• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural and electronic properties of transition-metal chalcogenides Mo5S4 nanowires?

    2019-11-06 00:45:16MingShuaiQiu邱明帥HuaiHongGuo郭懷紅YeZhang張也BaoJuanDong董寶娟SajjadAli阿里薩賈德andTengYang楊騰
    Chinese Physics B 2019年10期

    Ming-Shuai Qiu(邱明帥),Huai-Hong Guo(郭懷紅),?,Ye Zhang(張也),Bao-Juan Dong(董寶娟), Sajjad Ali(阿里.薩賈德), and Teng Yang(楊騰),?

    1College of Sciences,Liaoning Shihua University,Fushun 113001,China

    2Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    Keywords:transition-metal chalcogenide nanowire

    1.Introduction

    One-dimensional materials, such as nanotubes and nanowires,have been attracting considerable attention for decades for the significance on exploring fundamental physics at low dimensions and also as building blocks for materials in nanoscale electronic and mechanical device applications.[1–5]Carbon nanotubes(CNTs)in particular as almost perfect 1D systems have been studied intensively in multidisciplinary research and for multifunctional applications. However the drawback of CNTs has remained for long,such as difficulty in chirality-controlled synthesis,catalysis contamination,non-Ohmic electrode contact,and difficulty to separate bundled tubes.[6]Combining subnanometer size with structural stability,uniform electronic properties,and many advantages over CNTs,transition-metal chalcogenide nanowires(TMCN)have been studied widely as a potentially viable alternative to CNTs for many applications.[7–9]

    So far,a plethora of TMCN structures have been synthesized in experiments. All the possible forms of atomic structures can be summarized in Fig.1.The basic and rigid structural unit is the M6octahedron of transition metal atom M,which is decorated by chalcogenide X atoms.Depending on how M6octahedra condensate into the extended structure,as we understand,three types of one-dimensional M backbones can be categorized as presented in Figs.1(a)–1(c).(i)The first type,with lateral edges of M6octahedra shared,is a chain of trans-edge sharing M6,as shown in Fig.1(a). This type of extended structure usually takes the form of M4X6as defined as M4X6edge in Fig.1(a),and is mostly observed in the reduced molybdenum oxides[10,11]in which the M6units are edge-bridged by oxygen atoms,such as M6X12on the left side of the lower panel in Fig.1(a). (ii)The second type is the face sharing of M6condensing into an extended Chevrel phase,[12]as indicated in Fig.1(b). This process is often observed when the M6clusters are face-bridged by the chalcogenide ligands such as S,Se,and Te.[8,13–15]The extended structure is derived from the basic unit of M6X8with chalcogenide atoms decorating the eight faces of the M6octahedra,as defined by M6X6cap in Fig.1(b).Besides the Chevrel-phase M6X6cap structure,a hybrid structure(M6X8cap+edge in Fig.1(b))has also been reported with mixed cap and edge decoration positions of chalcogenide.[7,16]The M6octahedron in this structure,which is face-decorated by chalcogenide ligands X,is edge-bridged by three chalcogenide ligands to the neighboring M6octahedron.Such an M–X–M bridge exhibits very interesting bistable and stress-tunable electronic properties.[7,17](iii)The two types of structures shown above can be derived from the trans-edge sharing(two M atoms sharing)and face-to-face(three M atoms sharing)of two neighboring M6octahedra,it is reasonable to wonder if an extended structure can be as well constructed based on vertex-tovertex(one M atom sharing).In this manner,the third type is shown in Fig.1(c),which takes possible forms of chalcogenide face-bridged(M5X4cap)or edge-bridged(M5X4edge)structures,both of which have a ratio of X/M as low as 4/5.The third type has been found to be stable in M5X4cap type structures such as Ti5Se4,[18]Ti5Te4,[19]Nb5Se4,Nb5Te4,[20]and W5As2.5P1.5.[21]The M5X4edge structure was rarely seen but recently obtained from the top-down synthesis by electron beam etching on 2-dimensional MoS2.[22]

    Fig.1.Categorization of plethora of transition metal chalcogenide nanowires MxXy constructed from the M6 octahedral building block. (a)Trans-edge sharing to form M4X6 nanowires. (b)Face-to-face to form M6X9 or M6X6 nanowires.(c)Vertex-to-vertex to form M5X4 nanowires with the least X/M ratio so far.The upper structures in panels(a)–(c)are to show how possible nanowire geometry forms from M6 building block,and the lower structures are to show the exemplary extended nanowires which have mostly been synthesized in experiment.M and X atoms are shown in silver grey and brown,respectively.

    The nanowires arising from the vertex sharing of M6attracted our most attention,not only due to the success in synthesis with a low X/M ratio which might be environmentally friendly,but also because of the smallest cross-section area among all TMCN nanowires available.[7,23–26]The crosssection size of nanowires is intimately related to quantum confinement,a more pronounced confinement effect than its sibling ribbon or wire structures is therefore anticipated and may give rise to much enhanced electronic properties than its bulk counterpart.[27–29]However,its structural stability and electronic properties are still unclear.How is it compared to the other TMCN nanowires reported?What are exactly their electronic structure?Is is possible to obtain a more stable geometry by making full use of the construction rules proposed here?

    To address these problems,we select Mo and S elements and study the structural stability and electronic properties of vertex-sharing Mo5S4nanowires and compare them with similar nanostructures in terms of convex hull of binding energy and phonon dispersion relation. We confirm that the experimentally obtained edge structure is stable from the binding strength and phonon dispersion relation.Interestingly,a new structure(the so-called C&E)with mixed cap and edge units is predicted here and appears more stable than the cap or edge structures. The calculated energy barriers of Peierls phase transitions from cap and edge to C&E are 0.9 eV and 0.3 eV per unit cell,respectively,suggesting that it is likely to achieve by a structural phase transition. Crystal orbital overlapping population(COOP)is also calculated to study the bonding character.COOP shows that the cap structure is unstable due to the partial occupation of anti-bonding states,while both the edge and C&E structures are stable from the COOP analysis.All three Mo5S4phases are semiconductors with indirect band gap.Note that a band nesting appears in the band gap region of the C&E structure,and can be well fit for the optoelectronic sensor in the infrared spectrum.

    2.Method

    To study the structural stability and potential applications of transition metal chalcogenides nanowires,we carried out density functional calculation with the projector augmented wave method[30]as implemented in the Vienna ab initio simulation package(VASP).[31]The exchange correlation potential was approximated by generalized gradient approximation(GGA)proposed by Perdew,Burke,and Ernzerhof.[32]To describe well-isolated nanowires while using periodic boundary conditions,we used a tetragonal lattice with a large interwire separation of 20.We sampled a 21×1×1k mesh in the Brillouine zone. A 400 eV energy cutoff of the plane wave basis was used. The total energy precision was better then 0.1 meV/atom.The Hellman–Feynmann theorem and CG algorithm were used to obtain equilibrium structures.The convergence was set as 10?6eV in energy and 0.01 eV/?A in force.

    On the basis of the equilibrium structures,the phonon dispersion relation of nanowires was calculated based on density functional perturbation theory[33]as implemented in the PHONOPY code.[34]A 3×1×1 supercell size and 10×1×1 q mesh were used.

    Crystal orbital overlapping population[35,36]was used to evaluate all pairwise interactions between two orbitals(ithand jth)of two atoms(at R and)by the product of overlap matrix and density of states matrix elements

    where n is the band index,k is the reciprocal wave vector,fnkis the Fermi–Dirac distribution function,and εnkis the energy band. The system wave functionwith the ithatomic orbital φiRat the R site.is the overlap matrix. Positive,zero,and negative values of COOP represent bonding,non-bonding,and anti-bonding states,respectively.[35,36]

    3.Structure

    To form a stable extended nanowire structure,Mo6octahedral unit and how sulfur decorates the rigid unit are both essential.In regard to how sulfur decorates,the two most stable cluster structures,Mo6S12and Mo6S8,can give us a good hint.As shown in Fig.2(a),both clusters have the Mo6octahedra.Sulfur finds a niche either by decorating the eight Mo3triangle faces to form Mo6S8,or by bridging the twelve Mo–Mo bonds to form Mo6S12.Likewise,when forming into an extended nanowire,the residing way of sulfur atoms should play as important a role as the condensation of Mo6units.

    Fig.2.(a)Two primary cluster structures Mo6S8 and Mo6S12 with face-bridged and edge-bridged chalcogenides,respectively.(b)Binding energy as a function of stoichiometry and structure of MoxSy nanowires.Stoichiometry ratio x/y is grouped into different color zones,the most stable structures are represented in filled red dots,while the rest in empty red dots.Square blue is to show the value of x/y,or NMo/NS.(c)Energy–lattice constant curve and atomic structures of Mo5S4 nanowires of cap,edge and C&E.The edge structure has been reported experimentally.[22]Both cap and C&E types are derived based on the construction strategy in Fig.1.

    Guided by the strategy,we constructed possible atomic structures at different stoichiometries,i.e.,Mo:S=1:2,2:3,1:1,...,and each stoichiometry has several candidate structures.The binding energies for the optimized structures are shown as filled and empty red dots in Fig.2(b). The binding energy is defined as Eb=[E(MoxSy)?xE(Mo)?yE(S)]/(x+y),in which E(MoxSy),E(Mo),and E(S)refer to the total energies of MoxSynanowire,Mo atom,and S atom,respectively. It is not surprising to see that among the optimized structures(geometries given in Fig.A1),the most stable ones,as given by filled red dots in Fig.2(b),have the similar structural characters,namely,the rigid Mo6unit with sulfur decorating either the triangle face or bridging the Mo–Mo bond.Encouragingly,from our calculations,the most stable atomic structures predicted for Mo:S=2:3 and 1:1 are Mo6S9and Mo6S6nanowires,respectively.Such a result substantiates the face to face strategy to construct a nanowire in Fig.1(b),and is also well supported by the previous studies.[7,8,17]Moreover,for the stoichiometry Mo:S=3:2 and 2:1,we obtained the most stable structures of Mo6S4and Mo4S2nanowire,which are actually decided by the transedge sharing strategy(Fig.1(a)).As the ratio of Mo over S goes 3/1 or higher,Mo6rigid unit seems not observable in the final structures,probably because too few sulfur atoms in the structure are not sufficient to decorate the Mo atoms and Mo6unit therefore is much deformed.

    More interesting is the stoichiometry Mo:S=5:4 given in the green zone in Fig.2(b).The three most stable structures from our calculation are referred to the C&E,cap,and edge Mo5S4.Besides the edge structure,which has been achieved from the top-down synthesis,[22]we have found here two new structures,the cap and C&E ones,both of which are more stable than the edge structure.From the energy–lattice constant curve and the optimized atomic structures given in Fig.2(c),one can first see a larger lattice constant of the edge than that of the cap,while the C&E has its lattice constant lying between the two of them due to the mixed units from both the cap and edge.The relevance between the three structures can be seen more clearly from the end view in Fig.2(c).The simplest structure is the cap,with an unit cell of 5 Mo plus 4 sulfur atoms.To get the edge from the cap structure,the crosssection square of Mo6octahedra first rotates by 45?,the unit cell doubles,and then the two central Mo atoms are shifted slightly away from the center in opposite directions normal to the nanowire axis.To get the C&E from the cap is easier,doubling the unit cell size of the cap,followed by rotating one of the Mo4square by 45?.

    We already see from the binding energy that two new structures(cap and C&E)are more stable than the experimentally observed edge Mo5S4nanowires.But it is still not clear whether they are stable dynamically.We are also curious whether it is plausible to obtain the new and stable structures from the one available. Moreover,the electronic properties,which have not been studied yet,need to be calculated before any potential applications can be conceived.

    4.Stability

    To check the dynamic stability and possible route for synthesis,we performed phonon dispersion relation and nudged elastic band(NEB)calculation.From the phonon dispersion relation shown in Fig.3(a),the edge and C&E phases do not have any negative values of eigenfrequency,indicating that both phases are dynamically stable and can be synthesized in lab. While the cap phase has a negative eigenfrequency close to the zone edge area,suggesting a tendency of structural phase transition,for example,a Peierls transition by doubling the unit size.

    Fig.3. (a)Phonon dispersion relation for the three types of Mo5S4 nanowires.Reaction coordinates for structural change(b)between the edge and the C&E structures,(c)between the cap and the C&E structures of Mo5S5 nanowires. The main structural change is due to the rotation of Mo-square as schematized in inset of(b)and(c).

    Indeed,as mentioned in Fig.2(c),a Peierls phase transition may happen here by doubling the unit cell size along with a structural distortion.We confirm here by our NEB results that such a phase transition occurs by unit rotation.As schematized in the inset of Figs.3(b)and 3(c),the Peierls transition from either the cap or the edge nanowire to the C&E nanowire takes a form of one Mo4square rotation.The energy barrier for such a transition is about 0.3 eV and 0.9 eV per formula unit(18 atoms in total)from the available edge phase and the cap phase to the most stable C&E phase,respectively.The low barrier,together with strong binding and high dynamic stability,renders a big opportunity to achieve C&E phase from many possible means including bottom-up,top-down methods or phase transition triggered by external perturbations.

    5.Electronic properties

    To have an insight into the electronic properties of Mo5S4nanowires,we calculated the electronic band structure and show it in Fig.4. The cap,edge,and C&E structures are given in panels(a),(b),and(c),respectively. All the three phases have a similar band character,semiconducting and indirect band gap.The band gaps are within the infrared spectral range,about 0.12 eV(cap),0.22 eV(edg),0.27 eV(C&E),which are underestimated by the DFT calculations and should be improved by HSE or GW calculations,which is beyond the scope of this study.

    Fig.4.Band structure,density of states(DOS),and crystal COOP of(a)cap,(b)edge,and(c)C&E Mo5S4 nanowires.Positive value of COOP represents bonding states and negative anti-bonding states.

    When looking into both the electronic density of states(DOS)in Fig.4(b)and the COOP in Fig.4(c),one can see quickly the spikes of DOS and COOP occurring at the same energy level,especially the red solid lines in COOP,which arise from the bonding states between neighboring Mo-4d orbitals.Compared to the green dashed line due to Mo–S bonding in COOP,the backbone of Mo octahedra plays an obviously essential role in determining the band structure. It is very interesting to make a compare of COOP between the different phases in Figs.4(a)–4(c).In Fig.4(a),the anti-bonding state due to both Mo–Mo(red)and Mo–S(green)is filled in the cap structure,indicating the electronic instability of such a structure.Depopulation of the anti-bonding state,for example by hole doping[37]or liquid ion gating,[38,39]will stabilize the structure.This explains why the cap structures of Ti5Te4and Nb5Te4[18–20]are stable,simply because Ti[3d24s2]and Nb[4d45s1]both have less valence electrons than Mo[4d55s1]atoms,resembling a hole doping effect.From the cap to the edge structure,sulfur changes the way of decoration and Mo backbone expands,the anti-bonding state disappears in the edge structure in Fig.4(b).In Fig.4(c),coexist of both cap and edge decorations of sulfur shifts the anti-bonding state due to Mo–Mo above the Fermi level,stabilizing the C&E structure.

    It is worth noting that,different from the zone-folding feature of bands in Figs.4(a)and 4(b),a novel band nesting(parallel bands or large joint density of states)feature shows up in the C&E band structure in Fig.4(c).One expects that if an infrared light is incident with energy matching the direct band gap at Γ point,light-induced electronic vertical excitation will happen in the whole Brillouin zone.More importantly,electron and hole will move in opposite directions,leading to optimal charge separation for optoelectronic devices,for example,an optical sensor working in the infrared spectral range.

    6.Conclusion

    In summary,we present a theoretical investigation on the stability and electronic properties of new types of transition metal chalcogenides Mo5S4nanowires. The stability of the predicted new structural phases(cap,edge,and C&E)are explored by the binding energy,phonon dispersion relation,and crystal orbital overlapping population analysis. The experimentally obtained edge structure is confirmed to be thermodynamically and dynamically stable.Moreover,a new and stable C&E structure having mixed cap and edge units and more stable than the edge structure is found dynamically stable.COOP analysis also substantiates the structural stability of both edge and C&E phases based on the maximally optimized bonding states.The calculated energy barrier of Peierls phase transition from the edge to C&E is about 0.9 eV per unit cell,indicating a likability to achieve the C&E phase from the experimentally available phase. All the Mo5S4phases are semiconducting with indirect band gap.Band nesting appearing in band gap region of the C&E structure makes it well fit for optoelectronic sensor applications in the infrared spectrum.

    Appendix A: Atomic structures for MoxSy nanowires

    Fig.A1. The atomic structures for MoxSy nanowires mentioned in Fig.2(b).The most stable structures for fixed stoichiometries are highlighted in red boxes.

    午夜福利在线观看吧| av天堂久久9| bbb黄色大片| 18在线观看网站| 男女下面插进去视频免费观看| 性色av乱码一区二区三区2| 一本一本久久a久久精品综合妖精| 新久久久久国产一级毛片| 欧美 日韩 精品 国产| 在线观看www视频免费| 亚洲精品成人av观看孕妇| 欧美日韩瑟瑟在线播放| 色播在线永久视频| 欧美最黄视频在线播放免费 | 久久精品成人免费网站| 母亲3免费完整高清在线观看| 亚洲av熟女| 久久中文字幕人妻熟女| 极品教师在线免费播放| 精品免费久久久久久久清纯 | 亚洲欧美日韩高清在线视频| 免费av中文字幕在线| 欧美另类亚洲清纯唯美| 亚洲综合色网址| 国产成人欧美在线观看 | 亚洲国产精品sss在线观看 | 欧美人与性动交α欧美软件| 丝袜美足系列| 久久 成人 亚洲| 久久国产精品人妻蜜桃| 欧美国产精品一级二级三级| 黑人猛操日本美女一级片| 免费av中文字幕在线| 我的亚洲天堂| 亚洲欧美一区二区三区久久| 亚洲专区字幕在线| 精品卡一卡二卡四卡免费| 亚洲午夜理论影院| 欧美人与性动交α欧美软件| 好看av亚洲va欧美ⅴa在| 一区二区三区国产精品乱码| 黑人操中国人逼视频| 成年人午夜在线观看视频| 757午夜福利合集在线观看| 欧美精品啪啪一区二区三区| 欧美精品啪啪一区二区三区| 777久久人妻少妇嫩草av网站| 国产乱人伦免费视频| 精品少妇一区二区三区视频日本电影| 一边摸一边做爽爽视频免费| 国产亚洲av高清不卡| 欧美日韩黄片免| 纯流量卡能插随身wifi吗| 伊人久久大香线蕉亚洲五| 美女国产高潮福利片在线看| 91在线观看av| 国产成人欧美在线观看 | 日韩成人在线观看一区二区三区| 亚洲第一av免费看| 久久精品国产亚洲av香蕉五月 | 9色porny在线观看| 看免费av毛片| 亚洲欧美一区二区三区久久| 757午夜福利合集在线观看| av免费在线观看网站| 动漫黄色视频在线观看| 欧美亚洲日本最大视频资源| 亚洲 国产 在线| 99久久人妻综合| 国产一区在线观看成人免费| 日韩精品免费视频一区二区三区| 国产高清激情床上av| 精品视频人人做人人爽| 欧美老熟妇乱子伦牲交| 日韩欧美三级三区| 免费在线观看完整版高清| 欧美日韩中文字幕国产精品一区二区三区 | 国产欧美日韩一区二区三区在线| 一区二区三区激情视频| 亚洲成人免费电影在线观看| 亚洲精品成人av观看孕妇| 久久人人97超碰香蕉20202| 欧美在线黄色| 香蕉久久夜色| 曰老女人黄片| 757午夜福利合集在线观看| 欧美不卡视频在线免费观看 | a在线观看视频网站| 中文欧美无线码| 午夜老司机福利片| 校园春色视频在线观看| 午夜成年电影在线免费观看| 看免费av毛片| 免费日韩欧美在线观看| 国产精品98久久久久久宅男小说| 女性被躁到高潮视频| 亚洲五月色婷婷综合| 国产精品久久久久久精品古装| 18禁观看日本| 国产真人三级小视频在线观看| 精品国产美女av久久久久小说| 一本一本久久a久久精品综合妖精| 久久久水蜜桃国产精品网| 成人免费观看视频高清| 天堂√8在线中文| 90打野战视频偷拍视频| 人成视频在线观看免费观看| 制服诱惑二区| 精品欧美一区二区三区在线| 久久国产精品人妻蜜桃| 美国免费a级毛片| 麻豆乱淫一区二区| 涩涩av久久男人的天堂| 国产真人三级小视频在线观看| 热99久久久久精品小说推荐| 天天添夜夜摸| 久久亚洲真实| 久久久国产成人免费| 亚洲人成伊人成综合网2020| 一级片'在线观看视频| 国产aⅴ精品一区二区三区波| 免费观看精品视频网站| 韩国av一区二区三区四区| 麻豆乱淫一区二区| 精品久久久久久,| 亚洲熟妇中文字幕五十中出 | 国产男女超爽视频在线观看| 久久99一区二区三区| 视频在线观看一区二区三区| 精品国产一区二区久久| 黄色丝袜av网址大全| 一区二区三区国产精品乱码| 一边摸一边做爽爽视频免费| 精品人妻1区二区| 日本欧美视频一区| 久久天堂一区二区三区四区| 国产男女超爽视频在线观看| 欧美精品人与动牲交sv欧美| 18禁黄网站禁片午夜丰满| av网站在线播放免费| 人妻丰满熟妇av一区二区三区 | 精品国产超薄肉色丝袜足j| 国产亚洲精品第一综合不卡| 天天影视国产精品| 1024香蕉在线观看| 国产男女超爽视频在线观看| 超色免费av| 亚洲精品乱久久久久久| 高潮久久久久久久久久久不卡| 久久精品亚洲精品国产色婷小说| 国产亚洲精品久久久久久毛片 | 国产黄色免费在线视频| 日本一区二区免费在线视频| av网站在线播放免费| 中文字幕高清在线视频| 97人妻天天添夜夜摸| av天堂在线播放| 天堂动漫精品| 国产黄色免费在线视频| 国产成人欧美在线观看 | 热99久久久久精品小说推荐| 欧美日韩乱码在线| 两性夫妻黄色片| 亚洲综合色网址| 亚洲欧美一区二区三区久久| 超碰97精品在线观看| 成年动漫av网址| 99精国产麻豆久久婷婷| 桃红色精品国产亚洲av| 久久精品国产99精品国产亚洲性色 | 窝窝影院91人妻| av免费在线观看网站| 天堂俺去俺来也www色官网| 精品电影一区二区在线| 亚洲视频免费观看视频| 大陆偷拍与自拍| 国产精华一区二区三区| 91麻豆av在线| 人妻丰满熟妇av一区二区三区 | 国产av一区二区精品久久| 亚洲人成77777在线视频| 91国产中文字幕| 老司机午夜福利在线观看视频| 国产精品欧美亚洲77777| 老司机亚洲免费影院| 国产在线一区二区三区精| 欧美最黄视频在线播放免费 | 黑人猛操日本美女一级片| 亚洲欧美激情在线| 99re6热这里在线精品视频| 国产黄色免费在线视频| 黄色a级毛片大全视频| 日本黄色视频三级网站网址 | 久久 成人 亚洲| 老熟女久久久| 黄色视频,在线免费观看| 中文字幕色久视频| 亚洲欧美日韩另类电影网站| 天天影视国产精品| 最近最新免费中文字幕在线| 久久热在线av| 精品一区二区三区视频在线观看免费 | 欧美一级毛片孕妇| 窝窝影院91人妻| 亚洲中文字幕日韩| 午夜免费成人在线视频| 十八禁网站免费在线| а√天堂www在线а√下载 | 亚洲熟女毛片儿| 国产精品国产av在线观看| 精品国产乱码久久久久久男人| 成人黄色视频免费在线看| 亚洲精品国产一区二区精华液| 天天躁日日躁夜夜躁夜夜| 欧美日韩黄片免| 他把我摸到了高潮在线观看| 亚洲av日韩在线播放| 两人在一起打扑克的视频| 午夜91福利影院| 伊人久久大香线蕉亚洲五| 成年人免费黄色播放视频| 亚洲九九香蕉| 欧美日韩一级在线毛片| 丰满迷人的少妇在线观看| 97人妻天天添夜夜摸| 国产xxxxx性猛交| 91av网站免费观看| 在线观看免费午夜福利视频| 可以免费在线观看a视频的电影网站| 脱女人内裤的视频| 免费在线观看影片大全网站| 巨乳人妻的诱惑在线观看| 成人免费观看视频高清| 欧美日韩视频精品一区| 两个人看的免费小视频| 国产精品99久久99久久久不卡| 欧美日韩亚洲高清精品| 久久天堂一区二区三区四区| 中亚洲国语对白在线视频| av网站在线播放免费| 精品高清国产在线一区| 妹子高潮喷水视频| 深夜精品福利| 亚洲熟女精品中文字幕| 久久人人爽av亚洲精品天堂| 色老头精品视频在线观看| 男人舔女人的私密视频| 1024香蕉在线观看| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 色老头精品视频在线观看| 亚洲片人在线观看| 黑丝袜美女国产一区| 最新的欧美精品一区二区| 久久久久精品国产欧美久久久| 老司机在亚洲福利影院| 啦啦啦免费观看视频1| 亚洲九九香蕉| 久久久久久亚洲精品国产蜜桃av| 国产精品电影一区二区三区 | 久久中文字幕一级| 亚洲欧美激情综合另类| 久久 成人 亚洲| 精品国产超薄肉色丝袜足j| 欧美老熟妇乱子伦牲交| 在线观看免费日韩欧美大片| svipshipincom国产片| 女人爽到高潮嗷嗷叫在线视频| 老汉色∧v一级毛片| 91精品三级在线观看| 视频在线观看一区二区三区| 午夜成年电影在线免费观看| 9热在线视频观看99| 成年动漫av网址| 18在线观看网站| 最新美女视频免费是黄的| 757午夜福利合集在线观看| 亚洲 国产 在线| 亚洲精品国产精品久久久不卡| 欧美乱妇无乱码| 91老司机精品| 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月 | 美女国产高潮福利片在线看| 精品视频人人做人人爽| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 国产精品免费视频内射| 两个人免费观看高清视频| 久久久久久久精品吃奶| 午夜成年电影在线免费观看| 久久久久国产精品人妻aⅴ院 | 日本一区二区免费在线视频| 怎么达到女性高潮| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 日本一区二区免费在线视频| 黄色毛片三级朝国网站| 午夜视频精品福利| 久久国产精品大桥未久av| 美女 人体艺术 gogo| 国产精品电影一区二区三区 | 别揉我奶头~嗯~啊~动态视频| 在线观看免费高清a一片| 免费看a级黄色片| 亚洲中文av在线| 国产麻豆69| 一级黄色大片毛片| 天堂动漫精品| 午夜精品久久久久久毛片777| 啦啦啦视频在线资源免费观看| 日本五十路高清| 久久中文字幕一级| 成人三级做爰电影| 亚洲午夜精品一区,二区,三区| 午夜福利一区二区在线看| 国产精品久久视频播放| 亚洲情色 制服丝袜| 一进一出抽搐gif免费好疼 | 露出奶头的视频| 精品久久久久久电影网| 国产精品乱码一区二三区的特点 | 中文字幕最新亚洲高清| 亚洲精品成人av观看孕妇| 黄色视频不卡| 成人黄色视频免费在线看| 9191精品国产免费久久| 久久国产乱子伦精品免费另类| 国产精品久久久久久人妻精品电影| 欧美大码av| 大型黄色视频在线免费观看| 老司机影院毛片| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 欧美日本中文国产一区发布| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 国产不卡一卡二| 69av精品久久久久久| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩乱码在线| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| 国产精品免费一区二区三区在线 | 国产精品一区二区在线不卡| 欧美亚洲日本最大视频资源| 露出奶头的视频| 欧美中文综合在线视频| 成人特级黄色片久久久久久久| 亚洲av日韩精品久久久久久密| 久久这里只有精品19| 老司机亚洲免费影院| 亚洲精品一二三| 三级毛片av免费| 老司机亚洲免费影院| 亚洲第一青青草原| 国产精品美女特级片免费视频播放器 | 欧美国产精品一级二级三级| 欧美日韩精品网址| 国产精品二区激情视频| 日韩一卡2卡3卡4卡2021年| av电影中文网址| 另类亚洲欧美激情| 午夜老司机福利片| 又黄又爽又免费观看的视频| 午夜福利一区二区在线看| 一区在线观看完整版| 欧美乱码精品一区二区三区| 亚洲 国产 在线| 黄频高清免费视频| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 丝袜美腿诱惑在线| 午夜成年电影在线免费观看| 亚洲专区中文字幕在线| 叶爱在线成人免费视频播放| 亚洲欧洲精品一区二区精品久久久| 男人舔女人的私密视频| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久| 国产精品综合久久久久久久免费 | 国内久久婷婷六月综合欲色啪| 国产亚洲一区二区精品| 黑丝袜美女国产一区| 欧美一级毛片孕妇| 成人特级黄色片久久久久久久| 女性生殖器流出的白浆| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人的私密视频| 中亚洲国语对白在线视频| 亚洲午夜理论影院| 一区二区日韩欧美中文字幕| 美女 人体艺术 gogo| 国产亚洲精品久久久久久毛片 | 啦啦啦视频在线资源免费观看| 精品一品国产午夜福利视频| 国产精品久久久久久人妻精品电影| 久久热在线av| 丁香欧美五月| 制服诱惑二区| 啦啦啦视频在线资源免费观看| 色在线成人网| 国产精品偷伦视频观看了| 欧美另类亚洲清纯唯美| 水蜜桃什么品种好| 亚洲精品美女久久av网站| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区mp4| 捣出白浆h1v1| 国产单亲对白刺激| 12—13女人毛片做爰片一| 一级片免费观看大全| 丝袜美足系列| 国产欧美日韩一区二区三| 超色免费av| 色婷婷久久久亚洲欧美| 美女高潮到喷水免费观看| 嫁个100分男人电影在线观看| 在线观看舔阴道视频| 天堂√8在线中文| 大片电影免费在线观看免费| 老熟妇仑乱视频hdxx| 一级片免费观看大全| 男男h啪啪无遮挡| 99国产精品免费福利视频| 首页视频小说图片口味搜索| 色老头精品视频在线观看| 大陆偷拍与自拍| 欧美精品av麻豆av| 日韩欧美国产一区二区入口| cao死你这个sao货| 女人爽到高潮嗷嗷叫在线视频| 黄色女人牲交| 日本撒尿小便嘘嘘汇集6| 建设人人有责人人尽责人人享有的| 美女高潮到喷水免费观看| 国产男女超爽视频在线观看| 男女高潮啪啪啪动态图| 村上凉子中文字幕在线| 91国产中文字幕| 亚洲午夜精品一区,二区,三区| 国产成人精品在线电影| 91老司机精品| 国产精品国产av在线观看| 免费不卡黄色视频| 不卡一级毛片| 老鸭窝网址在线观看| 精品国产国语对白av| 99re6热这里在线精品视频| 91大片在线观看| 日韩欧美一区二区三区在线观看 | 色综合婷婷激情| 99热只有精品国产| 婷婷丁香在线五月| 女人高潮潮喷娇喘18禁视频| 国产熟女午夜一区二区三区| 国产亚洲精品久久久久久毛片 | 成年人午夜在线观看视频| 免费高清在线观看日韩| 成人18禁在线播放| tube8黄色片| 性少妇av在线| 飞空精品影院首页| 亚洲人成电影观看| 岛国在线观看网站| 国产男女超爽视频在线观看| 精品国内亚洲2022精品成人 | 免费人成视频x8x8入口观看| 在线观看免费高清a一片| 国产91精品成人一区二区三区| 成年女人毛片免费观看观看9 | 99精国产麻豆久久婷婷| 国产成人免费无遮挡视频| 日本精品一区二区三区蜜桃| 欧美一级毛片孕妇| 亚洲少妇的诱惑av| bbb黄色大片| 黄色 视频免费看| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 日韩熟女老妇一区二区性免费视频| 国产成人av激情在线播放| 国产精品久久久人人做人人爽| 91麻豆av在线| 精品久久久久久,| 99热国产这里只有精品6| 国产亚洲av高清不卡| 久久人妻福利社区极品人妻图片| 啦啦啦视频在线资源免费观看| 日韩欧美三级三区| 国产高清国产精品国产三级| 国产又色又爽无遮挡免费看| 亚洲精品乱久久久久久| 日韩成人在线观看一区二区三区| 性少妇av在线| 日韩欧美国产一区二区入口| 在线观看免费午夜福利视频| 久久久精品区二区三区| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 精品一区二区三卡| 色婷婷av一区二区三区视频| 99久久人妻综合| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 免费看十八禁软件| 一二三四在线观看免费中文在| 69av精品久久久久久| www日本在线高清视频| 国内毛片毛片毛片毛片毛片| 久久国产亚洲av麻豆专区| 99精品欧美一区二区三区四区| 欧美一级毛片孕妇| 欧美av亚洲av综合av国产av| 久久久久久亚洲精品国产蜜桃av| 成人国产一区最新在线观看| 女警被强在线播放| 亚洲专区中文字幕在线| 国产极品粉嫩免费观看在线| 婷婷成人精品国产| 中文欧美无线码| 在线观看www视频免费| 成人手机av| 亚洲成人免费电影在线观看| 在线看a的网站| 丁香六月欧美| 美女午夜性视频免费| 国产精品 国内视频| 婷婷丁香在线五月| 真人做人爱边吃奶动态| 久久婷婷成人综合色麻豆| 亚洲国产精品sss在线观看 | 18禁黄网站禁片午夜丰满| 精品少妇一区二区三区视频日本电影| 亚洲精华国产精华精| 国产精品久久久久成人av| 欧美日韩乱码在线| 午夜91福利影院| 精品国产乱码久久久久久男人| 9191精品国产免费久久| 国产精品.久久久| 中文字幕av电影在线播放| 一本一本久久a久久精品综合妖精| 久久影院123| 丰满的人妻完整版| av天堂久久9| 国产精品免费一区二区三区在线 | 亚洲国产欧美网| 精品国产一区二区三区久久久樱花| 色综合婷婷激情| 天天添夜夜摸| 国产成+人综合+亚洲专区| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| а√天堂www在线а√下载 | 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 欧美激情高清一区二区三区| 无限看片的www在线观看| 51午夜福利影视在线观看| 久久精品亚洲熟妇少妇任你| 亚洲国产精品一区二区三区在线| netflix在线观看网站| 女人久久www免费人成看片| 久久精品国产综合久久久| 在线看a的网站| 九色亚洲精品在线播放| 丝袜人妻中文字幕| 黄色成人免费大全| 午夜福利在线观看吧| 日本黄色视频三级网站网址 | 丰满饥渴人妻一区二区三| 99riav亚洲国产免费| 国产精品久久久久久精品古装| 99精品久久久久人妻精品| 日韩免费av在线播放| 日本vs欧美在线观看视频| videos熟女内射| 高清av免费在线| 在线永久观看黄色视频| 亚洲情色 制服丝袜| 久久香蕉国产精品| 天天躁日日躁夜夜躁夜夜| 99国产精品一区二区蜜桃av | 这个男人来自地球电影免费观看| 欧美丝袜亚洲另类 | 手机成人av网站| 国产亚洲精品久久久久5区| 手机成人av网站| 十八禁人妻一区二区| 身体一侧抽搐| 18禁黄网站禁片午夜丰满| 国产野战对白在线观看| 久久久国产一区二区| 丁香欧美五月| 多毛熟女@视频| 亚洲久久久国产精品| 一区二区三区国产精品乱码| 精品国产乱码久久久久久男人| 欧美日韩av久久| 国产黄色免费在线视频| 一进一出抽搐gif免费好疼 | 久久久久视频综合| 久久精品熟女亚洲av麻豆精品| 最新美女视频免费是黄的| 国产精品九九99| 王馨瑶露胸无遮挡在线观看| 狠狠狠狠99中文字幕| 国产视频一区二区在线看| av福利片在线| 国产野战对白在线观看| 久久草成人影院|