiguously distinguish the distributions of the anionic electrons.Analogy to the ELF attractors,high charge density staying away from the ions and bonds can also be observed in the interstitial voids.Moreover,in the energy range(in the DOS curves)where the anionic electrons are distributed,the contribution of anionic electrons to DOS can be separated quantitatively,which is much higher than other atomic orbitals.

    3.4.Experimental synthesis

    The theoretical predictions of HPEs can provide a guide to experimental synthesis. Many HPEs were predicted and synthesized successfully, such as Na,[26]Ca2N,[54,55]Sr5P3,[57]and Na2He.[51]The metal-to-semiconductor transition in Ca2N is also predicted under pressure. Two semiconducting high-pressure phases of I-42d-and Cc-type Ca2N was predicted to be 0-D electrides,and these two electrides are found in later experiment. In our recent work,we directly observe such metal-to-semiconductor transition under pressure(Fig.4)by experimental identification,together with the help of CALYPSO method(Fig.4(a)).[55]Under compression,we found that the layer-like R-3m-type structure transformed to the Fd-3m structure with small volume collapse(1.8%at 2.8 GPa). With increasing pressure,we successfully reproduced two I-42d-and Cc-type structures at 11.2 and 20.6 GPa,respectively.[54]In-situ synchrotron X-ray diffraction using diamond anvil cell(DAC)device indicated the formation of three high-pressure structures of Ca2N(Fig.4(b)).The electrical resistance measurements also directly detected the metal to semiconductor transformation under compression(Fig.4(c)).Since the Fermi level is dominantly contributed by the anionic electrons,the reducing electronic dimensionality of electrides from 2D-(R-3m)to 1D-(Fd-3m lattice)and finally 0D-type(I-42d and Cc lattice)electrides was found due to the changes of electronic conductivity.

    4.Electronic dimensionality evolution under compression

    High pressure has significant effects on the distribution of anionic electrons.As proposed by Rousseau and Ashcroft,the increased pressure can weaken the connections between interstitial electrons and free electron gas.[67]On the other hand,the high-pressure phases usually take closely packed arrangement compared with the ground state structures. Consequently,the volume of interstitial voids can decrease significantly. When compressing an electride,the electronic dimensionality of electrides is usually reduced. Such phenomenon has been verified in the high-pressure investigation of Ca2N,[55]a 2-D electride under ambient condition. As shown in Fig.5,with pressure increasing,the electronic dimensionality undergoes the reduction from 2-D(R-3m structure),1-D(Fd-3m structure),to 0-D electride(I-42d and Cc structures). Since the Fermi level is dominantly contributed by the interstitial bands,the anionic electrons are confined;the reduction of electronic dimensionality in Ca2N results in the decreased electronic conductivity.The studies of variation of electronic dimensionality and the corresponding physical and chemical properties in electrides are still ongoing.

    Fig.5.Reduction of electronic dimensionality in Ca2N under pressure:from 2D-,1D-,to 0D electrides.[55]

    5.Challenges

    Despite of many successful predictions for HPEs,there are few of them synthesized in experiments,because of the following several reasons:(i)Many predicted HPEs can only be stabilized under ultra-high pressure,such as metal N electride at TPa pressures,[78]Li6P at 178 GPa,[18]and Mg2O3at 500 GPa,[41]which is difficult to be synthesized based on current experimental approach.(ii)Most of HPEs are unquenchable to ambient conditions,which limits further characterizations and applications.(iii)Many inorganic electrides are air and water sensitive.For example,electrides possess strong hydrogen affinity,[57,79,80]caused by the small atomic radius and high electronegativity of H atoms. (iv)Under compression,many systems such as Li–S,[81]Li–P,[82]and Li–Na[83]show quite rich stoichiometries;moreover,the relative energy differences between different compositions are very small,e.g.,Li4N.[36]In practice,it is very difficult to separate and characterize these potential HPEs due to the phase coexistence and competition.

    6.Conclusion

    In summary,we overview the formation mechanism,design principles,structural searching assisted by CALYPSO method,theoretical indicators to identify electrides,and experimental synthesis of HPEs.We discuss the structural changes and electronic dimensionality evolution under compression of electrides under compression.Despite of the successes of electride investigations,the obtained HPEs in experiment are still rare,the realization of quenchable HPEs and exploration of the utilizations of HPEs remains open.

    热99国产精品久久久久久7| 日本黄色视频三级网站网址 | 丁香六月欧美| 男女高潮啪啪啪动态图| aaaaa片日本免费| 精品国产乱码久久久久久小说| 精品熟女少妇八av免费久了| av网站免费在线观看视频| 男女下面插进去视频免费观看| 国产成人精品无人区| 久久人妻熟女aⅴ| 最近最新中文字幕大全免费视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩成人在线一区二区| 法律面前人人平等表现在哪些方面| 中文字幕精品免费在线观看视频| 亚洲美女黄片视频| 国内毛片毛片毛片毛片毛片| 国产精品亚洲av一区麻豆| 久久国产亚洲av麻豆专区| 999久久久精品免费观看国产| 国产日韩欧美在线精品| 一区二区日韩欧美中文字幕| 国产无遮挡羞羞视频在线观看| 欧美日韩黄片免| 精品国产亚洲在线| 久久婷婷成人综合色麻豆| 久久久久久人人人人人| 国产日韩欧美视频二区| 日本黄色视频三级网站网址 | 黄色 视频免费看| 欧美日韩亚洲高清精品| 亚洲精品中文字幕在线视频| 99久久人妻综合| 午夜福利视频在线观看免费| 欧美午夜高清在线| 国产欧美日韩精品亚洲av| 一区二区三区精品91| 色尼玛亚洲综合影院| 美女国产高潮福利片在线看| 另类亚洲欧美激情| 日韩大码丰满熟妇| 精品第一国产精品| 国产成人欧美| 老汉色av国产亚洲站长工具| 国产极品粉嫩免费观看在线| 午夜免费鲁丝| 亚洲国产欧美日韩在线播放| 天天添夜夜摸| 91国产中文字幕| 国产高清国产精品国产三级| 建设人人有责人人尽责人人享有的| 80岁老熟妇乱子伦牲交| 久久天躁狠狠躁夜夜2o2o| 午夜久久久在线观看| 久久久久网色| 亚洲第一av免费看| 国产精品 国内视频| 国产亚洲欧美精品永久| 国产精品亚洲一级av第二区| 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 国产在视频线精品| 午夜福利欧美成人| 亚洲国产欧美一区二区综合| 久久影院123| 18禁黄网站禁片午夜丰满| 亚洲 欧美一区二区三区| av不卡在线播放| 中文字幕高清在线视频| 十八禁网站网址无遮挡| 在线观看免费视频网站a站| 80岁老熟妇乱子伦牲交| 久久久水蜜桃国产精品网| 大香蕉久久网| 黄频高清免费视频| a级毛片在线看网站| 成年人黄色毛片网站| 三级毛片av免费| 亚洲avbb在线观看| 怎么达到女性高潮| 一区二区三区乱码不卡18| 老司机在亚洲福利影院| 夜夜骑夜夜射夜夜干| 一本久久精品| 亚洲国产欧美网| 色综合婷婷激情| 老熟女久久久| 大陆偷拍与自拍| 最新在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 成年人免费黄色播放视频| 热99re8久久精品国产| 精品少妇内射三级| 99re在线观看精品视频| 青草久久国产| 成人影院久久| 中文字幕制服av| 免费高清在线观看日韩| 国产亚洲欧美精品永久| 丝袜在线中文字幕| 国产男女超爽视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 91精品三级在线观看| 国产欧美日韩一区二区精品| 精品久久久精品久久久| 久久天堂一区二区三区四区| 欧美日韩福利视频一区二区| 高清欧美精品videossex| 国产真人三级小视频在线观看| 纵有疾风起免费观看全集完整版| 国产一区二区 视频在线| 悠悠久久av| 女人久久www免费人成看片| 日本wwww免费看| 精品久久久精品久久久| 国产91精品成人一区二区三区 | 97在线人人人人妻| 亚洲精品中文字幕一二三四区 | videosex国产| 大码成人一级视频| 婷婷成人精品国产| 少妇裸体淫交视频免费看高清 | 久久亚洲真实| av国产精品久久久久影院| 男人舔女人的私密视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲日产国产| 中文亚洲av片在线观看爽 | 久久久国产成人免费| 美女福利国产在线| 一区福利在线观看| 免费人妻精品一区二区三区视频| 脱女人内裤的视频| av天堂在线播放| 国产免费福利视频在线观看| 青青草视频在线视频观看| 在线亚洲精品国产二区图片欧美| 叶爱在线成人免费视频播放| 午夜激情久久久久久久| 老熟妇乱子伦视频在线观看| 国产亚洲av高清不卡| 欧美日韩成人在线一区二区| 中国美女看黄片| 美女主播在线视频| 免费久久久久久久精品成人欧美视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品成人av观看孕妇| 老熟女久久久| 老汉色av国产亚洲站长工具| 色精品久久人妻99蜜桃| 极品人妻少妇av视频| 色视频在线一区二区三区| 老司机亚洲免费影院| 99国产极品粉嫩在线观看| 91精品三级在线观看| 欧美在线一区亚洲| 日本wwww免费看| 正在播放国产对白刺激| 人人妻,人人澡人人爽秒播| 日本a在线网址| 最新美女视频免费是黄的| 国产欧美日韩一区二区三区在线| 大型av网站在线播放| www.精华液| 国产1区2区3区精品| 97人妻天天添夜夜摸| 国产日韩欧美亚洲二区| 久久精品国产亚洲av高清一级| 亚洲欧洲日产国产| 乱人伦中国视频| 久久中文字幕一级| 黄片播放在线免费| 波多野结衣av一区二区av| 1024视频免费在线观看| 久久午夜综合久久蜜桃| 无遮挡黄片免费观看| 夜夜爽天天搞| 亚洲av成人一区二区三| 考比视频在线观看| 热99re8久久精品国产| 五月天丁香电影| kizo精华| 最新在线观看一区二区三区| 水蜜桃什么品种好| 日本黄色日本黄色录像| 成人国语在线视频| 一区二区三区激情视频| 成人免费观看视频高清| 在线播放国产精品三级| 国产精品 国内视频| 欧美另类亚洲清纯唯美| 日韩制服丝袜自拍偷拍| 男女免费视频国产| 久久人人爽av亚洲精品天堂| 国产深夜福利视频在线观看| 国产免费福利视频在线观看| 午夜日韩欧美国产| 1024香蕉在线观看| 女人精品久久久久毛片| 激情视频va一区二区三区| 亚洲九九香蕉| 成人影院久久| 国产不卡一卡二| 后天国语完整版免费观看| 精品国产国语对白av| 无遮挡黄片免费观看| 国产成人影院久久av| 啦啦啦视频在线资源免费观看| 国产精品麻豆人妻色哟哟久久| 亚洲av欧美aⅴ国产| 黄片播放在线免费| 无遮挡黄片免费观看| 视频在线观看一区二区三区| 一级毛片精品| 午夜福利一区二区在线看| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久| 久久毛片免费看一区二区三区| 男人操女人黄网站| av不卡在线播放| 国产精品二区激情视频| 色婷婷av一区二区三区视频| 亚洲专区国产一区二区| 中文字幕人妻丝袜制服| 国产一区二区 视频在线| 午夜福利视频在线观看免费| 无人区码免费观看不卡 | 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 欧美在线黄色| 国产精品秋霞免费鲁丝片| 老司机亚洲免费影院| 啦啦啦 在线观看视频| 熟女少妇亚洲综合色aaa.| 在线亚洲精品国产二区图片欧美| 夜夜爽天天搞| 香蕉久久夜色| 国产欧美亚洲国产| 伦理电影免费视频| 国产精品麻豆人妻色哟哟久久| 一区二区三区精品91| 99九九在线精品视频| 欧美老熟妇乱子伦牲交| 久久精品国产99精品国产亚洲性色 | 欧美精品高潮呻吟av久久| 母亲3免费完整高清在线观看| 国产精品一区二区免费欧美| 美女午夜性视频免费| 国产极品粉嫩免费观看在线| 国产日韩欧美视频二区| 亚洲精品中文字幕一二三四区 | 国产伦人伦偷精品视频| 精品国内亚洲2022精品成人 | a级片在线免费高清观看视频| 精品一区二区三区四区五区乱码| 日韩中文字幕欧美一区二区| 久久人妻熟女aⅴ| 久久青草综合色| 精品一品国产午夜福利视频| 老司机午夜十八禁免费视频| 国产无遮挡羞羞视频在线观看| 最近最新中文字幕大全免费视频| 亚洲专区字幕在线| 国产精品.久久久| 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 欧美成人免费av一区二区三区 | 一个人免费看片子| 中文字幕另类日韩欧美亚洲嫩草| 午夜老司机福利片| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 国产伦人伦偷精品视频| 自拍欧美九色日韩亚洲蝌蚪91| av电影中文网址| tube8黄色片| 色94色欧美一区二区| 亚洲色图 男人天堂 中文字幕| 人人澡人人妻人| 国产国语露脸激情在线看| 中文字幕av电影在线播放| 亚洲专区中文字幕在线| 视频区欧美日本亚洲| 亚洲五月婷婷丁香| 我的亚洲天堂| 蜜桃国产av成人99| 久久精品人人爽人人爽视色| 国产成人av教育| 国产成+人综合+亚洲专区| www.自偷自拍.com| 一个人免费在线观看的高清视频| 国产97色在线日韩免费| 欧美国产精品va在线观看不卡| 欧美变态另类bdsm刘玥| tocl精华| 99久久99久久久精品蜜桃| 成年动漫av网址| 欧美日韩成人在线一区二区| 91老司机精品| 免费在线观看影片大全网站| 日韩 欧美 亚洲 中文字幕| 国产成人精品无人区| 欧美一级毛片孕妇| 一边摸一边抽搐一进一出视频| 啦啦啦免费观看视频1| 久久精品成人免费网站| 啦啦啦中文免费视频观看日本| 成人国产一区最新在线观看| 男女之事视频高清在线观看| 一区二区日韩欧美中文字幕| 成人手机av| 超碰成人久久| 日韩欧美国产一区二区入口| 欧美激情高清一区二区三区| 在线av久久热| 女性被躁到高潮视频| 天堂动漫精品| 首页视频小说图片口味搜索| 中文字幕人妻熟女乱码| 国产高清videossex| 国产一区二区三区视频了| 久久精品人人爽人人爽视色| 久久久久久亚洲精品国产蜜桃av| 亚洲午夜精品一区,二区,三区| 久久国产精品男人的天堂亚洲| 汤姆久久久久久久影院中文字幕| 怎么达到女性高潮| 极品少妇高潮喷水抽搐| 99国产综合亚洲精品| 日韩大片免费观看网站| 又黄又粗又硬又大视频| 亚洲成av片中文字幕在线观看| 99久久精品国产亚洲精品| www日本在线高清视频| av在线播放免费不卡| 亚洲天堂av无毛| 亚洲精品一卡2卡三卡4卡5卡| 免费观看av网站的网址| 我要看黄色一级片免费的| 俄罗斯特黄特色一大片| 国产精品久久久久成人av| 色94色欧美一区二区| 真人做人爱边吃奶动态| 成人免费观看视频高清| 黑人操中国人逼视频| 国产成人精品在线电影| 搡老熟女国产l中国老女人| 成人免费观看视频高清| 99久久99久久久精品蜜桃| 成人亚洲精品一区在线观看| 欧美日韩国产mv在线观看视频| 美女高潮到喷水免费观看| 精品国内亚洲2022精品成人 | 久久毛片免费看一区二区三区| 国产精品欧美亚洲77777| 午夜福利欧美成人| 多毛熟女@视频| av在线播放免费不卡| 午夜激情久久久久久久| 久久久精品免费免费高清| 国产精品欧美亚洲77777| 国产高清激情床上av| 法律面前人人平等表现在哪些方面| 久久精品熟女亚洲av麻豆精品| 精品久久蜜臀av无| 午夜福利欧美成人| 在线播放国产精品三级| 蜜桃在线观看..| 亚洲欧洲精品一区二区精品久久久| 国产主播在线观看一区二区| 国产精品一区二区在线不卡| 91精品三级在线观看| 精品国产乱子伦一区二区三区| 十八禁网站网址无遮挡| 一区二区三区国产精品乱码| 亚洲九九香蕉| a级毛片黄视频| av网站免费在线观看视频| 午夜激情av网站| 欧美精品人与动牲交sv欧美| 亚洲欧美精品综合一区二区三区| 一区二区三区精品91| 精品国产亚洲在线| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 无遮挡黄片免费观看| 亚洲第一欧美日韩一区二区三区 | 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡| 国产亚洲欧美精品永久| 热99久久久久精品小说推荐| 久久国产精品人妻蜜桃| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 91av网站免费观看| 欧美日韩精品网址| 久久性视频一级片| 欧美日韩亚洲高清精品| av片东京热男人的天堂| 久久狼人影院| 黄色丝袜av网址大全| 久久av网站| 久久久久久久久免费视频了| 国产在线视频一区二区| 久久精品国产综合久久久| 少妇裸体淫交视频免费看高清 | 久久久精品94久久精品| 亚洲第一青青草原| 脱女人内裤的视频| 99国产综合亚洲精品| 无限看片的www在线观看| 久久99一区二区三区| 亚洲一区中文字幕在线| 在线观看免费日韩欧美大片| 亚洲专区中文字幕在线| 成人国产av品久久久| 最新在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 正在播放国产对白刺激| 成年人免费黄色播放视频| 丝袜美足系列| 狠狠婷婷综合久久久久久88av| 亚洲一区中文字幕在线| av网站免费在线观看视频| 我要看黄色一级片免费的| 女性生殖器流出的白浆| 9色porny在线观看| 男女床上黄色一级片免费看| 两个人看的免费小视频| 日韩精品免费视频一区二区三区| 极品人妻少妇av视频| 热re99久久精品国产66热6| 黄频高清免费视频| 国产成人免费无遮挡视频| 久久毛片免费看一区二区三区| 欧美另类亚洲清纯唯美| 女人高潮潮喷娇喘18禁视频| 日韩有码中文字幕| 日韩免费av在线播放| 久久性视频一级片| 建设人人有责人人尽责人人享有的| 母亲3免费完整高清在线观看| 国产精品久久久久久精品电影小说| 久久人妻福利社区极品人妻图片| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看66精品国产| 国产福利在线免费观看视频| 一本久久精品| 一级,二级,三级黄色视频| 欧美日韩国产mv在线观看视频| 亚洲熟妇熟女久久| 国产成人av激情在线播放| 国产精品国产av在线观看| 黄色a级毛片大全视频| 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 99精国产麻豆久久婷婷| 久久热在线av| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 妹子高潮喷水视频| a在线观看视频网站| 老司机在亚洲福利影院| 亚洲av日韩在线播放| 午夜福利影视在线免费观看| 亚洲中文av在线| 天堂8中文在线网| 久久毛片免费看一区二区三区| 欧美另类亚洲清纯唯美| 欧美精品高潮呻吟av久久| 日本撒尿小便嘘嘘汇集6| 好男人电影高清在线观看| 最黄视频免费看| 不卡一级毛片| 精品一区二区三区视频在线观看免费 | 18禁裸乳无遮挡动漫免费视频| 99国产极品粉嫩在线观看| 老司机福利观看| 亚洲视频免费观看视频| 少妇猛男粗大的猛烈进出视频| 男女之事视频高清在线观看| 国产日韩欧美视频二区| 午夜老司机福利片| 久久亚洲精品不卡| 窝窝影院91人妻| 香蕉丝袜av| 女同久久另类99精品国产91| 日本一区二区免费在线视频| 91成人精品电影| 亚洲欧洲日产国产| 美女高潮到喷水免费观看| 超碰成人久久| 香蕉国产在线看| 丁香六月天网| 国产日韩一区二区三区精品不卡| 精品久久久久久久毛片微露脸| 一边摸一边抽搐一进一出视频| 如日韩欧美国产精品一区二区三区| 亚洲少妇的诱惑av| 成人影院久久| 成在线人永久免费视频| 精品少妇一区二区三区视频日本电影| av福利片在线| 免费少妇av软件| 天堂8中文在线网| 欧美日韩亚洲综合一区二区三区_| 老司机在亚洲福利影院| 操出白浆在线播放| 成年动漫av网址| 国产精品电影一区二区三区 | 成年女人毛片免费观看观看9 | 亚洲九九香蕉| 亚洲三区欧美一区| 最新在线观看一区二区三区| a级片在线免费高清观看视频| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 三上悠亚av全集在线观看| 亚洲综合色网址| 高清视频免费观看一区二区| 在线观看舔阴道视频| 久久免费观看电影| 欧美+亚洲+日韩+国产| 亚洲综合色网址| 亚洲精品美女久久av网站| 热99国产精品久久久久久7| 日本av免费视频播放| 国产精品麻豆人妻色哟哟久久| 久久人人爽av亚洲精品天堂| 国产亚洲精品久久久久5区| 一级黄色大片毛片| 一区二区av电影网| 一区二区日韩欧美中文字幕| 亚洲成人手机| 亚洲精品自拍成人| 午夜两性在线视频| 久久香蕉激情| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻av系列| 国产在线视频一区二区| 亚洲成人手机| 一夜夜www| 久久久精品区二区三区| 久久久久视频综合| 老汉色av国产亚洲站长工具| 国产精品国产高清国产av | 少妇猛男粗大的猛烈进出视频| 母亲3免费完整高清在线观看| 男人舔女人的私密视频| 男女高潮啪啪啪动态图| 大陆偷拍与自拍| 国产亚洲一区二区精品| 亚洲成a人片在线一区二区| 欧美激情 高清一区二区三区| 国产成+人综合+亚洲专区| 亚洲成国产人片在线观看| 人人妻人人爽人人添夜夜欢视频| 午夜福利影视在线免费观看| tocl精华| 日韩精品免费视频一区二区三区| 一区二区三区国产精品乱码| 又大又爽又粗| 丁香六月天网| 黄色怎么调成土黄色| 欧美在线一区亚洲| 99久久人妻综合| 最近最新中文字幕大全电影3 | 汤姆久久久久久久影院中文字幕| 色在线成人网| 国产成人av激情在线播放| 久久99一区二区三区| 亚洲全国av大片| 多毛熟女@视频| 精品国产一区二区三区久久久樱花| 女同久久另类99精品国产91| 国产单亲对白刺激| 99国产精品免费福利视频| 欧美性长视频在线观看| 日本一区二区免费在线视频| 亚洲视频免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日本中文国产一区发布| 亚洲一区中文字幕在线| 久久这里只有精品19| 亚洲av美国av| 一边摸一边抽搐一进一出视频| 国产成人一区二区三区免费视频网站| 亚洲精品一二三| 9191精品国产免费久久| 如日韩欧美国产精品一区二区三区| 男女无遮挡免费网站观看| 亚洲av成人一区二区三| 欧美乱妇无乱码| 丁香欧美五月| 精品高清国产在线一区| 国产黄频视频在线观看| 精品视频人人做人人爽| 在线观看舔阴道视频| 亚洲天堂av无毛| 国产av一区二区精品久久| 色综合婷婷激情| 香蕉国产在线看| 人妻 亚洲 视频| 中文字幕精品免费在线观看视频| 精品熟女少妇八av免费久了| 1024香蕉在线观看| 国产老妇伦熟女老妇高清| 久久久国产成人免费| 热99久久久久精品小说推荐| 亚洲av片天天在线观看| 母亲3免费完整高清在线观看| 亚洲美女黄片视频| 国产成人免费无遮挡视频|