• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact solutions of a(2+1)-dimensional extended shallow water wave equation?

    2019-11-06 00:42:50FengYuan袁豐JingSongHe賀勁松andYiCheng程藝
    Chinese Physics B 2019年10期

    Feng Yuan(袁豐),Jing-Song He(賀勁松),and Yi Cheng(程藝)

    1School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China

    2Institute for Advanced Study,Shenzhen University,Shenzhen 518060,China

    Keywords:(2+1)-dimensional extended shallow water wave equation,Hirota bilinear method,dormion-type solution

    1.Introduction

    Nonlinear phenomena are ubiquitous in fields of engineering,physics,and even in social sciences. A wide variety of processes in physics can be described by nonlinear partial differential equations(PDEs).In recent decades,nonlinear science has been highly developed and applied in many areas. Integrable nonlinear systems have been interested in many mathematicians and physicists.One important task is to look for exact wave solutions of nonlinear evolution equations.These exact solutions are conducive for us to understand the physical mechanism of nature,such as solitons propagating with finite speed. Thus,in recent years,various approaches have been established to construct the exact solutions in closed form of the nonlinear PDEs,including Lie group method,[1,2]inverse scattering method,[3]Hirota bilinear method,[4–7]the tanh-function method,[8]Darboux transformation,[9–12]the Jacobi elliptic function expansion method,[13]extended Jacobi elliptic function expansion method,[14–16]and so on.Among these famous methods,the Hirota bilinear method is a direct approach to solve nonlinear PDEs.Its advantage is that if we obtain the corresponding bilinear form of the equation,the multi-soliton solutions can be constructed in a simple and algebraic way.

    The shallow water wave(SWW)equation is applied to study the surface wave in shallow water.The SWW equations are well known as a flow of shallow water at the free surface under gravity,or below the surface of horizontal pressure in a fluid.[17–19]Stokes,a pioneers of hydrodynamics,derived the equation of motion of an incompressible inviscid fluid under constant vertical gravity.[19]From these basic equations,various shallow water wave models can be obtained by further simplifying assumptions.These shallow water models are widely applied in oceanography and atmospheric science.

    The(1+1)-dimensional SWW equation[20,21]arises from the Boussinesq approximation is in the form

    where α and β are arbitrary nonzero constants. By taking ux=v,equation(1)can be written as

    In the case α=2β,equation(2)becomes SWW–Ablowitz–Kaup–Newell–Segur(SWW–AKNS)equation,[21]while in the case α=β it becomes SWW–Hirota–Satsuma(SWW–HS)equation.[20]Both these two equations are completely integrable and exist Lax pair.[21,22]The(2+1)-D SWW equation which is a(2+l)-D generalization of the shallow water wave equation[23]has the form

    This is formulated as a nonlocal Riemann–Hilbert problem.A set of studies about Eq.(3)has been done in Refs.[24]–[26].In addition,several generalized equations about the(2+1)-D SWW equation have been studied,such as the generalized(2+1)-D SWW equation.[27]

    In this paper,inspired the above results of shallow water wave equations,we study a new integrable nonlinear equation,namely a(2+1)-D extended shallow water wave(eSWW)equation,[28]and further discover new patterns of nonlinear waves due to the appearance of an arbitrary function. This newly introduced eSWW equation[28]is given by a form as

    If setting x=y,v=r,and α=0,equation(4)can be reduced to KdV equation.[29]In Ref.[28],exact periodic wave solution of eSWW equation was constructed by using the generalized D-operator[30]and Riemann theta function[31]in terms of the Hirota bilinear method.In Ref.[32]Wronskian,Pfaffian,and periodic wave solutions of Eq.(4)has been given.Letting

    then the eSWW equation is written as

    which will be studied in the following context to get four kinds of solutions including soliton,breather,hybrid,and Jacobitype solutions.

    This paper is organized as follows: In Section 2,we give the bilinear form and n-soliton of eSWW equation,i.e.,Eq.(6),and analyze the amplitudes and extreme values of bright soliton and dark soliton. In addition,we obtain the breathers and hybrid solutions by the complexification method.[33–36]In Section 3,we get new periodic solution and three kinds of dormion-type solution by setting an arbitrary function φ(y)as a Jacobi elliptic function.Note that φ(y)is appeared in the f for the bilinear form of the eSWW equation.Finally,we conclude this paper in Section 4.

    2.Bilinear form and n-soliton solution

    As we know,the Hirota bilinear D-operator plays a very important role in Hirota bilinear method which is defined as[4]

    Through the dependent variable transformation equation(4)is transformed into a bilinear form

    Here f is a real function of x,y,and t.The N-soliton solution of Eq.(8)is expressed as

    where

    2.1.Soliton solutions

    In order to obtain one-soliton solutions,we gain f[1]=by substituting N=1 into Eq.(9).Then we gain the solution from Eq.(11)as follows:

    It can be seen from this formula that v[1]and r[1]have the same extreme linebut different amplitudes. The amplitude of v[1]is(3/2)k1p1,but the amplitude ofThus v[1]is a dark soliton when k1p1>0(Fig.1(a))and a bright soliton when k1p1<0(Fig.1(b)). However,r[1]generates only a dark soliton as shown in Fig.1(c). In addition, v[1]and r[1]have the same velocity on(x,y)-plane,which is given by

    Fig.1.One-soliton equation(12)with α=1,=0,t=0.(a)Bright soliton v[1]:k1=?3/4,p1=1;(b)Dark soliton v[1]:k1=3/4,p1=1;(c)Dark soliton r[1]:k1=3/4,p1=1.

    In the same way,we obtain two-soliton solution by setting N=2 in Eqs.(9)and(11).Two formulas of the solutions are given by

    where η1,η2,and α12are given in Eq.(10).

    The profiles of two-soliton given by Eq.(13)are shown in Fig.2.In this case,r[2]is always a dark soliton(Fig.2(d)),but v[2]is not.If k1p1>0 and k2p2>0,v[2]is a dark soliton(see Fig.2(a));If k1p1/k2p2<0,v[2]becomes a mixed-soliton(dark–bright form)(see Fig.2(b));and if k1p1<0 and k2p2<0,v[2]turns into a bright soliton as shown in Fig.2(c).

    Fig.2.Two-soliton with α=?1/2,t=0,p1=1/2,=?5,p2=2/3,=10.(a)Dark soliton:v[2]with k1=3/4,k2=4/5;(b)Mixed soliton:v[2]with k1=?3/4,k2=4/5;(c)Bright soliton:v[2]with k1=?3/4,k2=?4/5;(d)Dark soliton:r[2]with k1=3/4,k2=4/5.

    Similarly,we can obtain the N-dark-soliton r[N]or Nbright-soliton r[N]or N-mixed-soliton which consists of dark and bright solitons.Two examples of three-soliton are shown in Fig.3.

    Fig.3.Three-soliton with α=1,t=0,k1=?3/4,k2=?1/2,k3=1/3,p1=2/3,p2=3/5,p3=1/2,=10,=?8,=0.(a)Mixed soliton v[3];(b)Dark soliton r[3].

    2.2.Breather solutions

    The real and imaginary parts of ηigiven in Eq.(10)are

    In the case N=2,the one-breather of the eSWW equation can be generated with the function f as follows:

    Substituting Eq.(16)into Eq.(11),we have the following expressions:

    Their proflies are plotted in Fig.4.The trajectory ofandis R1=0.And through computing,we get that their period is T[x]=|2c1π/a1d1?b1c1|,T[y]=|2a1π/a1d1?b1c1|,and then the distance between two adjacent peaks is

    It implies that the breather moves parallelly on the(x,y)-plane as t changing,while its shape keeps unchanged.andhave the same velocityon(x,y)-plane.

    Fig.4.One-breather Eq.(12)with t=0,α=?1/2,a1=?1,b1=1/2,

    In the case N=4,two-breathersandare generated by the following function through Eq.(11),namely,

    Here,

    The profiles of the above two-breather solutions are plotted in Fig.5.

    Fig.5. Two-breather solutions with t=0,α=?1/2,a1=?1/2,b1=1/3,c1=1/5,d1=1/3,a2=?1,b2=1/2,c2=1/5,d2=2/3,

    2.3.Hybrid solutions

    Fig.6. Hybrid solution v[3]with α=?1/2,t=0,k1=?1/2+i/3,p1=1/5+i/3,=i/4,k2=?1/2 ?i/3,p2=1/5 ?i/3,=?i/4.(a)One breather and one dark soliton with parameters k3=?1,p3=3/2,=0;(b)One breather and one bright soliton with parameters k3=1,

    3.Jacobi-type solutio n

    In this section,we shall give another kind of new solution.One crucial observation is that v[N]and r[N]are also solutions of the eSWW equation if we setin Eq.(10)by inserting a continuous arbitrary real function of y,i.e.,φ=φ(y).This fact is also mentioned in Ref.[37].According to this fact and setting φ be a Jacobi elliptic function,then equation(11)yieldsandwhich are hereinafter called Jacobi-type solution.We mainly discussin this section,which will provide a periodic solution and three kinds of dormion-type solutions.

    3.1.Case 1:N=1

    Using above modified η1with φ,the first order Jacobitype solution of Eq.(6)is in the form of

    The character of the solution depends on the specific choice of φ.The velocity ofon(x,y)-plane isbecause of the termand the periodicity of φ with respect to y.That means the first order Jacobi-type solution parallelly travels along the x axis.

    If we choose φ(y)=sn(y,3/10),the corresponding solution is given by

    This is a periodic solution because of the appearance of elliptic functions,and its extreme value is±(3/2)k1p1,which is confirmed by Fig.7(a).The contour lines on different hights are plotted in Fig.7(a),where h is the hight and ?|(3/2)k1p1|

    Fig.7.with α=1,=0,t=0.(a)Periodic solution(22):φ(y)=sn(y,3/10),k1=?3/4,p1=1;(b)Dormion-type-I soliton(23):φ(y)=cn(y,1),k1=?3/4,p1=1;(c)Bright dormion-type-II soliton(26):φ(y)=sn(y,1),k1=?3/4,p1=1;(d)Dark dormion-type-II soliton(26):φ(y)=sn(y,1),k1=3/4,p1=1;(e)Bright dormion-type-III soliton(21):φ(y)=sn(y,1/2)/(1+y2),k1=?3/4,p1=1;(f)Dark dormion-type-III soliton(21):φ(y)=sn(y,1/2)/(1+y2),k1=3/4,p1=1.

    If we choose φ(y)=cn(y,1),and then we obtain a doubly localized solution on(x,y)plane which is called a dormion-type-I solution and is shown in Fig.7(b).The expression of this solution is given by

    which is traveling along y=0 with a velocityon(x,y)plane. It is interesting to note thathas one maximumlocated atarccoshand minimum ?(3/4)k1p1located atThe contour lines on different hights are plotted in Fig.8(b),where ?|(3/4)k1p1|

    Taking the derivative of x in Eq.(24),and making dy/dx=0,we can get two endpoints

    on(x,y)-plane.In addition,we obtain two tangent lines perpendicular to the y axis,

    Fig.8.Parameters:α=1,=0,k1=?3/4,p1=1,t=0.(a)The contour line with h=(27/20)k1p1(solid,red),h=(3/4)k1p1(solid,blue),h=(1/4)k1p1(solid,purple),h=?(27/20)k1p1(dash,red),h=?(3/4)k1p1(dash,blue),h=?(1/4)k1p1(dash,purple);(b)The contour linewith h=(27/40)k1p1(solid,red),h=(3/8)k1p1(solid,blue),h=(3/20)k1p1(solid,purple),h=?(27/40)k1p1(dash,red),h=?(3/8)k1p1(dash,blue),h=?(3/20)k1p1(dash,purple);(c)The contour linewith h=?(27/20)k1p1(red),h=?(3/4)k1p1(blue),h=?(1/6)k1p1(purple);(d)The contour line with h=?(27/20)k1p1(solid,red),h=?(3/4)k1p1(solid,blue),h=?(1/4)k1p1(solid,purple),h=(1/6)k1p1(dash,red),h=(1/4)k1p1(dash,blue),h=(1/3)k1p1(dash,purple).

    If we choose φ(y)=sn(y,1),and then we obtain a doubly localized solution on(x,y)plane which is called a dormion-type-II solution and is shown in Fig.7(c).The formula of this solution is given by

    This solution is different from dormion-type-I becausejust has one extreme value ?(3/2)k1p1located atof(x,y)plane.We can see from formula ofthat it is also a traveling wave along y=0 with the same velocity asIn addition,generates a bright dromion when k1p1<0(Fig.7(c)),and a dark dromion when k1p1>0(Fig.7(d)).The contour lines on different hights are plotted in Fig.8(c),where h is between 0 and ?(3/2)k1p1.The contour line of Eq.(26)on the hight h=?(3/4)k1p1(the half amplitude)is

    Using the same method as Eqs.(24)and(25),we can obtain two endpointsandon(x,y)-plane. The tangent lines perpendicular to the y axis are

    If we choose φ(y)=sn(y,1/2)/(1+y2),equation(21)yields a dormion-type-III solutionwhich shows very strong doubly localized feature(Figs.7(e)and 7(f))on(x,y)plane,and the profile of this solution is invariant during the propagation along y=0,although there exist Jacobi elliptic functions in the representation of solution. In other words,the periodicity ofis disappeared remarkably such that it shows behavior as a dormion,because the(1+y2)in denominator of φ(y)completely depresses the amplitude when y>10.A simple calculation shows thathas a significant extreme value ?(3/2)k1p1at centeral pointof(x,y)plane and other two small extreme values located in two sides.It is too long to write out the formulas of the above two small extreme values,but it can give approximately as 0.3568320478k1p1.Furthermore,the centeral point is a maximum if k1p1<0 which implies that this solution is a bright dromion(Fig.7(e)),however it is a minimum if k1p1>0 so that this solution is a dark dormion(Fig.7(f)).The contour lineis plotted in Fig.8(d),where h is between the peak value and valley value.Because it is too complicated to write,we do not give the figure and expressions of the end points,the tangent lines perpendicular to the y axis,and the width of the contour lines.

    Fig.9.The curve line is the contour line on the height of half amplitude.The two black points are the end points,and the two red lines are the tangent lines perpendicular to the y axis.Parameters:α=1,=0,k1=?3/4,p1=1,t=0.(a)The contour line is Eq.(24),and the tangent lines are Eq.(25);(b)The contour line is Eq.(27),and the tangent lines are Eq.(28).

    3.2.Case 2:N=2

    We can obtain the second order Jacobi-type solution as follows:

    If we choose φ(y)=sn(y,3/10),it shows obviously a periodic structure in Fig.10(a).If we choose φ(y)=cn(y,1),it is dormion-type-I solution as shown in Fig.10(b).It has two maximum values and two minimum values on(x,y)plane.If we choose φ(y)=sn(y,1),it is a dormion-type-II solution.Its extreme values have three scenarios:letting k1p1>0 and k2p2>0 it is a dark form as shown in Fig.10(c),which has only two minimum values;letting k1p1/k2p2<0 it is a mixed form as shown in Fig.10(d),which has a minimum value and a maximum value;letting k1p1<0 and k2p2<0 we can get a bright solution as shown in Fig.10(e),which has only two maximum values.

    Fig.11. with α=1,t=0,p1=2/3,p2=3/5,p3=1/2. (a)Periodic solution:φ(y)=sn(y,3/10),k1=3/4,k2=1/2,k3=1/3,=?10,(b)Dormion-type-I soliton:φ(y)=cn(y,1),k1=3/4,k2=1/2,k3=1/3,;(c)Dark dormion-type-II soliton:φ(y)=sn(y,1),k1=3/4,k2=1/2,k3=1/3,;(d)Mixed dormion-type-III soliton:φ(y)=sn(y,1/2)/(y2+1),k1=3/4,k2=?1/2,k3=?1/3,

    3.3.Case 3:N=3

    By setting

    in Eqs.(9),(10),and(11),we can obtain the third-order Jacobi-type solutionand,where

    By the same way used above,we obtain more kinds of solutions through choosing different function φ(y)and ηi.Part of the situation is shown in Fig.11.

    4.Summary

    In this paper,we obtained the bilinear form and the nsoliton solution of an eSWW equation by using Hirota method.The solution v[1]is dark when k1p1>0 while it is bright when k1p1<0.The solution r[1]is always a dark soliton.By using complexification method,breathers and hybrid solutions are constructed which are all travelling waves.

    More importantly,we obtained Jacobi-type solution associated with a certain given φ(y)which is an arbitrary real continuous function appeared in f of bilinear form.It is selected by using Jacobi elliptic functions,and the character of the solutions depends on its specific choice.We stress on the case N=1.The first-order Jacobi-type solutionparallelly travels along the x axis with the velocityon(x,y)-plane.

    (i)When φ(y)=sn(y,3/10),equation(22)is a periodic solution and the period depends on φ(y).

    (ii)When φ(y)=cn(y,1),we obtained a dormion-type-I solutions. Equation(23)has one maximum(3/4)k1p1located atarccoshand one minimum ?(3/4)k1p1located at?arccosh2). The width of the contour line on the hight h=(3/8)k1p1(the half amplitude)is

    (iii)When φ(y)=sn(y,1),we obtained a dormion-type-II solution equation(26)which has only one extreme value?(3/2)k1p1located atof(x,y)plane.The width of the contour line on the hight h=?(3/4)k1p1(the half amplitude)is

    (iv)When φ(y)=sn(y,1/2)/(1+y2),we obtained a dormion-type-III solution(21)which shows very strong doubly localized feature on(x,y)plane,and the profile of this solution is invariant during the propagation along y=0.

    Moreover,we gave several figures of the mixture of periodic and localized solutions.

    国产精品久久久久久久久免| 成人高潮视频无遮挡免费网站| av在线亚洲专区| 赤兔流量卡办理| 亚洲精华国产精华液的使用体验| 亚洲性久久影院| 午夜福利网站1000一区二区三区| 亚洲精品一二三| 秋霞伦理黄片| videos熟女内射| 免费看日本二区| 午夜福利在线观看吧| 97热精品久久久久久| 亚洲av免费高清在线观看| 午夜精品在线福利| 欧美xxxx性猛交bbbb| 美女高潮的动态| 内地一区二区视频在线| 中文在线观看免费www的网站| 大又大粗又爽又黄少妇毛片口| 91精品一卡2卡3卡4卡| 国产毛片a区久久久久| 国产精品一区二区在线观看99 | 亚洲精品日韩在线中文字幕| freevideosex欧美| 97人妻精品一区二区三区麻豆| 国产一区二区在线观看日韩| 亚洲欧美成人综合另类久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 永久免费av网站大全| 国产黄频视频在线观看| 一级毛片 在线播放| 国模一区二区三区四区视频| 亚洲在线自拍视频| 亚洲欧美精品自产自拍| 色哟哟·www| av女优亚洲男人天堂| 一级爰片在线观看| 国产乱人视频| 超碰av人人做人人爽久久| 国产精品国产三级国产专区5o| 成年女人在线观看亚洲视频 | 又粗又硬又长又爽又黄的视频| 一本久久精品| 午夜免费观看性视频| 日韩欧美 国产精品| 日韩欧美三级三区| 人妻少妇偷人精品九色| 久久久久久久久中文| 日韩人妻高清精品专区| 丰满乱子伦码专区| a级毛色黄片| 91精品一卡2卡3卡4卡| 日产精品乱码卡一卡2卡三| 综合色av麻豆| 嘟嘟电影网在线观看| 国产伦一二天堂av在线观看| 26uuu在线亚洲综合色| 久久97久久精品| 99久国产av精品| 十八禁网站网址无遮挡 | av在线老鸭窝| 亚洲第一区二区三区不卡| 免费电影在线观看免费观看| 美女cb高潮喷水在线观看| 免费黄频网站在线观看国产| 国产午夜福利久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 青春草国产在线视频| 国产69精品久久久久777片| or卡值多少钱| 久久亚洲国产成人精品v| av黄色大香蕉| 成人综合一区亚洲| 麻豆成人av视频| 国内精品美女久久久久久| 亚洲av中文av极速乱| 黄片无遮挡物在线观看| 亚洲怡红院男人天堂| 国产一区亚洲一区在线观看| 亚洲最大成人av| 久久午夜福利片| 秋霞在线观看毛片| av线在线观看网站| 大又大粗又爽又黄少妇毛片口| 内射极品少妇av片p| 天堂中文最新版在线下载 | 美女被艹到高潮喷水动态| h日本视频在线播放| 26uuu在线亚洲综合色| 国产成人a∨麻豆精品| 国产乱人偷精品视频| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 国产中年淑女户外野战色| 亚洲精品一二三| 深夜a级毛片| 免费观看性生交大片5| 亚洲国产成人一精品久久久| 天堂中文最新版在线下载 | 嫩草影院新地址| 晚上一个人看的免费电影| 欧美不卡视频在线免费观看| 高清日韩中文字幕在线| 久久久久精品性色| 欧美人与善性xxx| 亚洲成人中文字幕在线播放| 亚洲欧美清纯卡通| 少妇的逼水好多| 国产av在哪里看| 青春草亚洲视频在线观看| 青春草国产在线视频| 国产成人freesex在线| 少妇丰满av| 国产精品久久视频播放| 欧美潮喷喷水| 少妇丰满av| 人人妻人人看人人澡| 夜夜看夜夜爽夜夜摸| 色综合亚洲欧美另类图片| 好男人视频免费观看在线| 又黄又爽又刺激的免费视频.| 欧美xxⅹ黑人| 少妇裸体淫交视频免费看高清| 久久久久久久大尺度免费视频| 国产精品.久久久| 3wmmmm亚洲av在线观看| 好男人在线观看高清免费视频| 亚洲在线观看片| 精品少妇黑人巨大在线播放| 国产精品久久久久久久久免| 日本黄色片子视频| 日本一本二区三区精品| av在线亚洲专区| 两个人的视频大全免费| 精品久久久久久电影网| 国产综合精华液| 狂野欧美白嫩少妇大欣赏| 国产综合懂色| 欧美不卡视频在线免费观看| 黄片无遮挡物在线观看| 亚洲精品国产成人久久av| 国产精品熟女久久久久浪| 午夜精品在线福利| 国产麻豆成人av免费视频| 日韩av免费高清视频| 国产男人的电影天堂91| 亚洲精品国产成人久久av| 一个人观看的视频www高清免费观看| 国产麻豆成人av免费视频| 国产精品一区www在线观看| 一个人免费在线观看电影| 男插女下体视频免费在线播放| 99热这里只有精品一区| 亚洲av中文字字幕乱码综合| 久久久久久久久久久免费av| 亚洲激情五月婷婷啪啪| av又黄又爽大尺度在线免费看| 亚洲欧美日韩卡通动漫| 天堂俺去俺来也www色官网 | 日韩欧美一区视频在线观看 | 国产伦精品一区二区三区视频9| 亚洲av中文字字幕乱码综合| 精品酒店卫生间| 午夜福利在线观看免费完整高清在| 亚洲精品乱码久久久久久按摩| 日本午夜av视频| 日韩欧美国产在线观看| 麻豆av噜噜一区二区三区| 99热这里只有是精品50| 国产男女超爽视频在线观看| 在线观看一区二区三区| 久久精品久久精品一区二区三区| 欧美丝袜亚洲另类| 久久久精品免费免费高清| 久久久久久久久久久免费av| 看非洲黑人一级黄片| 乱人视频在线观看| 久久久色成人| 99热这里只有是精品在线观看| 亚洲国产欧美人成| 国产精品精品国产色婷婷| 亚洲婷婷狠狠爱综合网| 最近2019中文字幕mv第一页| 观看免费一级毛片| 欧美最新免费一区二区三区| 欧美日韩精品成人综合77777| 一级毛片久久久久久久久女| 麻豆精品久久久久久蜜桃| 波多野结衣巨乳人妻| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 亚洲四区av| 久久精品国产鲁丝片午夜精品| 国产精品.久久久| 日本午夜av视频| 国产精品女同一区二区软件| 中文字幕亚洲精品专区| 婷婷色麻豆天堂久久| 男女视频在线观看网站免费| 国产亚洲精品av在线| 菩萨蛮人人尽说江南好唐韦庄| 久久精品夜色国产| 国产免费福利视频在线观看| 好男人视频免费观看在线| 看黄色毛片网站| 精品一区二区免费观看| 水蜜桃什么品种好| 国产激情偷乱视频一区二区| 一级av片app| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区 | 亚洲国产欧美人成| 亚洲最大成人手机在线| 精品亚洲乱码少妇综合久久| 91狼人影院| 亚洲av中文av极速乱| 91久久精品国产一区二区三区| 中文乱码字字幕精品一区二区三区 | 赤兔流量卡办理| 亚洲精品久久久久久婷婷小说| 国产亚洲最大av| 午夜激情欧美在线| 国产成人午夜福利电影在线观看| 日日啪夜夜撸| 青春草亚洲视频在线观看| 天堂俺去俺来也www色官网 | 床上黄色一级片| 久久久久久久大尺度免费视频| 我的老师免费观看完整版| 欧美激情在线99| 成年女人在线观看亚洲视频 | 免费观看在线日韩| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 久久久久精品久久久久真实原创| 干丝袜人妻中文字幕| 天堂中文最新版在线下载 | 国产片特级美女逼逼视频| 黄色配什么色好看| 国国产精品蜜臀av免费| 日本一本二区三区精品| www.色视频.com| 乱系列少妇在线播放| 久久久精品免费免费高清| 午夜日本视频在线| 综合色丁香网| 亚洲av电影不卡..在线观看| 高清视频免费观看一区二区 | 99热全是精品| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| av卡一久久| 国产大屁股一区二区在线视频| 国内精品美女久久久久久| 一级a做视频免费观看| 亚洲精品第二区| 国产伦一二天堂av在线观看| 在线观看一区二区三区| 午夜福利在线观看吧| 亚洲人成网站高清观看| av网站免费在线观看视频 | 久热久热在线精品观看| 精品国产一区二区三区久久久樱花 | 久久久久性生活片| 1000部很黄的大片| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 国产综合精华液| 久久这里有精品视频免费| 亚洲av.av天堂| 色视频www国产| 国产午夜福利久久久久久| 一区二区三区四区激情视频| 欧美人与善性xxx| 国产一区二区亚洲精品在线观看| 精品亚洲乱码少妇综合久久| 欧美bdsm另类| 麻豆av噜噜一区二区三区| 91久久精品电影网| 国产片特级美女逼逼视频| 三级男女做爰猛烈吃奶摸视频| 亚洲av一区综合| 国产激情偷乱视频一区二区| 亚洲熟妇中文字幕五十中出| 国产成人a区在线观看| 精品国产三级普通话版| 欧美极品一区二区三区四区| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| 中文字幕av成人在线电影| 免费观看的影片在线观看| 成年版毛片免费区| 日日干狠狠操夜夜爽| 亚洲国产日韩欧美精品在线观看| 久久99蜜桃精品久久| 男人舔女人下体高潮全视频| 国产一区二区在线观看日韩| av在线播放精品| 美女高潮的动态| 一个人看视频在线观看www免费| 亚洲自拍偷在线| 久久99热这里只频精品6学生| 美女高潮的动态| 一个人看视频在线观看www免费| 久久久成人免费电影| 一本一本综合久久| 成人午夜精彩视频在线观看| 精品人妻视频免费看| 日韩欧美精品免费久久| 青春草视频在线免费观看| 国产精品国产三级专区第一集| 少妇裸体淫交视频免费看高清| 天堂影院成人在线观看| 男女边摸边吃奶| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 神马国产精品三级电影在线观看| 69人妻影院| 在线观看人妻少妇| av在线蜜桃| 搡老妇女老女人老熟妇| 一级爰片在线观看| 久久久久久伊人网av| 熟妇人妻不卡中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 国产v大片淫在线免费观看| freevideosex欧美| 国产亚洲一区二区精品| 亚洲欧美精品专区久久| 国产精品伦人一区二区| av国产免费在线观看| 国产乱来视频区| 久久久亚洲精品成人影院| 好男人在线观看高清免费视频| 亚洲电影在线观看av| 国模一区二区三区四区视频| 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| 伦精品一区二区三区| 舔av片在线| 赤兔流量卡办理| 男女边吃奶边做爰视频| 精品久久久久久久人妻蜜臀av| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 国产精品爽爽va在线观看网站| 亚洲av中文字字幕乱码综合| 国产视频首页在线观看| 亚洲欧美成人精品一区二区| 成人漫画全彩无遮挡| 在线播放无遮挡| 久久精品综合一区二区三区| 中文字幕av在线有码专区| 有码 亚洲区| 日韩电影二区| 激情五月婷婷亚洲| 欧美日本视频| 亚洲av一区综合| 久久久久久久久久成人| 听说在线观看完整版免费高清| 在线播放无遮挡| 亚洲av电影在线观看一区二区三区 | 亚洲天堂国产精品一区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 秋霞伦理黄片| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 精品一区在线观看国产| 国产伦理片在线播放av一区| 一夜夜www| 日韩,欧美,国产一区二区三区| 国产黄色小视频在线观看| 十八禁网站网址无遮挡 | 亚洲欧美一区二区三区黑人 | 亚洲精品成人久久久久久| 国产亚洲一区二区精品| 3wmmmm亚洲av在线观看| 亚洲不卡免费看| 精品一区二区免费观看| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 成人一区二区视频在线观看| 综合色av麻豆| 久久精品国产亚洲av涩爱| 视频中文字幕在线观看| 国产精品一区二区三区四区免费观看| 少妇猛男粗大的猛烈进出视频 | 国产精品久久久久久精品电影| 日日啪夜夜爽| 亚洲av福利一区| 成人欧美大片| 99九九线精品视频在线观看视频| 十八禁网站网址无遮挡 | 边亲边吃奶的免费视频| 一级黄片播放器| 汤姆久久久久久久影院中文字幕 | 成人毛片a级毛片在线播放| 中文乱码字字幕精品一区二区三区 | av.在线天堂| 国内精品一区二区在线观看| www.色视频.com| 国产精品嫩草影院av在线观看| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 欧美xxxx性猛交bbbb| 精品国产一区二区三区久久久樱花 | 成人午夜高清在线视频| 久久这里有精品视频免费| 亚洲av.av天堂| 亚洲精品456在线播放app| 国产爱豆传媒在线观看| 国产在视频线精品| 精品酒店卫生间| 久久综合国产亚洲精品| 午夜精品一区二区三区免费看| 久久精品久久久久久噜噜老黄| 日韩一区二区三区影片| 国产精品一区二区性色av| 成人无遮挡网站| 国内精品一区二区在线观看| 国产精品精品国产色婷婷| 国产色爽女视频免费观看| 国产有黄有色有爽视频| 永久网站在线| 日本爱情动作片www.在线观看| 十八禁国产超污无遮挡网站| 免费观看a级毛片全部| 午夜爱爱视频在线播放| 亚洲色图av天堂| 国产精品女同一区二区软件| 免费少妇av软件| 美女黄网站色视频| 成年免费大片在线观看| 婷婷色麻豆天堂久久| 亚洲av免费高清在线观看| 插逼视频在线观看| 性色avwww在线观看| 免费av观看视频| 日韩大片免费观看网站| 人妻少妇偷人精品九色| 三级男女做爰猛烈吃奶摸视频| 我要看日韩黄色一级片| 美女被艹到高潮喷水动态| 亚州av有码| 色5月婷婷丁香| 亚洲熟女精品中文字幕| 国产成人aa在线观看| 欧美xxⅹ黑人| 18禁裸乳无遮挡免费网站照片| 国产毛片a区久久久久| 日韩av在线大香蕉| 大话2 男鬼变身卡| 麻豆av噜噜一区二区三区| 久久久久精品久久久久真实原创| 成人美女网站在线观看视频| 成人漫画全彩无遮挡| 免费无遮挡裸体视频| 国产亚洲精品久久久com| 亚洲激情五月婷婷啪啪| 狠狠精品人妻久久久久久综合| 七月丁香在线播放| 80岁老熟妇乱子伦牲交| 免费观看无遮挡的男女| 大话2 男鬼变身卡| 亚洲一区高清亚洲精品| 国产成人免费观看mmmm| 久久久久久久久中文| 国产av国产精品国产| 全区人妻精品视频| 麻豆乱淫一区二区| 日韩制服骚丝袜av| 久久久精品免费免费高清| 校园人妻丝袜中文字幕| av.在线天堂| 在线免费观看不下载黄p国产| 国产真实伦视频高清在线观看| 亚洲不卡免费看| 午夜激情久久久久久久| 日韩国内少妇激情av| 国产在视频线精品| 国产亚洲5aaaaa淫片| 亚洲美女搞黄在线观看| 2018国产大陆天天弄谢| 国产一区二区三区综合在线观看 | 一级片'在线观看视频| 中国美白少妇内射xxxbb| av卡一久久| 日韩欧美 国产精品| 成人二区视频| 亚洲精品乱久久久久久| av在线亚洲专区| 国模一区二区三区四区视频| 亚洲精品视频女| 女的被弄到高潮叫床怎么办| 日韩大片免费观看网站| 日日摸夜夜添夜夜添av毛片| 亚洲国产最新在线播放| 国产黄色免费在线视频| 亚洲国产精品国产精品| 日韩强制内射视频| 看十八女毛片水多多多| 国产美女午夜福利| 男女下面进入的视频免费午夜| 夜夜爽夜夜爽视频| 91在线精品国自产拍蜜月| 欧美xxⅹ黑人| 国产精品伦人一区二区| 亚洲18禁久久av| 欧美+日韩+精品| 亚洲国产最新在线播放| 国产精品国产三级专区第一集| 直男gayav资源| 欧美另类一区| av福利片在线观看| 久久人人爽人人片av| 99久久精品热视频| 人人妻人人看人人澡| av卡一久久| 日韩av不卡免费在线播放| 熟妇人妻不卡中文字幕| 久久精品综合一区二区三区| 亚洲av二区三区四区| 亚洲人与动物交配视频| 亚洲欧洲国产日韩| 日韩一区二区视频免费看| 国产免费视频播放在线视频 | 久久久久久久大尺度免费视频| 国产男人的电影天堂91| 国内精品一区二区在线观看| 亚洲国产精品成人久久小说| 五月伊人婷婷丁香| 亚洲丝袜综合中文字幕| 国产免费视频播放在线视频 | 狠狠精品人妻久久久久久综合| 国产国拍精品亚洲av在线观看| 日韩国内少妇激情av| 好男人在线观看高清免费视频| 精华霜和精华液先用哪个| 免费观看精品视频网站| 一二三四中文在线观看免费高清| 天天躁夜夜躁狠狠久久av| 亚洲精品乱码久久久v下载方式| 97在线视频观看| 黄色日韩在线| 三级国产精品片| 一级毛片 在线播放| 国产伦在线观看视频一区| 男插女下体视频免费在线播放| av播播在线观看一区| 老女人水多毛片| 美女xxoo啪啪120秒动态图| 免费观看在线日韩| 99久国产av精品| 床上黄色一级片| 女人久久www免费人成看片| 狂野欧美白嫩少妇大欣赏| 免费av毛片视频| av在线亚洲专区| 男人和女人高潮做爰伦理| 91av网一区二区| 可以在线观看毛片的网站| 日韩av在线大香蕉| 亚洲av中文av极速乱| 国产 一区 欧美 日韩| 日韩成人av中文字幕在线观看| 成人毛片60女人毛片免费| 亚洲人成网站在线播| 欧美精品国产亚洲| 91精品国产九色| 床上黄色一级片| 国产精品1区2区在线观看.| 日韩一区二区三区影片| 国产成年人精品一区二区| 不卡视频在线观看欧美| 亚洲国产精品成人久久小说| 日本wwww免费看| 色5月婷婷丁香| 好男人在线观看高清免费视频| 最新中文字幕久久久久| 免费av观看视频| 2021少妇久久久久久久久久久| 国产一区二区在线观看日韩| 中文字幕av在线有码专区| 一本久久精品| 精品久久久久久久久亚洲| 欧美变态另类bdsm刘玥| 男插女下体视频免费在线播放| 亚洲精品成人久久久久久| 国产在线男女| 高清欧美精品videossex| 精品人妻偷拍中文字幕| 建设人人有责人人尽责人人享有的 | 午夜福利成人在线免费观看| 精品久久久久久久久亚洲| 日日啪夜夜爽| 少妇的逼好多水| 国产又色又爽无遮挡免| 啦啦啦中文免费视频观看日本| 精品不卡国产一区二区三区| 国产精品美女特级片免费视频播放器| 亚洲自拍偷在线| av黄色大香蕉| 久久久精品94久久精品| 久久久久国产网址| 毛片女人毛片| 久久99精品国语久久久| 亚洲精品国产av蜜桃| 亚洲精品乱久久久久久| 亚洲精品一二三| 国产精品久久久久久av不卡| 国产一级毛片七仙女欲春2| 少妇熟女欧美另类| 国产不卡一卡二| 天堂网av新在线|