• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lump-type solutions of a generalized Kadomtsev–Petviashvili equation in(3+1)-dimensions?

    2019-11-06 00:42:56XuePingCheng程雪蘋WenXiuMa馬文秀andYunQingYang楊云青
    Chinese Physics B 2019年10期

    Xue-Ping Cheng(程雪蘋), Wen-Xiu Ma(馬文秀), and Yun-Qing Yang(楊云青)

    1Physics,Mathematics,and Information College of Zhejiang Ocean University,Zhoushan 316004,China

    2Key Laboratory of Oceanographic Big Data Mining&Application of Zhejiang Province,Zhoushan 316022,China

    3Department of Mathematics and Statistics,University of South Florida,Tampa,FL 33620-5700,USA

    4Department of Mathematics,King Abdulaziz University,Jeddah,Saudi Arabia

    5College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    6International Institute for Symmetry Analysis and Mathematical Modelling,Department of Mathematical Sciences,North-West University,Mafikeng Campus,Private Bag X2046,Mmabatho 2735,South Africa

    Keywords:lump-type solution,generalized(3+1)-dimensional Kadomtsev–Petviashvili equation,Hirota bilinear form,symbolic computation

    1.Introduction

    The physical phenomena and processes that occur in nature generally have complicated nonlinear features.Nonlinear evolution equations,arising as the significant models for investigating the natural phenomena of science and engineering,appear in an extensive diversity of applications in solitary wave theory,hydrodynamics,meteorology,optical fibers,quantum mechanics,ocean engineering,plasma physics,condensed matter physics,and so on.Therefore searching for exact solutions of nonlinear evolution equations plays an important role in the analysis of these physical phenomena and engineering applications and has gradually become one of the most significant topic for both physicists and mathematicians.Up to now,a variety of exact nonlinear wave solutions for nonlinear evolution equations have been well constructed,including solitary waves,cnoidal waves,rogue waves,period waves,lump solutions,shock waves,compactons,peakon propeller solitons,as well as kinds of interaction waves.Among all these solutions,lump solutions have attracted a growing amount of attention in soliton theory in recent years,based on both theoretical predictions and experimental observations.[1–3]Lump solutions are a kind of analytical rational function solutions,localized in all directions in space. They can be used to describe nonlinear patterns on the surface of shallow water with dominating surface tension,[4,5]in plasma,[6]in nonlinear optic media,[7,8]in the Bose–Einstein condensation,[9,10]in thin elastic plates,[11]etc. From nice properties of lump solutions one can understand the shapes,amplitudes,velocities of solitons after the collision with other solitons.Till now,many researchers have studied lump solutions of different nonlinear equations.For instance,Gilson and Nimmo[12]presented lump solutions of the B-type KP(BKP)equation. Imai[13]found dromion and lump solutions of the Ishimori-I equation.Satsuma and Ablowitz[14]originated lump solutions in the two-dimensional(2D)nonlinear dispersive systems,Kaup[15]constructed the lump solutions for the three-dimensional(3D)three-wave resonant interaction.More recently,making full use of the symbolic computation software Maple,one of the authors(Ma)and his collaborators have offered plentiful of lump and lumptype solutions to various(2+1)-dimensional[(2+1)-D]and(3+1)-dimensional[(3+1)-D]nonlinear and linear equations,such as the KP equation,[16,17]the BKP equation,[18,19]the KP equation with a self-consistent source,[20]the(2+1)-D Ito equation,[21,22]the Hirota–Satsuma–Ito equation,[23]the generalized Bogoyavlensky–Konopelchenko equation,[24]the(2+1)-D extended KP equation,[25]the generalized Calogero–Bogoyavlenskii–Schiff equation,[26]the(3+1)-D Jimbo–Miwa equation,[27]the(3+1)-D linear PDEs,[28]the(3+1)-D nonlinear evolution equation,[29]and so on.

    In this paper,we shall focus on a generalized(3+1)-D KP equation in the following form

    including all linear second-order derivative terms,where αi(i=1,...,10)are arbitrary constants.As the extended version of the KP equation,the generalized(3+1)-D KP equation(1)with αi(i=1,...,10)being random constants covers many specific equations(see the following paragraphs). In order to boost the possible applications of these equations in ocean studies and other fields,it is necessary to find analytical form of the lump-type waves for Eq.(1).As soon as the solution of the generalized(3+1)-D KP equation is given,the lump-type solution for all these specific equations can be acquired just by selecting different coefficients.

    When α2=?3,α5=2,and the other αiare zeros,equation(1)becomes the(3+1)-D Jimbo–Miwa(JM)equation

    This equation was first introduced by Jimbo and Miwa in 1983.[30]It is the second member in the entire KP hierarchy,[31]which is used to describe certain interesting(3+1)-D waves in physics. The JM equation(2)has investigated regarding its solutions,non-integrability,and symmetries.The Painlevé method,the tanh-coth method,the simplified Hirota’s method,the extended homoclinic test approach,a transformed rational function method,and other methods were applied to obtain solitons,periodic,complexiton,lump-type solution,and travelling wave solutions to Eq.(2).[27,32–34]

    While α3=α5=?α10=1,we have the generalized KP equation

    Numerous studies have been conducted on extracting exact solutions and related properties to Eq.(3). For example,in Ref.[35],based on the Plücker relation and the Jacobi identity for determinants,Wronskian and Grammian formulations are established. Applying the proposed bilinear B?cklund transformation,Ma and his collaborators have computed two classes of exponential and rational travelling wave solutions with arbitrary wave numbers.[36]Moreover, quasiperiodic waves,solitary waves,asymptotic properties,and rogue waves with interaction phenomena of Eq.(3)have been discussed in Ref.[37].

    When α3=α5=α6=?α7=?α10=1,equation(1)reduces to the(3+1)-D BKP equation

    which can be applied to describe the propagation of nonlinear waves in fluid dynamics.One-,two-,and multiple-soliton solutions for Eq.(4)have been discussed by Wazwaz.[38]Conservation laws for Eq.(4)have been constructed,along with some exact solutions.[39]Bilinear-form and Bell-polynomialform B?cklund transformations for Eq.(4)have been presented,along with some soliton solutions as well.[40]On the basis of the bilinear equation of the(3+1)-D BKP equation,Zhao and Han[41]constructed its lump-type solutions by symbolic computation.

    In Ref.[42],Ma applied the multiple exp-function algorithm to construct multiple wave solutions to the(3+1)-D generalized BKP equation

    where the constants are chosen as α2=α5=?1.The resulting solutions involve generic phase shifts and wave frequencies.

    Letting α3=α5=α6=?α7=?α8=?α10=1,we have the(3+1)-D generalized BKP equation

    Wazwaz has established the one and two soliton solutions for equation(6)by using the simplified Hereman–Nuseir form.[38]

    By taking α3=α5=α9=?α10=1,equation(1)turns into the(3+1)-D generalized KP–Boussinesq equation[43,44]

    Kaur and Wazwaz[45]have explored lump solutions for Eq.(7)by reducing its(3+1)-D version into a(2+1)-D one,and they analyzed the sufficient and necessary conditions for assuring analyticity,positivity,and rational localization of the solutions at the same time.

    If the coefficients are taken as α5=?1,α7=α10=?3,equation(1)becomes the generalized BKP equation

    which is just the model investigated by Wazwaz et al.in Ref.[46],where the authors derived the multiple soliton solutions by the simplified Hirota’s direct method. Later,by making use of the same method,Wazwaz has also studied the multiple soliton solution for the generalized(3+1)-D KP equation[47]

    In what follows,we begin with the Hirota bilinear form of the generalized(3+1)-D KP equation and make some assumptions by the superposition of quadratic functions to solve Eq.(1)in three cases of the coefficients in Section 2.To show the generality of the calculated lump-type solutions specifically,two representative ones are demonstrated in both analytical and graphical ways in Section 3.A summary and some discussions are given in the last section.

    2.Abundant lump-type solutions

    Generally,under the first-order logarithmic transformation

    the generalized(3+1)-D KP equation(1)can be mapped into the Hirota bilinear form

    In fact,the actual relation between Eq.(1)and the bilinear equation(13)reads

    and thus,if f solves the bilinear equation(13),then u=2(ln f)xwill present a solution of the generalized(3+1)-D KP equation(1).

    The Hirota bilinear method allows us to establish Nsoliton solutions,[48]dromion-type solutions,[31,49]rational function solutions,[50,51]and so on,while in the present section,we would like to present lump-type solutions to the generalized(3+1)-D KP equation(1)based on its bilinear form(13).To search for lump-type solutions to the generalized(3+1)-D KP equation,we consider a trial solution for f in Eq.(13)as

    with the wave variables

    where all the parameters ai(i=1,...,16)are real constants to be determined.

    Based on some inspections,we shall study the following three cases of solutions for the parameters αi:(i)α8=α9=0;(ii)α9=α10=0;(iii)α8=α10=0.In each case of solutions in the following list,the parameters not expressed in the set are arbitrary.Moreover,to simplify the mathematical expressions for solutions,we introduce some new constants as follows:

    Case 1We first set α8=α9=0 for the generalized(3+1)-D bilinear equation(13). A direct substitution of the solution(16)with Eq.(17)into the bilinear equation(13)and a straightforward computation yield the following set of constraining equations on the parameters ai:

    where

    For simplifying the tedious expression of a16in Eq.(19),we did not write out the elaborate formulas for parameters a2,a4,a7,and a12in Eqs.(21)and(25)with ηi(i=1,...,10)shown in Eq.(18),which can be found from Eq.(19)with Eqs.(20)and(22)–(24).For f to be well-defined and positive,the involved parameters need to satisfy

    Case 2We secondly consider the case α9=α10=0 for the generalized nonlinear equation(1).A similar direct computation generates the second solution set of the parameters:

    where

    The parameters a3,a8,a13,and a14arising in Eqs.(29)and(33)with Eq.(18)are given by Eq.(27)with Eqs.(28)and(30)–(32).Similarly,the involved parameters need to satisfy the conditions

    to ensure that f is well-defined and positive.

    Case 3Thirdly,we make α8=α10=0 for the generalized nonlinear equation(1).Using symbolic computation after a direct substitution of Eq.(16)with Eq.(17)into the bilinear equation(13)gains the following set of constraining equations on the parameters:

    where

    Here the parameters a2,a3,a7,and a12emerging in Eqs.(37)and(41)with Eq.(18)are all given by Eq.(35)with Eqs.(36)and(38)–(40).For f to be well-defined and positive,the involved parameters are required to satisfy the conditions

    The above three sets of solutions for the parameters produce three quadratic function solutions to the bilinear generalized(3+1)-D KP equation(13)in three different cases:α8=α9=0,α9=α10=0,and α8=α10=0,respectively.Further,under the first-order logarithmic transformation(12),the resulting quadratic function solutions present three lumptype solutions u to the generalized(3+1)-D KP equation(1).In all three cases,the solutions contain eleven free constants ai,but always satisfy the determinant equation

    Due to this character of the resulting parameters,it is obvious that all the above three solutions to the generalized(3+1)-D KP equation(1)are just lump-type solutions but not lump solutions.

    3.Dynamics of two specific examples

    In the current section,to show dynamic behaviors of the lump-type solutions more specifically,we would like to exhibit two special examples of the considered generalized(3+1)-D nonlinear equation(1),based on the lump-type solutions obtained above.

    3.1.Example 1:Lump-type solutions to the BKP equation

    Particularly,let us firstly focus on the BKP equation(4).For α8=α9=0 in Eq.(4),we may take into account its lumptype solution within the framework of Case 1.In fact,based on the free constants that not be constrained by Eq.(19),many different profiles of lump-type solutions can be designed.Just to avoid the tedious formula,we consider to fix these arbitrary constants at first. Associated with the eleven arbitrary wave parameters being selected as

    the corresponding function f takes the form then a direct calculation from Eq.(12)tells us that the lumptype solution to the BKP equation can be expressed as

    Under the parameters(44),b1=a8a11?a6a13=?20,the denominator of a2(or a7or a12)in Eq.(19)T1=90 and a16=2780/17>0,which guarantee the positivity of quadratic solution f and the analyticity of lump-type solution u. The graphical representation of the lump-type solution u of the BKP equation,shown by Eq.(46),is portrayed to illustrate the energy distribution of this solution in Fig.1,which includes contour plot,3D plot,and 2D curve.

    As usual,we define the position of the maximum value and minimum value as the the peak and the trough of the lump-type wave.In the present case,according to solution(46),the peak and the trough are respectively located at

    which reveals that the x values of both the peak and the trough of the lump-type wave change in proportion to z and time t,while the y value keeps invariant with time.The inserting of the coordinate values of the peak and the trough of the lump-type wave(47)and(48)into solution(46)resultsandThe result shows that both the peak value and the trough value are fixed constants,but not vary with t and z.As soon as z and t are given,the positions of the peak and the trough of the lump-type wave will be determined.If we select the mentioned values of free parameters as Eq.(44)and z=0,y=?45/391,and t={0,10,20},respectively,the peaks of the lump-type wave are respectively located at(3.85,?0.12),(?1.15,?0.12),and(?6.15,?0.12),while the trough are located at(?4.67,?0.12),(?9.67,?0.12),and(?14.67,?0.12),which have been depicted in Fig.1(c).

    Fig.1.Lump-type profiles of Eq.(46):(a)contour plot with z=t=0;(b)3D plot with z=t=0;(c)the wave along with x axis with z=0,y=?45/391,and t={0,10,20},respectively.

    3.2.Example 2:Lump-type solutions to the JM equation

    By setting α2=?3,α5=2,and the other αiin Eq.(1)to be zeros,we have another specific example of the generalized(3+1)-D KP equation(2),i.e.,the JM equation.In the case α9=α10=0,associated with the parameters being taken as

    the corresponding lump-type solution to the(3+1)-D JM equation can be written as

    Figures 2(a)and 2(b)depict the contour plot and the 3D plot of the lump-type solution(50)of the JM equation,where the arbitrary constants are selected as Eq.(49)and z=t=0.Note that,under the circumstances,b4=a1a7?a2a6=?30,the denominator of a3(or a8or a13)in Eq.(27)T2=270,and a16=405/22>0 guarantee the quadratic solution f to be a positive solution and then the lump-type solution u to be analytical.

    Continuing to choose the free constants as Eq.(49),we can compute from Eq.(50)that the peak and the trough are respectively located at

    Different from the above results of BKP equation,both the x coordinate and y coordinate of the peak and the trough of the JM lump-type wave depend on z and t.After substituting the coordinate values(51)and(52)of the peak and trough into solution(50),we have

    which tells us that the peak value and the trough value of the lump-type wave do not remain unchanged as that of the BKP lumptype wave,but vary with the changes of z and t.When we select the mentioned values of free parameters as Eq.(49)and z=0 and t={0,10,20},respectively,the peaks of the lump-type wave are respectively located at(?0.18,0.28),(?18.40,3.11),and(?35.95,5.93),while the trough are located at(?3.67,0.28),(?23.92,3.11),and(?44.85,5.93),and the maximum values and the minimum values of the lump-type solutions are(upeak,utrough)=({1.15,0.72,0.45},{?1.15,?0.72,?0.45}),respectively,which have all been displayed in Fig.2(c).

    Fig.2.Plots of the lump-type solution(50)of the Jimbo–Miwa equation(2):(a)the contour plot with z=t=0,(b)the corresponding 3D plot with z=t=0,(c)the wave along with x axis with z=0,t={0,10,20},and y={0.28,3.11,5.93},respectively.

    4.Summary and discussion

    In this paper,on the basis of the Hirota bilinear formulation,we have investigated positive quadratic function solutions to a bilinear generalized(3+1)-D KP equation in three different cases. The resulting solutions offer us abundant new exact solutions to the corresponding nonlinear equation as well as some restriction conditions to ensure that the involved quadratic functions are well-defined and positive. More specifically,by considering two concrete nonlinear equations,the JM equation(2)and the BKP equation(4),we have illustrated the dynamical evolutions of the obtained lump-type solutions through their contour plots,3D plots and 2D plots with some certain choices of the included free parameters.Moreover,we have calculated the peaks and troughs of the acquired lump-type solutions as shown in Figs.1(c)and 2(c).It is worth stating that the implemented procedure can be applied to much higher dimensional nonlinear equations.It should also be interesting to consider interactions between lumps and solitons.[21,52]The details on the method for other nonlinear systems,other types of interaction wave solutions,and other possible physical applications,will be reported in our future research work.

    9热在线视频观看99| 免费在线观看完整版高清| 免费少妇av软件| 丰满饥渴人妻一区二区三| 精品国产亚洲在线| 久久久久国产精品人妻aⅴ院 | 一进一出好大好爽视频| 日本黄色日本黄色录像| av视频免费观看在线观看| 他把我摸到了高潮在线观看| 久久久国产精品麻豆| 性色av乱码一区二区三区2| а√天堂www在线а√下载 | 亚洲欧美一区二区三区久久| 无限看片的www在线观看| 丁香六月欧美| 真人做人爱边吃奶动态| 人人澡人人妻人| 成人精品一区二区免费| 咕卡用的链子| 久久国产精品影院| 新久久久久国产一级毛片| 国产一卡二卡三卡精品| 伦理电影免费视频| 精品久久蜜臀av无| 午夜精品久久久久久毛片777| a在线观看视频网站| 日韩精品免费视频一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产又爽黄色视频| 精品人妻在线不人妻| 精品人妻在线不人妻| 高清视频免费观看一区二区| 老司机影院毛片| 狠狠婷婷综合久久久久久88av| 国产伦人伦偷精品视频| 久久中文字幕一级| 久久久久久久久久久久大奶| 久久性视频一级片| 日本一区二区免费在线视频| 狂野欧美激情性xxxx| 黑人猛操日本美女一级片| 亚洲情色 制服丝袜| 看黄色毛片网站| 免费在线观看视频国产中文字幕亚洲| 亚洲美女黄片视频| 欧美精品人与动牲交sv欧美| 国产人伦9x9x在线观看| 每晚都被弄得嗷嗷叫到高潮| 老司机影院毛片| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 亚洲欧美色中文字幕在线| 精品国产一区二区三区久久久樱花| 美女 人体艺术 gogo| 久久国产亚洲av麻豆专区| 久久久久久人人人人人| 国产男女超爽视频在线观看| 精品午夜福利视频在线观看一区| 变态另类成人亚洲欧美熟女 | 一二三四在线观看免费中文在| avwww免费| 亚洲av欧美aⅴ国产| 色综合欧美亚洲国产小说| 国产精品乱码一区二三区的特点 | 一边摸一边抽搐一进一出视频| 又黄又爽又免费观看的视频| 亚洲人成电影免费在线| 日本vs欧美在线观看视频| 亚洲第一欧美日韩一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲五月天丁香| 久9热在线精品视频| 精品久久久久久电影网| 女人精品久久久久毛片| 日韩欧美在线二视频 | 另类亚洲欧美激情| 深夜精品福利| 欧美激情极品国产一区二区三区| 免费观看人在逋| 成年人黄色毛片网站| 欧美精品av麻豆av| 黑人巨大精品欧美一区二区mp4| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯 | 人人妻人人爽人人添夜夜欢视频| 99久久国产精品久久久| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av在线 | 一本综合久久免费| 久热这里只有精品99| 国产精品 国内视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情久久久久久爽电影 | 欧美av亚洲av综合av国产av| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 精品国产亚洲在线| 久久中文字幕一级| 国产高清国产精品国产三级| 精品电影一区二区在线| 久久99一区二区三区| www.精华液| 一级黄色大片毛片| 老汉色av国产亚洲站长工具| 日本vs欧美在线观看视频| 欧美人与性动交α欧美软件| 宅男免费午夜| 欧美日韩一级在线毛片| 欧美乱色亚洲激情| 亚洲成人国产一区在线观看| 精品无人区乱码1区二区| 9191精品国产免费久久| 亚洲精品久久成人aⅴ小说| 日韩欧美免费精品| 91大片在线观看| 欧美亚洲日本最大视频资源| 成在线人永久免费视频| 777米奇影视久久| 欧美精品亚洲一区二区| 大香蕉久久网| 夜夜夜夜夜久久久久| 99精品在免费线老司机午夜| 久久人人97超碰香蕉20202| 91av网站免费观看| 黄片播放在线免费| 婷婷精品国产亚洲av在线 | 丰满饥渴人妻一区二区三| 黄色视频不卡| 亚洲精品乱久久久久久| 日韩中文字幕欧美一区二区| 精品国产一区二区三区久久久樱花| 老司机福利观看| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲av一区麻豆| 欧美激情久久久久久爽电影 | av天堂在线播放| 亚洲av第一区精品v没综合| 国产激情久久老熟女| 欧美日韩av久久| 亚洲国产看品久久| 国内久久婷婷六月综合欲色啪| 久久久久精品国产欧美久久久| 热99国产精品久久久久久7| 又紧又爽又黄一区二区| 99re在线观看精品视频| 视频区欧美日本亚洲| 男女床上黄色一级片免费看| 亚洲熟妇中文字幕五十中出 | 国产深夜福利视频在线观看| 在线观看一区二区三区激情| 欧美在线黄色| 亚洲中文av在线| 亚洲精品自拍成人| 国产精品成人在线| 国产国语露脸激情在线看| 久久人妻av系列| 亚洲色图综合在线观看| 免费日韩欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美老熟妇乱子伦牲交| 大型av网站在线播放| 夜夜夜夜夜久久久久| 天堂中文最新版在线下载| 天堂√8在线中文| 90打野战视频偷拍视频| 一区二区三区精品91| 欧美中文综合在线视频| 亚洲成人手机| 亚洲精品在线美女| 国产一区在线观看成人免费| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| a级毛片在线看网站| 欧美精品一区二区免费开放| 欧美丝袜亚洲另类 | 国产欧美日韩综合在线一区二区| 色尼玛亚洲综合影院| netflix在线观看网站| 成人av一区二区三区在线看| 久久精品国产清高在天天线| 男女免费视频国产| 91麻豆av在线| 国产在视频线精品| 国产日韩欧美亚洲二区| 一二三四社区在线视频社区8| 中国美女看黄片| 成人国语在线视频| 99精品在免费线老司机午夜| 国产精品影院久久| 狠狠狠狠99中文字幕| 国产精品亚洲av一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一卡二卡三卡精品| 精品一区二区三区四区五区乱码| 激情视频va一区二区三区| 国产一区二区三区在线臀色熟女 | 在线观看www视频免费| 黑丝袜美女国产一区| 亚洲欧洲精品一区二区精品久久久| 国产高清视频在线播放一区| 亚洲九九香蕉| 日韩欧美在线二视频 | 99久久国产精品久久久| 美女福利国产在线| 精品少妇一区二区三区视频日本电影| 国产又色又爽无遮挡免费看| 国产精品一区二区在线观看99| 操出白浆在线播放| 亚洲色图综合在线观看| 欧美 日韩 精品 国产| 中文字幕人妻丝袜一区二区| 69精品国产乱码久久久| 真人做人爱边吃奶动态| 久久久久久人人人人人| 国产一区二区激情短视频| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| 不卡av一区二区三区| 亚洲全国av大片| 久久精品人人爽人人爽视色| 桃红色精品国产亚洲av| 色尼玛亚洲综合影院| 久久精品亚洲熟妇少妇任你| av天堂在线播放| 精品国产一区二区三区久久久樱花| 国产麻豆69| 精品高清国产在线一区| 日韩欧美国产一区二区入口| 岛国毛片在线播放| 国产熟女午夜一区二区三区| 免费观看精品视频网站| 少妇粗大呻吟视频| 亚洲精品美女久久久久99蜜臀| 久久性视频一级片| 日日夜夜操网爽| 一区二区三区激情视频| 深夜精品福利| 欧美亚洲 丝袜 人妻 在线| 中出人妻视频一区二区| 亚洲一区中文字幕在线| 99热只有精品国产| 两性夫妻黄色片| 精品久久久久久久久久免费视频 | 91国产中文字幕| 国内久久婷婷六月综合欲色啪| av不卡在线播放| 成人国产一区最新在线观看| 老汉色av国产亚洲站长工具| 免费看十八禁软件| 亚洲国产中文字幕在线视频| 免费日韩欧美在线观看| 又紧又爽又黄一区二区| 国产又爽黄色视频| 人妻 亚洲 视频| videosex国产| 视频在线观看一区二区三区| 亚洲综合色网址| 欧美激情久久久久久爽电影 | 91精品国产国语对白视频| 久久精品国产a三级三级三级| 天天添夜夜摸| 欧美大码av| 亚洲欧美色中文字幕在线| 精品熟女少妇八av免费久了| 成人特级黄色片久久久久久久| 亚洲欧美一区二区三区黑人| 黑人操中国人逼视频| 午夜福利,免费看| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品古装| 夜夜爽天天搞| 国产在视频线精品| 美女高潮到喷水免费观看| 欧美中文综合在线视频| 国产男靠女视频免费网站| 国产欧美日韩一区二区精品| 妹子高潮喷水视频| 男人的好看免费观看在线视频 | 日韩成人在线观看一区二区三区| 99精品久久久久人妻精品| 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 91精品国产国语对白视频| 精品国产美女av久久久久小说| 在线av久久热| 成人国产一区最新在线观看| 中文欧美无线码| av免费在线观看网站| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| 岛国毛片在线播放| 国产精品电影一区二区三区 | 精品国产国语对白av| 中文字幕人妻丝袜一区二区| 黄片播放在线免费| 一本一本久久a久久精品综合妖精| 法律面前人人平等表现在哪些方面| 女人高潮潮喷娇喘18禁视频| 久久天躁狠狠躁夜夜2o2o| av国产精品久久久久影院| 欧美+亚洲+日韩+国产| 电影成人av| 丝袜美足系列| 午夜福利视频在线观看免费| 国产亚洲精品久久久久5区| 午夜成年电影在线免费观看| 国产精品1区2区在线观看. | 18禁裸乳无遮挡免费网站照片 | 国产成人av激情在线播放| 婷婷成人精品国产| 女性生殖器流出的白浆| 欧美丝袜亚洲另类 | 亚洲欧美色中文字幕在线| 这个男人来自地球电影免费观看| 黄色成人免费大全| 午夜福利在线观看吧| 女性被躁到高潮视频| 国产有黄有色有爽视频| av电影中文网址| 欧美日韩中文字幕国产精品一区二区三区 | 人妻一区二区av| √禁漫天堂资源中文www| 欧美精品高潮呻吟av久久| 两个人免费观看高清视频| 十分钟在线观看高清视频www| www.自偷自拍.com| 视频区图区小说| 老司机靠b影院| 桃红色精品国产亚洲av| 精品国产亚洲在线| 欧美乱妇无乱码| 亚洲熟女毛片儿| 色精品久久人妻99蜜桃| 女同久久另类99精品国产91| 欧美日韩成人在线一区二区| 精品国产超薄肉色丝袜足j| 在线观看午夜福利视频| 麻豆成人av在线观看| a级毛片在线看网站| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载 | 最新的欧美精品一区二区| 激情在线观看视频在线高清 | 国产精品一区二区精品视频观看| 香蕉丝袜av| 久久 成人 亚洲| a级片在线免费高清观看视频| 免费观看a级毛片全部| 亚洲熟女毛片儿| 18在线观看网站| 侵犯人妻中文字幕一二三四区| cao死你这个sao货| 精品福利观看| 亚洲精华国产精华精| 欧美人与性动交α欧美软件| 99精品欧美一区二区三区四区| 久久国产精品大桥未久av| videosex国产| 国产成人啪精品午夜网站| 婷婷成人精品国产| 91精品三级在线观看| 69精品国产乱码久久久| 热99国产精品久久久久久7| 国产蜜桃级精品一区二区三区 | 国产亚洲欧美98| 一级a爱视频在线免费观看| 天天影视国产精品| 两性夫妻黄色片| 欧美乱色亚洲激情| 男女床上黄色一级片免费看| 久久久久视频综合| 一区二区三区激情视频| 国产亚洲精品久久久久5区| 黄色a级毛片大全视频| 十八禁高潮呻吟视频| 亚洲七黄色美女视频| 夜夜躁狠狠躁天天躁| 精品国产美女av久久久久小说| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机在亚洲福利影院| 免费高清在线观看日韩| 欧美国产精品一级二级三级| 在线观看66精品国产| 1024香蕉在线观看| 久久久久久亚洲精品国产蜜桃av| 精品国产亚洲在线| 男女免费视频国产| 国产激情欧美一区二区| 精品人妻在线不人妻| 日本撒尿小便嘘嘘汇集6| 在线观看www视频免费| 性色av乱码一区二区三区2| 精品少妇久久久久久888优播| 啦啦啦免费观看视频1| 操出白浆在线播放| 一边摸一边做爽爽视频免费| 国产男女超爽视频在线观看| 国产成人av激情在线播放| 久久狼人影院| 久久精品成人免费网站| 色播在线永久视频| 99热只有精品国产| 欧美日韩福利视频一区二区| 一级a爱视频在线免费观看| 日韩欧美免费精品| 看免费av毛片| 大香蕉久久网| 美国免费a级毛片| 51午夜福利影视在线观看| 国产在视频线精品| 久久久久久久久久久久大奶| 精品国产亚洲在线| 国产国语露脸激情在线看| 精品人妻1区二区| 国产单亲对白刺激| 人妻 亚洲 视频| 久久人妻av系列| 亚洲精品美女久久av网站| 国产1区2区3区精品| 日韩视频一区二区在线观看| 欧美国产精品va在线观看不卡| 99国产精品一区二区蜜桃av | 成年人黄色毛片网站| ponron亚洲| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| 免费久久久久久久精品成人欧美视频| 在线免费观看的www视频| 亚洲精品久久午夜乱码| 大陆偷拍与自拍| 免费在线观看视频国产中文字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线美女| 精品一区二区三区四区五区乱码| 巨乳人妻的诱惑在线观看| 欧美中文综合在线视频| 99精品欧美一区二区三区四区| 免费一级毛片在线播放高清视频 | www.999成人在线观看| 欧美最黄视频在线播放免费 | 在线观看午夜福利视频| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| 国产欧美日韩综合在线一区二区| 韩国精品一区二区三区| 老司机福利观看| 两个人免费观看高清视频| 淫妇啪啪啪对白视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩亚洲综合一区二区三区_| 一本大道久久a久久精品| 亚洲七黄色美女视频| 亚洲欧美日韩另类电影网站| 在线观看免费午夜福利视频| 亚洲国产毛片av蜜桃av| 法律面前人人平等表现在哪些方面| 欧美黄色片欧美黄色片| 99国产精品99久久久久| 亚洲一码二码三码区别大吗| 久久久久久免费高清国产稀缺| 三级毛片av免费| 搡老岳熟女国产| 欧美精品av麻豆av| 欧美日韩中文字幕国产精品一区二区三区 | 久久99一区二区三区| 国产精品亚洲一级av第二区| 人人妻人人澡人人看| 亚洲欧美色中文字幕在线| 亚洲精品国产色婷婷电影| 亚洲av成人av| 又黄又粗又硬又大视频| 十八禁人妻一区二区| 久久久久久人人人人人| 亚洲免费av在线视频| 两个人免费观看高清视频| 免费在线观看日本一区| 精品免费久久久久久久清纯 | 国产欧美日韩综合在线一区二区| 欧美精品高潮呻吟av久久| 国产高清国产精品国产三级| 欧美激情久久久久久爽电影 | 少妇裸体淫交视频免费看高清 | 久9热在线精品视频| 精品一区二区三区视频在线观看免费 | 在线天堂中文资源库| netflix在线观看网站| 午夜亚洲福利在线播放| 成年人午夜在线观看视频| 中文欧美无线码| 女人高潮潮喷娇喘18禁视频| 国产高清videossex| 国产亚洲欧美在线一区二区| 曰老女人黄片| 在线观看日韩欧美| 午夜福利欧美成人| 看免费av毛片| 高清黄色对白视频在线免费看| 亚洲五月色婷婷综合| 视频区图区小说| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区av网在线观看| 精品国产乱码久久久久久男人| 侵犯人妻中文字幕一二三四区| 18禁黄网站禁片午夜丰满| 国产不卡一卡二| 国产在线精品亚洲第一网站| 黑丝袜美女国产一区| 亚洲欧美精品综合一区二区三区| 亚洲人成电影免费在线| 精品视频人人做人人爽| 国精品久久久久久国模美| 成人亚洲精品一区在线观看| 亚洲欧美精品综合一区二区三区| 嫁个100分男人电影在线观看| 国产一区二区三区视频了| 女人被狂操c到高潮| 国产欧美日韩一区二区三| 亚洲 欧美一区二区三区| 久久中文字幕一级| 建设人人有责人人尽责人人享有的| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三| 亚洲av片天天在线观看| a级毛片在线看网站| 一进一出抽搐gif免费好疼 | 97人妻天天添夜夜摸| 日韩有码中文字幕| 精品一区二区三卡| 亚洲 欧美一区二区三区| 亚洲av熟女| 黄色成人免费大全| x7x7x7水蜜桃| 亚洲精品久久成人aⅴ小说| 久久 成人 亚洲| 老鸭窝网址在线观看| 999精品在线视频| 婷婷丁香在线五月| 国产午夜精品久久久久久| 一边摸一边抽搐一进一出视频| av福利片在线| 久久精品熟女亚洲av麻豆精品| 精品国内亚洲2022精品成人 | 色综合婷婷激情| 中国美女看黄片| 成人国产一区最新在线观看| 黄色丝袜av网址大全| 露出奶头的视频| 又黄又粗又硬又大视频| 在线观看免费日韩欧美大片| 国产一区有黄有色的免费视频| 人人妻人人添人人爽欧美一区卜| 最近最新中文字幕大全免费视频| 国产欧美日韩一区二区三区在线| 久久久国产一区二区| 国产三级黄色录像| 亚洲专区国产一区二区| 亚洲成a人片在线一区二区| 精品久久久久久,| 成人三级做爰电影| 国产欧美日韩精品亚洲av| 热99国产精品久久久久久7| 免费观看a级毛片全部| 成年动漫av网址| 国精品久久久久久国模美| 一级片免费观看大全| 黑人巨大精品欧美一区二区mp4| 在线观看免费日韩欧美大片| 妹子高潮喷水视频| 男人的好看免费观看在线视频 | 色综合欧美亚洲国产小说| 亚洲第一青青草原| 男男h啪啪无遮挡| 亚洲精品中文字幕一二三四区| 超碰成人久久| 男女之事视频高清在线观看| 国产精品乱码一区二三区的特点 | 9热在线视频观看99| 一区二区三区精品91| 成人av一区二区三区在线看| 国产麻豆69| 天天影视国产精品| 正在播放国产对白刺激| 天堂√8在线中文| 9191精品国产免费久久| 亚洲欧美一区二区三区黑人| 国产乱人伦免费视频| 18禁美女被吸乳视频| 欧美日韩国产mv在线观看视频| 精品免费久久久久久久清纯 | 亚洲av日韩在线播放| 一级黄色大片毛片| 久久久久久久精品吃奶| 久久精品亚洲精品国产色婷小说| 国产成人精品久久二区二区91| 午夜激情av网站| 久久99一区二区三区| 久久精品亚洲精品国产色婷小说| 男女下面插进去视频免费观看| 午夜两性在线视频| 99热国产这里只有精品6| 国产在线观看jvid| 欧美精品av麻豆av| 五月开心婷婷网| 高清欧美精品videossex| 最近最新免费中文字幕在线| 免费在线观看影片大全网站| 99久久综合精品五月天人人| 天堂动漫精品| av电影中文网址| 中亚洲国语对白在线视频| 极品少妇高潮喷水抽搐| 脱女人内裤的视频| 视频在线观看一区二区三区|