• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced new chemistry?

    2019-11-06 00:45:22JianyanLin藺健妍XinDu杜鑫andGuochunYang楊國春
    Chinese Physics B 2019年10期

    Jianyan Lin(藺健妍),Xin Du(杜鑫),and Guochun Yang(楊國春)

    Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education,Northeast Normal University,Changchun 130024,China

    Keywords:high pressure,oxidation state,stoichiometry,structural prediction

    1.Introduction

    At ambient conditions,the valence electrons of an atom dominate the chemical properties,rooted in the well-accepted atomic shell structure.[1,2]In general,atoms react with other atoms by losing,obtaining,or sharing their valence electrons.However,the inner-shell electrons or outer empty orbital are not involved in chemical bonding. Thus,the number of the valence electrons of an element is closely related to the oxidation state in its compounds.On the other hand,the preparation of compounds with new oxidation states is a rather attractive topic in condense-mater physics and chemistry.[3–6]This is because compounds with new oxidation states usually contain new types of chemical bonding and exhibit interesting physical and chemical properties.[6–10]

    Pressure,like temperature and volume,is a basic thermodynamic parameter,but it exhibits unique advantages in finding new materials[11–15]and stabilizing unexpected stoichiometric compounds with new oxidation states.[16,17]This can be attributed to the fact that pressure can shorten the interatomic distance,[18]overcome the reaction barrier,[19,20]rearrange the atomic orbital energy level,[21]and modify the electronegativity.[22]In particular,the chemical properties of elements are strongly correlated with the relative orbital energy levels. Although pressure increases the atomic orbital energy levels,the elevated magnitudes of various elements are different.

    High-pressure experiments are expensive. Moreover,many attempts are needed to determine the experimental conditions before obtaining the desirable compounds.However,first-principles structure prediction method has become an alternative way to explore potential experimental conditions and identify new functional materials at high pressures.[23–28]For instance,the recent breakthrough in the field of superconductivity was achieved by a direct investigation on a theoretical prediction of compressed solid H2S with remarkable large superconductive transition temperature.[29,30]This method has also been successfully applied to the discovery of new chemical reactions and oxidation states,not accessible at ambient pressure.[31–34]Some of the research results break through the understanding of atomic shell structure,and realize the chemical bonding involved in inner-shell electrons or outer space orbital.[35–37]Although there have been many important advances in the field of high-pressure new chemistry,[38–42]in this review,we mainly focus on the recent progress discovered by first-principles unbiased structure search(CALYPSO)calculations.

    2.New oxidation states of gold

    Gold(Au)is a magic element in the periodic table and shows unusual physical and chemical properties,mainly originated from the strong relativistic effect.[43–46]Its electron configuration is 5d106s1. The extension of 5d orbital results in the high reactivity of 5d electrons and the tendency to form higher oxidation states. The contraction of 6s orbital leads to the high electronegativity comparable to halogen and the obtainment of electrons from the other atoms,showing a negative oxidation state.[44,47]Au has become a rare representative of negative oxidation state among the metal elements.On the other hand,Au compounds with different oxidation states exhibit interesting properties and wide applications.For example,the negative oxidation state of Au leads to a series of exotic properties,such as ferroelectricity,electric polarization,and catalysis.[48]F-rich Au compounds can be used as strong oxidants originated from their large electron affinity.[49]However,the long-desirable target AuF6has not been reported thus far.[50,51]In the oxidative addition reactions,Au in different oxidation states induces diverse catalytic activity.[52–54]Therefore,the investigation of Au oxidation state has always been the most interesting and active fields in chemistry and material.[47,52,55,56]

    Lithium(Li)and fluorine(F)have strong inclination to lose and acquire electrons in chemical reactions due to their strong electropositivity and electronegativity, respectively.Once pressure stabilized the Li-rich or F-rich Au compounds,they might show new negative or positive oxidation states. In the Li–Au binary compounds,several of Li-rich aurides(e.g.,Li4Au and Li5Au)become stable at megabar pressures.[59]Their common structural feature is the Au-center polyhedrons(Fig.1(a)).The distance between the two nearest Au atoms is significantly longer than the aurophilic interaction distance,indicating that the interatomic Li–Au interaction is dominant. Bader charge analysis shows that Au gains more than one electron from Li,occupying the 6s+6p orbitals.Thus,Au in Li-rich aurides(n3)behaves as a 6p-element.More interestingly,the negative oxidation states of Au can be effectively tuned from ?1 to ?3(or even higher)by modulating the Li compositions.For F-rich Au compounds,AuF4and AuF6were identified under high pressure,[57]exhibiting typical molecular crystal characters(Fig.1(b)).Thus,the oxidation state of Au can be unambiguously assigned as+4 and+6,respectively. The molecular orbital analysis of AuF4shows an obvious Au 5d7electronic configuration,which is consistent with the assignment of the+4 oxidation state in Au.Besides these,two hitherto unknown mixed-valence states of Au have been found in AuO2(+3 and+5)and AuS(+1 and+3)(Fig.1(c)).[58]These studies not only provide a controllable method for achieving the diverse oxidation states of Au,but also widen the understanding of Au element.

    Fig.1.(a)Crystal structure of I4/m Li4Au and Cmcm Li5Au at 50 GPa.The Bader charge of Au in various LinAu(n=1–5)compounds,showing that the negative oxidation state of Au is beyond ?3 in Li4Au and Li5Au.(b)Crystal structures of I4/m AuF4 and R-3 AuF6;molecular orbital plots of Au 5d orbitals in I4/m AuF4.Adapted with permission from Ref.[57].Copyright(2018)American Chemical Society.(c)The two mixed-valence compounds C2/m AuO2 and P-1 AuS.Adapted with permission from Ref.[58].Copyright(2018)Wiley.

    3.New oxidation states of alkali and alkali-earth metal

    Alkali metals,with ns1valence electron configurations,have strong reaction activity and can form ionic compounds with other elements. Thus,for a long time,it has been believed that alkali metals prefer to lose the outermost electron,forming+1 oxidation state,[60]and their core electrons are not involved into chemical bonding.It becomes a huge challenge for alkali metals to form a higher oxidation state.[61–63]On the other hand,since the first discovery of alkali metal anions(named alkalides)in the 1970s,[64,65]there has been much interest in obtaining more electrons of alkali metals from other atoms.[66,67]However,the negative oxidation state of alkali metals is limited to ?1 at ambient pressure.

    Caesium(Cs),with the exception of Fr,is the least electronegative element in alkali metal group. Moreover,its 5p level becomes broadened and even increases to the states around the Fermi level under high pressure.[68–72]Miao et al.predicted that Cs can open its inner shell through the reaction with F at high pressures,allowing its 5p electrons to participate in the chemical reaction and exhibiting the oxidation state beyond+1.[36]Cs in CsF2,CsF3,and CsF5molecular crystals show the formal oxidation states of+2,+3,and+5(Figs.2(a)and 2(b)).This is the first example to announce that inner shell electrons can become reactive at high pressures,breaking through the classical understanding that inner-shell electrons cannot participate in chemical bonds.

    In an opposite way,Cs obtaining electron from Li,at high pressures,shows a new chemical inclination that is not accessible at ambient conditions.At ambient pressure,Li and Cs only exist in the form of alloys.[73]However,LiCs,Li3Cs,Li4Cs,and Li5Cs become stable intermetallic compounds at high pressures.[74]LiCs is stabilized into a CsCl-type structure(Fig.2(d)).For other compounds,Cs–Li polyhedrons are connected with each other through face-or vertice-sharing.Intriguingly,Cs can gain more than one electron from Li,and extend its negative oxidation state beyond ?1.This is due to the fact that the energy increase of Li 2s is much faster than that of Cs 5d,and eventually reordering them with pressure.This character is favor of the charge transfer from Li 2s to Cs 5d,reducing the total energy and stabilizing the Li–Cs compounds.To be noted,the metastable LiCs phase shows superconductivity with a Tcof 21.4 K at 25 GPa.Its superconductivity comes from the charge transfer from Li 2s to Cs 5d,and from 6s to 5d in Cs,inducing a strong electron–phonon coupling.[75]

    Alkali metals can open up the inner electrons at high pressures.It is a natural thought that whether alkaline earth metals have similar properties.However,the electron screening effect on the inner electrons in alkali-earth elements is much stronger than that in alkali elements.As a result,opening up the inner shell of alkali-earth metals might be more difficult with respect to alkali metals.[76]In the periodic table,barium(Ba)is adjacent to Cs,and nonradiative in alkali-earth metal group.Under high pressure,Ba can open up its inert 5p shell through the reaction with F,exhibiting the oxidation states greater than+2 in its F-rich compounds BaF3,BaF4,and BaF5(Fig.2(c)).[77]Alkali and alkali-earth metals in their compounds are usually ionic at ambient pressure. Under high pressure,Cs–F bond are covalent(Fig.2(e))in Cs–F compounds,[36]whereas Ba–F bond are ionic(Fig.2(f)).

    Fig.2.(a)CsF3 at 100 GPa in a C2/m structure.(b)CsF5 at 150 GPa in an Fdd2 structure.(c)F-43m-BaF5 at 200 GPa.(d)LiCs in the CsCl structure at 150 GPa.ELF maps of CsF5(e)and BaF5(f).

    4.Unusual F-rich compounds

    As can be seen above,F is essential in achieving extremely high oxidation states in both transition metals and main group elements.[78]On the other hand,F-rich compounds often exhibit strong oxidating power,serving as fluorinating agents or oxidants.[8,78]For instance, PtF6can oxidize xenon, producing the first noble gas compound,XePtF6.[79]Thus,design and preparation of F-rich compound are rather important from both fundamental and applicable standpoints.[80–82]

    Mercury(Hg),one of the post-transition metals,has a fully filled 5d shell.Its typical oxidation state is+2.When Hg reacts with F under high pressure,its 5d electrons become active,forming HgF3(Fig.3(a))and HgF4(Fig.3(b))compounds,showing+3 and+4 oxidation states in Hg.[83]This discovery resolved the long-standing dispute over whether Hg could be included into transition metals.[84]Moreover,the electronic structure analysis shows that HgF3is metallic and ferromagnetic,resulting from the 5d9electron configuration of Hg.Notably,the Hg–F bond in HgF4is covalent.

    Fig.3.Crystal structures of(a)Fm-3m HgF3 at 100 GPa.(b)I4/m HgF4 at 50 GPa.(c)R-3 IrF8 at 200 GPa.Adapted with permission from Ref.[85].Copyright(2019)American Chemical Society.(d)R-3 IF8 at 300 GPa.

    One of the key factors in the formation of F-rich compounds is that the central atoms can provide more valence electrons. Iridium(Ir)contains nine valence electrons(5d76s2),which can be fully utilized in its compounds,showing the highest oxidation state of+9.[6]However,the high oxidation states of Ir are all in its oxides(e.g.,[(η2-O2)IrVIIO2]+,IrVIIIO4,[IrIXO4]+),[6,86]existing in molecular forms. Thus far,the highest known F stoichiometry in Ir fluoride is only IrF6.Very recently,three IrF8molecular crystals(Fig.3(c))have been predicted to be stable at high pressures,which become the first bulk solid containing the+8 oxidation state in Ir.[85]The spatial symmetry of the basic building block in the three IrF8phases enhances with the increase in the pressure(e.g.,dodecahedron →square antiprism →quasicube).The pressure-induced faster elevation of Ir 5d orbital energy level with respect to F 2p facilitates the charge transfer from Ir 5d to F 2p,reducing the total energy,so that F-rich compounds become stable.Since F-rich compounds are potential oxidants,the oxidizing power of the predicted compounds was evaluated by calculating their electronic affinities.The oxidizing power of the three identified IrF8phases is close to or exceeds PtF6,a recognized strong oxidant.

    As the next transition metal of Ir,platinum(Pt)has one more valence electron than Ir.Thus,we have explored the Frich compounds of Pt at high pressures in order to obtain a higher F stoichiometry.However,the most F-rich compound is PtF6up to 300 GPa(Fig.4(c)).The known PtF4and PtF6undergo structural phase transitions(Figs.4(a)and 4(b))with pressure.Overall,although Pt,Au,and Hg have more valence electrons than Ir,their most F-rich stoichiometries are PtF6,AuF6,and HgF4.The pressure-induced different increase of their 5d atomic orbital energy levels might be responsible for the observations(Fig.4(d)).[85]

    Fig.4.(a)PtF4 in C2/m symmetry at 300 GPa.(b)PtF6 in C2/c symmetry at 300 GPa.(c)Phase stabilities of the considered PtFx(x=1–10)compounds with respect to elemental Pt and F2 solids at 300 GPa.(d)The energy difference between M 5d and F 2p orbital at 100 GPa,and the stable F-richest stoichiometry of M(M=Ir,Pt,Au,Hg).

    The coordination number of an atom in compound has great effect on the structure and property.[87,88]Thus,hypercoordination has become one of the most active research fields.[89–91]Among the halogen elements,except astatine,iodine(I)has the largest atom radius, the weakest electronegativity,and the largest polarizability. These characters might allow more atoms in its coordination sphere. On the other hand,available hypercoordinated I compounds can be applied for the environmentally benign catalysis and the highly selective oxidization.[92–94]Up to now,the highest coordination number of I in neutral compound is seven(e.g.,IF7).[95]The known anionic octafluoride(IF8?)shows square antiprismatic. Pressure-induced stable neutral IF8molecule having a quasi-cube molecular configuration(Fig.3(d)),has been identified through swarm intelligence structural search calculations.[37]At ambient pressure,the I 5d orbital level is much higher than that of I 5p,making the hybridization impossible.Under high pressure,the I 5d orbitals in IF8come down and are split by the cubic ligand field into lower-lying egand higher-lying t2gsets,so that the hybridization with filled F-centered orbitals becomes possible.[96]Thus,I in IF8is not only hypercoordinated,but also hypervalent.Moreover,IF8shows metallic,coming from a hole contribution of F 2p bands.Interestingly,IF8and IrF8exhibit similar quasi-cubic structure with the R-3 symmetry.

    5.Unexpected chemical activity of noble gases

    Noble gases(Ng’s)are the most stable elements due to their closed outer shell. Among them,xenon(Xe)is most likely to be involved in the chemical reactions because of its large atomic size,showing weak binding ability of nuclei to outer electrons. Strong oxidizers with high electron affinity might open the full shell of Xe. As expected,the first noble gas compound,XePtF6,was synthesized in 1962,[79]and three Xe fluorides,XeF2,XeF4,and XeF6,were found in the same year.[97–99]On the other hand,it becomes more active and forms various compounds with other atoms at high pressures.

    Recent investigation on Xe–F binary compounds has found several of new phases,displaying interesting structural characters under high pressure.[100]Besides the synthesized XeF2,XeF4,and XeF6at ambient pressure,the other two Xe-rich stoichiometries,such as Xe2F(Fig.5(a))and Xe3F2,have been discovered at high pressures.Intriguingly,there appear Xe–Xe covalent bonds in these Xe–F compounds,becoming the first evidence of Ng–Ng bond in compound after in Ng cations(e.g.,and).[101–103]Moreover,Xe atoms form intercalated graphitic layers in Xe2F.

    Chlorine(Cl),with a weaker electronegativity than F,can also break the closed shell of Xe. However,the known Xe chloride(XeCl2)cannot be isolated outside a matrix.Under high pressure,a series of Xe–Cl compounds become stable in solid states,such as XeCl,XeCl2,and metastable XeCl4(Fig.5(b)).[104]F can oxidize Xe to+6 oxidation state,[99]while Cl only leads to the formation of XeCl4with+4 oxidation state.The predicted Xe–Cl compounds show diverse electronic properties,ranging from metallicity to semiconducting.

    Except for the high electronegative halogen elements,nitrogen(N),which is chemically inert at normal conditions and stabilizes into the N2molecule,can form compounds with Xe under high pressure.XeN6has been predicted to be the product of Xe and N2at megabar pressures146 GPa).[105]The XeN6phase(Fig.5(c))exhibits intriguing structural characteristics containing the chaired N6hexagons and 12-fold coordination of Xe bonded with N.It is a semiconductor with a band gap of ~1.5 eV.XeN6becomes the potential high energy density material due to its remarkable large energy density of 2.4 kJ·g?1.Unlike the ionic bonds between Xe and F[100]or Cl,[104]Xe–N bond is covalent.

    Transition metals,such as iron(Fe)or nickle(Ni),can also react with Xe under high pressure,forming sable compounds of XeFe,XeFe3(Fig.5(d)),XeFe5,XeNi3(Fig.5(e)),and XeNi5.[106]This breakthrough finding resolves the problem that Xe disappears in the Earth’s core,and provides an opportunity to re-recognize the chemical properties of transition metals. It is well known that transition metals are usually serving as reducing agents and lose their electrons showing positive oxidation states. However,Fe/Ni gains electrons from Xe at high pressures. This is completely different from the understanding of traditional chemical knowledge.The charge transfer from Xe to Fe/Ni under high pressure may be the result of pressure-induced alternation of atomic electronegativity.[22,107]

    For alkali metals,the inclination of losing electrons is less likely to be changed.Alkali metal Ng compounds have been investigated under high pressure,such as Cs–Xe[108]and Li–Ar[109]systems. Cs–Xe compounds(Fig.5(g))exhibit weak ionicity,in which Xe gains electrons from Cs. The charge transfers become more intriguing in Li–Ar compounds(Fig.5(f)),as well as alkali earth metal Ng compounds(e.g.,Mg–Xe(Fig.5(h)),Mg–Kr,and Mg–Ar).[110]In these cases,alkali metals transfer electrons not only to Ng’s,but also to interstitial sites forming electrides.Perhaps,it is not easy to add large amount of electrons to Ng’s,so the excess part is localized in the interstitial regions of the crystal.

    Finally,the most stable inert gas,helium(He),becomes chemically active at high pressures.Several of stable helium compounds have been obtained through reacting with ionic compounds at high pressures.[112]Intriguingly,the electrons of He atoms do not participate in any chemical bonds,but He atom plays a key role in reducing the strong repulsive Coulomb interactions between the majority ions with the same charge,and decreasing the Madelung energy. Based on the identified compounds and the composition of the Earth’s minerals,a large quantity of He could be stored in the Earth’s lower mantle.

    Fig.5.Crystal structures of(a)I4/mcm Xe2F at 200 GPa.(b)P-6m2 XeCl4 at 100 GPa.(c)R-3m XeN6 at 150 GPa.(d)Pm-3m XeFe3 at 250 GPa.(e)Pmmn XeNi3 at 250 GPa.(f)P4/mmm LiAr at 160 GPa.(g)I4/mmm CsXe2 at 200 GPa.(h)I4/mmm Mg2Xe at 200 GPa.(i)Ibam(H2O)2He at 300 GPa.(j)Fd-3m He2H2O at 70 GPa.(k)Phase diagram of the helium-water system at high pressures.Adapted with permission from Ref.[111].Copyright(2019)Nature.

    Ng’s can also combine with H2O molecule at high pressures. He was predicted to form compound with H2O.[113]The only stable stoichiometry is(H2O)2He(Figure 5(i)),in which the strong bonding interaction between He and O atoms(denoted as He...O interaction)plays a major role of the stabilization.The He...O interaction originates from the closedshell of He and O atoms and the strengthen is similar to hydrogen bonding.In(H2O)2He,H2O transfers little charge to He,so that it shows semiconducting property.However,the reactions of Xe and H2O under high pressure and high temperature produces Xe4H12O12.[114]More recently,unusual superionic states have been observed in He–H2O compounds through the reaction of He and H2O under high pressure and high temperature with the aid of machine learning method.[111]This breakthrough finding provides important theoretical evidences for understanding the physical and chemical properties of He at high pressures and the structural evolution of the celestial bodies such as Uranus and Neptune(Figs.5(j)and 5(k)).[111]More interestingly,He and Ne guests can be trapped by alkalimetal oxide and sulfide under pressure,suggesting a new strategy for gas storage.[115]Moreover,Ng’s can also combine with each other to form stable compounds,such as XeHe2,[116]

    ArHe2,[117]and NeHe2.[118,119]

    6.Conclusions and outlook

    Pressure has led to the discovery of numerous unusual chemical reactions,not accessible at ambient pressure.Some of them indicate(i)the inner shell electrons or outer empty orbital participate in the chemical bonding,(ii)abnormal interatomic charge transfer occurs,(iii)noble gases become chemically active and form various kinds of compounds with other elements.Part of the compounds show interesting structures and properties.These findings extend the understanding and cognition of traditional chemistry. However,the research in this field is just beginning.Only a few elements in the periodic table have been studied,and there is still a vast space for exploration.On the other hand,more and more systemic research is needed urgently to explore the reaction mechanism,and establish the basic theory of chemical reaction under high pressure. To be noted,most of these studies are carried out from the standpoint of theoretical calculations. This might originate from some difficulties in high pressure experiments.For instance,strong oxidizing or reducing agents(e.g.,F and Li)are harmful to experimental instruments.[35]Thus,more experimental studies are highly demanded.Theory and experiment complement and verify each other,promoting the development of high-pressure new chemistry.

    Acknowledgment

    The authors acknowledge the National Supercomputer Center in Tianjin,and the calculations were performed on TianHe-1(A).

    亚洲电影在线观看av| 亚洲欧美成人综合另类久久久 | 免费大片18禁| 亚洲国产精品成人久久小说 | 国产成人精品婷婷| 高清毛片免费观看视频网站| 中出人妻视频一区二区| 国产午夜精品一二区理论片| 色哟哟哟哟哟哟| 久久婷婷人人爽人人干人人爱| 久久久久久久午夜电影| 国产老妇伦熟女老妇高清| 精品人妻一区二区三区麻豆| 人体艺术视频欧美日本| 久久婷婷人人爽人人干人人爱| av视频在线观看入口| 久久99热6这里只有精品| 两个人视频免费观看高清| 午夜激情福利司机影院| 日韩在线高清观看一区二区三区| 蜜臀久久99精品久久宅男| 色哟哟·www| 午夜精品在线福利| 欧美一级a爱片免费观看看| 日本成人三级电影网站| 爱豆传媒免费全集在线观看| 好男人在线观看高清免费视频| 午夜久久久久精精品| 网址你懂的国产日韩在线| 久久人人精品亚洲av| 欧美一区二区国产精品久久精品| 秋霞在线观看毛片| 国产午夜精品论理片| 国产亚洲5aaaaa淫片| 国产一区二区亚洲精品在线观看| 中文字幕精品亚洲无线码一区| 日本爱情动作片www.在线观看| 最近的中文字幕免费完整| 啦啦啦观看免费观看视频高清| 国产精品.久久久| av免费观看日本| 国产一区二区三区在线臀色熟女| 日本黄色片子视频| 人妻制服诱惑在线中文字幕| 婷婷色综合大香蕉| 精品免费久久久久久久清纯| 亚洲婷婷狠狠爱综合网| 亚洲国产高清在线一区二区三| 亚洲精品乱码久久久久久按摩| 久久这里只有精品中国| 国产黄片视频在线免费观看| 熟女人妻精品中文字幕| 国产v大片淫在线免费观看| 久久久a久久爽久久v久久| 色5月婷婷丁香| 全区人妻精品视频| 91av网一区二区| 国产精品三级大全| 久久精品影院6| 性插视频无遮挡在线免费观看| 精品欧美国产一区二区三| 免费在线观看成人毛片| 青春草国产在线视频 | 天堂av国产一区二区熟女人妻| 波多野结衣巨乳人妻| 免费人成在线观看视频色| 免费在线观看成人毛片| 婷婷色av中文字幕| 蜜桃久久精品国产亚洲av| 国产成人a区在线观看| 国产伦一二天堂av在线观看| 熟女电影av网| 91午夜精品亚洲一区二区三区| 国产一区二区在线观看日韩| 深夜精品福利| 99九九线精品视频在线观看视频| 国产成人a∨麻豆精品| 午夜激情欧美在线| 国产大屁股一区二区在线视频| 亚洲欧美成人精品一区二区| 久久精品人妻少妇| 久久久精品欧美日韩精品| a级毛色黄片| 特级一级黄色大片| 色噜噜av男人的天堂激情| 亚洲精品影视一区二区三区av| 亚洲美女搞黄在线观看| 成人特级黄色片久久久久久久| 97超视频在线观看视频| 狂野欧美白嫩少妇大欣赏| 久久久欧美国产精品| 91午夜精品亚洲一区二区三区| 激情 狠狠 欧美| 国产精品一二三区在线看| 亚洲无线观看免费| 26uuu在线亚洲综合色| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播| 波野结衣二区三区在线| 亚洲熟妇中文字幕五十中出| 日韩一区二区三区影片| 久久久久久久久久久免费av| 国产男人的电影天堂91| 久久精品国产亚洲网站| h日本视频在线播放| 日韩欧美一区二区三区在线观看| 亚洲欧美中文字幕日韩二区| 国产精品99久久久久久久久| 久久久成人免费电影| 久久九九热精品免费| 日韩大尺度精品在线看网址| 日本与韩国留学比较| 嫩草影院新地址| 中文字幕免费在线视频6| 国产精品一区二区在线观看99 | 美女脱内裤让男人舔精品视频 | 别揉我奶头 嗯啊视频| 日本成人三级电影网站| a级毛片a级免费在线| 亚洲成a人片在线一区二区| 亚洲,欧美,日韩| 精品人妻视频免费看| 99国产精品一区二区蜜桃av| 久久久久久久亚洲中文字幕| 欧美一区二区精品小视频在线| 91久久精品国产一区二区三区| 国产视频内射| 亚洲av二区三区四区| 国产精品,欧美在线| 好男人在线观看高清免费视频| 人人妻人人看人人澡| 自拍偷自拍亚洲精品老妇| 观看美女的网站| 九九爱精品视频在线观看| 免费观看在线日韩| 免费看美女性在线毛片视频| 国产乱人偷精品视频| 国产午夜福利久久久久久| 有码 亚洲区| 亚洲成a人片在线一区二区| 黄色一级大片看看| 99在线人妻在线中文字幕| 少妇人妻精品综合一区二区 | 丰满乱子伦码专区| 精品久久久久久成人av| 久久精品91蜜桃| 国产精品日韩av在线免费观看| 桃色一区二区三区在线观看| 在线a可以看的网站| 中文精品一卡2卡3卡4更新| 久久精品夜色国产| 在线a可以看的网站| 床上黄色一级片| 久久久国产成人精品二区| 老熟妇乱子伦视频在线观看| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 国产精品乱码一区二三区的特点| 久久久成人免费电影| 在线免费十八禁| 国产午夜精品论理片| 国产蜜桃级精品一区二区三区| 亚洲最大成人手机在线| 一个人看视频在线观看www免费| 搡女人真爽免费视频火全软件| 久久精品夜夜夜夜夜久久蜜豆| 国产成人影院久久av| 日韩一区二区视频免费看| 少妇人妻一区二区三区视频| 一本一本综合久久| 国产精品乱码一区二三区的特点| 亚洲欧洲日产国产| 亚洲av不卡在线观看| 熟女电影av网| 两个人视频免费观看高清| 又黄又爽又刺激的免费视频.| 亚洲激情五月婷婷啪啪| 欧美成人一区二区免费高清观看| 亚洲欧美成人精品一区二区| 亚洲国产欧美在线一区| 午夜福利成人在线免费观看| 免费观看在线日韩| 91久久精品国产一区二区成人| 丝袜喷水一区| 国产 一区精品| 性色avwww在线观看| 国产精品人妻久久久久久| www日本黄色视频网| 国产黄色小视频在线观看| 国产成人aa在线观看| 久久久久久久亚洲中文字幕| 白带黄色成豆腐渣| 亚洲精品亚洲一区二区| 99热网站在线观看| 岛国在线免费视频观看| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 日本免费一区二区三区高清不卡| 亚洲欧洲日产国产| 亚洲欧美中文字幕日韩二区| 国产成人精品一,二区 | 97热精品久久久久久| 精品久久久久久成人av| 色综合色国产| 亚洲美女视频黄频| 久久6这里有精品| 亚洲av不卡在线观看| 白带黄色成豆腐渣| 国产精品av视频在线免费观看| 岛国在线免费视频观看| 久久精品国产99精品国产亚洲性色| 卡戴珊不雅视频在线播放| 国产精品久久久久久精品电影| 日韩成人av中文字幕在线观看| 久久精品国产亚洲av香蕉五月| 欧美性猛交黑人性爽| 一本一本综合久久| 99热这里只有精品一区| 一个人看视频在线观看www免费| 日韩欧美精品v在线| 99九九线精品视频在线观看视频| 日韩一区二区三区影片| 成人午夜精彩视频在线观看| 国产一级毛片七仙女欲春2| 91麻豆精品激情在线观看国产| 亚洲婷婷狠狠爱综合网| av黄色大香蕉| 在线a可以看的网站| 高清日韩中文字幕在线| 一级毛片我不卡| 乱码一卡2卡4卡精品| 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 一本久久精品| 国产成人一区二区在线| 九色成人免费人妻av| 亚洲久久久久久中文字幕| 日本免费一区二区三区高清不卡| 久久国内精品自在自线图片| 国产高清不卡午夜福利| 欧美在线一区亚洲| 波多野结衣巨乳人妻| 免费av毛片视频| 麻豆精品久久久久久蜜桃| 高清午夜精品一区二区三区 | 久久久久久久久中文| 久久精品国产清高在天天线| 桃色一区二区三区在线观看| 亚洲成人久久性| 日日摸夜夜添夜夜爱| 国产欧美日韩精品一区二区| 国产精品,欧美在线| 久久草成人影院| 国产女主播在线喷水免费视频网站 | 小说图片视频综合网站| 69人妻影院| 亚洲丝袜综合中文字幕| 美女黄网站色视频| 亚洲人成网站在线播| 国产乱人视频| 久久久国产成人免费| 色综合色国产| 91在线精品国自产拍蜜月| 99热精品在线国产| av又黄又爽大尺度在线免费看 | 久久久精品大字幕| 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 日本黄大片高清| 91久久精品国产一区二区成人| kizo精华| 欧美性猛交黑人性爽| 日本一本二区三区精品| 国产私拍福利视频在线观看| 内地一区二区视频在线| 哪个播放器可以免费观看大片| 成人性生交大片免费视频hd| 日本-黄色视频高清免费观看| 亚洲七黄色美女视频| 中文字幕av在线有码专区| 亚洲18禁久久av| 亚洲精品乱码久久久v下载方式| 欧美又色又爽又黄视频| 久99久视频精品免费| 一级黄色大片毛片| 国产黄色小视频在线观看| 小蜜桃在线观看免费完整版高清| 国产精品三级大全| 一级毛片aaaaaa免费看小| av免费在线看不卡| 日韩欧美国产在线观看| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 午夜福利在线在线| 最近2019中文字幕mv第一页| 成人毛片60女人毛片免费| 亚洲精品影视一区二区三区av| 特级一级黄色大片| 午夜亚洲福利在线播放| 特级一级黄色大片| 欧美日韩乱码在线| 内射极品少妇av片p| 久久久久久久午夜电影| 国产精品野战在线观看| 99在线人妻在线中文字幕| 国产又黄又爽又无遮挡在线| 久久99热这里只有精品18| 婷婷色av中文字幕| 久久国产乱子免费精品| 夜夜夜夜夜久久久久| 91午夜精品亚洲一区二区三区| 国产精品嫩草影院av在线观看| 小说图片视频综合网站| 日韩高清综合在线| 亚洲av二区三区四区| 亚洲最大成人中文| 欧美性感艳星| 欧美日本视频| 欧美一区二区亚洲| 尾随美女入室| 少妇裸体淫交视频免费看高清| 国产在线男女| 有码 亚洲区| 天堂网av新在线| 精品一区二区免费观看| 久久精品久久久久久久性| 欧美+亚洲+日韩+国产| 在线免费十八禁| 不卡一级毛片| 男人和女人高潮做爰伦理| 在线a可以看的网站| 夜夜爽天天搞| 三级经典国产精品| 夜夜爽天天搞| 在线a可以看的网站| 男女视频在线观看网站免费| 婷婷精品国产亚洲av| 18禁在线播放成人免费| 久久久久免费精品人妻一区二区| 亚洲av一区综合| 欧美高清成人免费视频www| 国产一区二区在线av高清观看| 日韩大尺度精品在线看网址| 有码 亚洲区| 啦啦啦韩国在线观看视频| 97超视频在线观看视频| 国产在线精品亚洲第一网站| 爱豆传媒免费全集在线观看| 日韩视频在线欧美| 男女边吃奶边做爰视频| 成人午夜精彩视频在线观看| 激情 狠狠 欧美| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 美女被艹到高潮喷水动态| 国产高清视频在线观看网站| 欧美潮喷喷水| 久久久久久国产a免费观看| 天堂网av新在线| 深夜精品福利| 美女被艹到高潮喷水动态| 精品久久久久久久久av| 国产午夜精品一二区理论片| 亚洲最大成人av| 欧美变态另类bdsm刘玥| 18禁在线播放成人免费| 天天一区二区日本电影三级| 少妇猛男粗大的猛烈进出视频 | 精品人妻熟女av久视频| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| 只有这里有精品99| 国产单亲对白刺激| 精品久久久久久久久亚洲| 久久99热6这里只有精品| 久久99蜜桃精品久久| 麻豆精品久久久久久蜜桃| 欧美日本亚洲视频在线播放| 成人二区视频| 久久精品夜夜夜夜夜久久蜜豆| 内地一区二区视频在线| 国产私拍福利视频在线观看| 日韩大尺度精品在线看网址| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 岛国在线免费视频观看| 成人亚洲欧美一区二区av| 国产精品久久视频播放| 国产一级毛片七仙女欲春2| 99在线视频只有这里精品首页| 国内精品美女久久久久久| 亚洲国产精品成人久久小说 | 成熟少妇高潮喷水视频| 亚洲欧美成人综合另类久久久 | 全区人妻精品视频| av女优亚洲男人天堂| 日韩欧美 国产精品| 最近2019中文字幕mv第一页| 村上凉子中文字幕在线| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18| 中文字幕人妻熟人妻熟丝袜美| 色吧在线观看| 啦啦啦观看免费观看视频高清| 有码 亚洲区| 18+在线观看网站| 黄色视频,在线免费观看| 日日摸夜夜添夜夜添av毛片| 日本av手机在线免费观看| 大香蕉久久网| 亚洲精品久久国产高清桃花| 永久网站在线| 秋霞在线观看毛片| 日韩中字成人| 老女人水多毛片| 97超视频在线观看视频| 亚洲av中文字字幕乱码综合| 欧美性猛交╳xxx乱大交人| 国产午夜精品论理片| 国产高清有码在线观看视频| av福利片在线观看| 久久久久网色| 久久久午夜欧美精品| 久久精品国产99精品国产亚洲性色| 看非洲黑人一级黄片| 在线播放国产精品三级| 国产高清视频在线观看网站| 18+在线观看网站| 午夜亚洲福利在线播放| av福利片在线观看| 在线免费十八禁| 午夜福利在线在线| 校园春色视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 一本一本综合久久| 日日啪夜夜撸| 99热这里只有精品一区| 五月玫瑰六月丁香| 看黄色毛片网站| 深爱激情五月婷婷| 黄色日韩在线| 亚洲国产精品成人久久小说 | 高清在线视频一区二区三区 | 成人午夜高清在线视频| 国产精品久久久久久久电影| 最近的中文字幕免费完整| 永久网站在线| 国产精品不卡视频一区二区| 国产精品国产三级国产av玫瑰| 啦啦啦啦在线视频资源| 久久热精品热| 老司机影院成人| 变态另类成人亚洲欧美熟女| 色播亚洲综合网| 久久久久免费精品人妻一区二区| 色综合站精品国产| 老师上课跳d突然被开到最大视频| 亚洲成人中文字幕在线播放| 精品无人区乱码1区二区| 国产精品一区二区性色av| 日韩高清综合在线| 亚洲经典国产精华液单| 搡老妇女老女人老熟妇| 97超碰精品成人国产| 色综合站精品国产| 中文字幕久久专区| 亚洲自偷自拍三级| 国产大屁股一区二区在线视频| 国产成人91sexporn| 欧美高清性xxxxhd video| www日本黄色视频网| 国产v大片淫在线免费观看| www.色视频.com| 成人综合一区亚洲| 99九九线精品视频在线观看视频| av天堂中文字幕网| 简卡轻食公司| 精品久久久久久久久亚洲| 国产 一区 欧美 日韩| 精品久久久久久久久av| 人妻制服诱惑在线中文字幕| 亚洲av免费高清在线观看| 久久精品人妻少妇| 欧美极品一区二区三区四区| 黑人高潮一二区| 欧美变态另类bdsm刘玥| 一个人观看的视频www高清免费观看| 全区人妻精品视频| 能在线免费看毛片的网站| 国产女主播在线喷水免费视频网站 | 日韩欧美精品v在线| 尤物成人国产欧美一区二区三区| 精品久久久久久久久av| 国内精品一区二区在线观看| 日韩亚洲欧美综合| 亚洲精品日韩av片在线观看| 国产大屁股一区二区在线视频| 亚洲精品国产成人久久av| 成年版毛片免费区| 熟女人妻精品中文字幕| av国产免费在线观看| 午夜久久久久精精品| 九九热线精品视视频播放| 人妻制服诱惑在线中文字幕| 国产老妇伦熟女老妇高清| 深夜a级毛片| 最近最新中文字幕大全电影3| 国产一区二区三区在线臀色熟女| av天堂中文字幕网| 精品无人区乱码1区二区| 亚洲美女视频黄频| 赤兔流量卡办理| 亚洲欧美日韩卡通动漫| 夫妻性生交免费视频一级片| 热99re8久久精品国产| 久久亚洲精品不卡| 国产在线男女| 国产精品久久视频播放| 此物有八面人人有两片| 国产乱人偷精品视频| 亚洲国产欧美人成| 亚洲av二区三区四区| 最近2019中文字幕mv第一页| 国产高清激情床上av| 看片在线看免费视频| av视频在线观看入口| 悠悠久久av| 晚上一个人看的免费电影| 国产男人的电影天堂91| 看免费成人av毛片| 好男人在线观看高清免费视频| 日本色播在线视频| 青春草视频在线免费观看| 欧美日韩乱码在线| 身体一侧抽搐| 蜜桃亚洲精品一区二区三区| av又黄又爽大尺度在线免费看 | 亚洲国产高清在线一区二区三| 99热这里只有是精品在线观看| 日韩制服骚丝袜av| 国产精品电影一区二区三区| av视频在线观看入口| 99久久久亚洲精品蜜臀av| 午夜精品国产一区二区电影 | 欧美丝袜亚洲另类| 亚洲av中文av极速乱| 九九爱精品视频在线观看| 国国产精品蜜臀av免费| av在线亚洲专区| 两个人视频免费观看高清| 在线观看66精品国产| 久久精品国产亚洲网站| 国产精品免费一区二区三区在线| 尾随美女入室| 久久午夜亚洲精品久久| 久久精品国产自在天天线| 亚洲三级黄色毛片| 亚洲av熟女| 91久久精品电影网| 别揉我奶头 嗯啊视频| 亚洲最大成人av| 夜夜看夜夜爽夜夜摸| 亚洲精品456在线播放app| 一边亲一边摸免费视频| 人人妻人人澡人人爽人人夜夜 | 青春草亚洲视频在线观看| 夜夜看夜夜爽夜夜摸| 免费看日本二区| 九色成人免费人妻av| 网址你懂的国产日韩在线| 热99re8久久精品国产| 国产私拍福利视频在线观看| 国产探花极品一区二区| 亚洲国产色片| 亚洲欧洲国产日韩| 久久亚洲国产成人精品v| 亚洲最大成人手机在线| 久久精品久久久久久噜噜老黄 | 久久久午夜欧美精品| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看| 久久久久久九九精品二区国产| 日韩一区二区三区影片| 久久精品国产自在天天线| 一级av片app| 国产伦理片在线播放av一区 | 一本久久精品| 12—13女人毛片做爰片一| 99热这里只有是精品在线观看| 26uuu在线亚洲综合色| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 国产探花极品一区二区| 能在线免费看毛片的网站| 1000部很黄的大片| 国产69精品久久久久777片| 一区福利在线观看| 国产精品麻豆人妻色哟哟久久 | 日本黄色视频三级网站网址| 中文字幕精品亚洲无线码一区| 又粗又爽又猛毛片免费看| 99久国产av精品| 久久久久久久久大av| 国产欧美日韩精品一区二区| 少妇裸体淫交视频免费看高清| 国产亚洲精品久久久久久毛片| 简卡轻食公司| 精品人妻视频免费看| 天堂影院成人在线观看| 97在线视频观看| 九草在线视频观看| 男人和女人高潮做爰伦理| 国产午夜精品久久久久久一区二区三区|