• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact finite difference schemes for the backward fractional Feynman–Kac equation with fractional substantial derivative*

    2019-11-06 00:42:42JiahuiHu胡嘉卉JungangWang王俊剛YufengNie聶玉峰andYanweiLuo羅艷偉
    Chinese Physics B 2019年10期

    Jiahui Hu(胡嘉卉), Jungang Wang(王俊剛), Yufeng Nie(聶玉峰),?, and Yanwei Luo(羅艷偉)

    1Department of Applied Mathematics,Northwestern Polytechnical University,Xi’an 710129,China

    2College of Science,Henan University of Technology,Zhengzhou 450001,China

    Keywords:backward fractional Feynman–Kac equation,fractional substantial derivative,compact finite difference scheme,numerical inversion of Laplace transforms

    1.Introduction

    Diffusive motions exist widely in the nature,among the fields from condensed matter physics,[1–3]to hydrodynamics,[4]meteorology,[5]and finance.[6]Thus the Brownian functionals play important role in science community. Assume that x(t)is a path of a Brownian particle in the time interval(0,t),and U(x)is some prescribed function. Then a Brownian functional can be defined as.Since x(t)is a random path,A is a random variable. On account of the diversity of the function U(x),the Brownian functional A models various phenomena. In 1949,by using Feynman’s path integral method,Kac derived the(imaginary time)Schr?dinger equation for the distribution function of A.[7]However,in recent years,by realizing that numerous anomalous diffusion phenomena exist widely in many systems,[8,9]the scientists pay more and more attention to the anomalous diffusion processes,or the non-Brownian motion,which can be modeled more exactly by fractional differential equations.[10]

    Let x(t)be a trajectory of non-Brownian particle. The functional of anomalous diffusion has the same form as the Brownian functional

    For the different prescribed function U(x),various physics processes can be characterized. For instance,when taking U(x)=1 in a given domain and to be zero otherwise,A models the time spent by a particle in the domain. The corresponding functional can be used in kinetic studies of chemical reactions that take place exclusively in the domain.[11,12]When the motion of the particles is non-Brownian in dispersive systems with inhomogeneous disorder,U(x)is given by x or x2.[12]By employing a versatile framework for describing the motion of particles in disordered systems,i.e.,the continuous time random walk(CTRW),derived the forward and backward fractional Feynman–Kac equations,[12–14]where the fractional substantial derivative is involved. The fractional substantial derivative is a time–space coupled operator,which is different from other fractional derivatives such as the Caputo and Riemann-Liouville types,and this newly proposed definition will be described in Definition 2.Both the forward and backward fractional Feynman–Kac equations describe the distributions of functionals of the widely observed subdiffusive processes.While in most cases scholars are only interested in the distribution of the functional A and regardless of the final position of the particle,it turns out to be more convenient to use the backward version.The backward fractional Feynman–Kac equation which is shown in Eq.(2),will be discussed detailedly in our work.Denote by P(x,A,t)the joint probability density function(PDF)of A and x at time t,which implies the process has started at x and the particle is found on A at time t. The backward fractional Feynman–Kac equation is given as[12–14]

    For the past few years,numerical methods for solving fractional partial differential equations(PDEs)have been well developed,including finite difference methods,[16–20]finite element methods,[21–23]mixed finite element methods,[24,25]finite volume methods,[26,27]mixed finite volume element method,[28]and spectral methods,[29,30]etc. However,as for the PDEs with fractional substantial derivative involved,though there have been some literature for getting the numerical solutions(see Ref.[31]),high order finite difference schemes with the maximum norm error estimates have not been investigated yet.As is well known,high order schemes lead to more accurate results and less cost in computations if the solution of the equation is regular enough. Also,compared with the error estimates in discrete L2norm,the discrete L∞norm error estimates provide more immediate insight on the error occurring during time evolution.Thus,in practice,error estimates in the grid-independent maximum norm are preferred in numerical analysis. Noticing that the fractional substantial derivative is a non-local time–space coupled operator,it may bring more difficulty in constructing high order schemes for solving the corresponding equations,as well as in establishing the maximum norm error analysis.The purpose of this work is to develop efficient finite difference schemes for the backward fractional Feynman–Kac equation,which can achieve the q-th(q=1,2,3,4)order accuracy in temporal direction and the fourth order accuracy in spatial direction,respectively.The numerical stability and convergence in the maximum norm are discussed afterwards.Abundant numerical examples are also carried out to show the feasibility and the superiority of the proposed schemes.

    The definitions of fractional substantial calculus are given as follows.[32]

    Definition 1Let ν>0,ρ be a constant,and P(t)be piecewise continuous on(0,∞)and integrable on any finite subinterval of[0,∞).Then the fractional substantial integral of P(t)of order ν is defined as

    where U(x)is a prescribed function in Eq.(1).

    Definition 2Letμ>0,ρ be a constant,and P(t)be(m ?1)-times continuously differentiable on(0,∞)and its m-times derivative be integrable on any finite subinterval of[0,∞),where m is the smallest integer that exceedsμ.Then the fractional substantial derivative of P(t)of orderμis defined as

    where

    According to the definition of fractional substantial derivative,equation(2)can be expressed in the following form

    and then the equivalent form of Eq.(6)can be written as[31]

    where P(x,ρ,t)is replaced by P(x,t)since ρ is given as a fixed constant.In the following two sections,we still use P(x,t)for convenience.

    The remainder of this paper is organized as follows.In Section 2,for the backward fractional Feynman–Kac equation,the compact finite difference schemes with temporal q-th(q=1,2,3,4)order accuracy and spatial fourth order accuracy are established.In Section 3,by generalizing the inner product in Ref.[18]to complex space,we prove the unconditional stability and convergence of the first-order time discretization scheme in the maximum norm.In Section 4,extensive numerical examples are provided to verify the effectiveness and accuracy of the proposed schemes from the first to the fourth order time discretization.In particular,simulations of the backward fractional Feynman–Kac equation with Dirac delta function as the initial condition are carried out to further confirm the feasibility of the proposed methods. Finally we draw some conclusions in the last section.

    2.Derivation of compact difference schemes

    This section focuses on deriving compact difference schemes for the backward fractional Feynman–Kac equation,which are of the q-th(q=1,2,3,4)order approximation in temporal direction and the fourth order approximation in spatial direction,respectively.

    Without loss of generality,consider the backward fractional Feynman–Kac equation with a non-homogeneous source term in the interval ?=(0,L),

    and the initial and boundary conditions are given as

    Let M and N be two positive integers,then h=L/M and τ=T/N are the uniform size of spatial grid and time step,respectively.A spatial and temporal partition can be defined as xi=ih for i=0,1,...,M,and tn=nτ for n=0,1,...,N.Denote ?h={xi|0 ≤i ≤M}and ?τ={tn|0 ≤n ≤N}.Takeas the grid function space on ?h.Then for any grid function,we have the following notations

    which can be verified directly according to the definition of inner product.Also,some norms which are necessary for the numerical analysis are shown below

    For the inner product(11)and above norms,we have the following lemmas.

    Lemma 1Forwe have

    ProofFrom Eqs.(11)and(12),we obtain

    On the other hand,we have

    Lemma 3(Lemma 4.1 in Ref.[34])Let function g(x)∈C6[a,b]and ξ(λ)=5(1?λ)3?3(1?λ)5.Then

    This completes the proof.

    Lemma 2(Inequality(8.4.1)in Ref.[33])For ?u ∈

    According to Ref.[32],the fractional substantial derivatives appeared in Eq.(8)have q-th order approximations,i.e.,

    where

    and

    and

    Denote

    where a=?3/25,b=13/25,c=?23/25,d=1;A=b2?3ac,B=bc ?9ad,C=c2?3bd;?=B2?4AC>0,Y1=Ab+(3/2)a(?B ?)>0,Y2=Ab+(3/2)a(?B+<0,then

    Considering Eq.(8)at the point(xi,tn),it can be written as

    Acting the compact operatoron both sides of the above equation,we have

    Therefore there exists a constantsuch that

    To execute the procedure,we rewrite Eq.(22)as the following equivalent form

    It is necessary to point out that when n=1,the second term on the right-hand side of Eq.(25)vanishes automatically.

    3.Stability and convergence analysis

    In this section,we do the detailed theoretical analysis for the first order discretization in temporal direction of schemes(22)–(24).Letting U(x)=ω be a nonnegative constant,we introduce the properties of(k ≥0)first,and then prove the schemes are unconditionally stable and convergent in the maximum norm.

    Lemma 4[31]The coefficientsdefined by Eq.(18)satisfy

    and

    Theorem 1The finite difference schemes(22)–(24)are unconditionally stable with the assumption(ρ)ω ≥0.

    ProofAssumeis the approximate solution ofwhich is the exact solution of schemes(22)–(24),andis the approximation to ?(xi).Let0 ≤i ≤M,0 ≤n ≤N.From Eqs.(22)–(24),we have the perturbation error equations

    By use of Eq.(17),equation(28)can also be written as

    Using the summation formula by parts and noticing Eq.(30),we obtain

    Then it can be deduced that the following inequality holds

    Let

    and

    From the Cauchy–Schwarz inequality and Lemma 4,we have the estimates

    Combining inequalities(32),(33),and(34)with the assumptionω ≥0,it yields that

    Next,we prove

    by mathematical induction.In the case n=1,inequality(36)holds according to inequality(35). Suppose that for s=1,2,...,n?1,

    holds.When s=n,according to inequalities(35)and(37),we have

    Combining inequality(36)with Lemma 1 and Lemma 2,we conclude that

    which completes the proof.

    Theorem 2Letbe the solution of the finite difference schemes(22)–(24),and P(xi,tn)be the solution of the problems(8)–(10)with the assumption(ρ)ω ≥0.Denoting,0 ≤i ≤M,0 ≤n ≤N,then there exists a positive constant C such that

    ProofAccording to Eqs.(20)and(22)–(24),we get the error equations

    From Eq.(17),equation(41)can also be written as

    Using the summation formula by parts, we obtain from Eq.(42)

    which implies

    Then it can be deduced that

    with the Cauchy-Schwarz inequality being used.

    Let

    It is observed that

    Substituting expression(44)into expression(43),and noticing inequality(45)with the assumption(ρ)ω ≥0,we have

    and then it is derived from inequality(46)that

    In the following,we prove

    by mathematical induction.

    For n=1,inequality(48)holds by inequality(47).Suppose

    Then for s=n,by using inequalities(47)and(49)we conclude that

    Finally,according to inequalities(50),(27),Lemma 1 and Lemma 2,we derive

    4.Numerical examples

    In this section,firstly we test some numerical examples to demonstrate the effectiveness of the schemes(22)–(24),and verify the theoretical results including convergence orders and numerical stability.The numerical errors is computed in the maximum norm,i.e.,

    Then the backward fractional Feynman–Kac equation with Dirac delta function as the initial condition is simulated.By making use of the algorithm of numerical inversion of Laplace transforms,[36]we obtain the joint PDF P(x,A,t),and then the marginal PDFs of A and x,respectively.In particular,the case U(x)=0 is considered,when equation(8)reduces to the fractional Fokker–Planck equation.[37–40]Comparing its solution with the marginal PDF of x,it is further confirmed the reliability of our numerical methods.

    4.1.Numerical results for P(x,t)with ρ being a constant

    In the following two examples,we choose U(x)=1 and x,respectively.

    Example 1Consider

    whose exact solution is known and is given by

    In Table 1,an optimal step size ratio in temporal and spatial directions is adopted for Example 1 with q=1.As h and τ vary,the errors and convergence orders are reported in the table,which implies that the convergence orders in temporal and spatial directions are about one and four,respectively.It is in good agreement with the theoretical analysis.

    Table 2 displays the computational results with an optimal step size ratio in temporal and spatial directions for Example 1 with q=2.It can be concluded from this table that the convergence orders with respect to time and space are approximately two and four,respectively.It agrees well with the theoretical results.

    Table 1.The maximum errors and convergence orders with q=1 and an optimal step size ratio τ=h4(Example 1).

    Table 2.The maximum errors and convergence orders with q=2 and an optimal step size ratio τ=h2(Example 1).

    Example 2We now consider

    whose exact solution is known and is given by

    Table 3 shows the numerical errors and convergence orders in temporal direction for Example 2 with q=3.Let the step size h be fixed and small enough such that the dominating error arises from the approximation of the time derivative.Varying the step size in time,the numerical results are listed in this table,which is in accord with the theoretical analysis.

    Tables 4–6 record the comparisons of schemes(22)–(24)with the scheme(2.12)in Ref.[31]for Example 2 with q=4.Taking an optimal step size ratio in temporal and spatial directions,these results report the convergence orders of schemes(22)–(24)with respect to time and space are both about four,which confirms the theoretical results.It also can be seen that even on the more coarse mesh schemes(22)–(24)get the smaller errors.These numerical results show that our method is not only reliable but also more efficient.

    Table 3.The maximum errors and convergence orders in temporal direction with q=3 and h=1/1000(Example 2).

    Table 4.Comparisons of errors and convergence orders obtained by schemes(22)–(24)and scheme(2.12)in Ref.[31]with α=0.1,q=4 and an optimal step size ratio for τ and h(Example 2).

    Graphs of the modulus of errors for Example 2 with q=4 and α=0.4 are plotted in Fig.1.From these figures,we can find intuitively that,as the step sizes h and τ are reduced,the maximum of the modulus of the errors decreases gradually and approaches zero,which manifests the convergence of the presented algorithms.

    4.2.Simulations with Dirac delta function as the initial condition

    In this subsection,the backward fractional Feynman–Kac equation(8)with a zero forcing function and Dirac delta function as the initial condition is simulated.The Dirac delta function is defined by the limit of the sequence of Gaussians

    For numerically getting the joint PDF P(x,A,t),the notation P(x,ρ,t)is reused instead of P(x,t).

    Example 3Consider

    where U(x)is taken as

    or

    or

    Suppose the joint PDF P(x,A,t)is a real function of A with P(x,A,t)=0 for A<0.The Laplace transform and its inversion formula are defined as

    where ν>0 is arbitrary,but is greater than the real parts of all the singularities of P(x,ρ,t).

    Fig.1.Evolution of the modulus of errors with q=4,α=0.4,and four different step sizes(Example 2).

    Then the two marginal PDFs

    and

    are derived by the composite trapezoidal formula.

    For generating Figs.2–5,the procedure can be executed as follows.

    Step 1For each fixed α,A,and ρk(k=0,1,...,35),by employing schemes(22)–(24)with q=4,τ=h=1/200,we getat time T.

    Step 2According to the numerical method,[36]we obtain P(x,A,t).

    Step 3By making use of the composite trapezoidal formula,we get the marginal PDF J(A).

    Fig.2.J(A)for Eq.(22)with U(x)defined in Eq.(52).

    Fig.3.J(A)for Eq.(22)with U(x)defined in Eq.(53).

    Fig.4.J(A)for Eq.(22)with U(x)defined in Eq.(53).

    Fig.5.J(A)for Eq.(22)with U(x)defnied in Eq.(53).

    Figures 2–5 present the curves of the marginal PDF J(A),where we can see the areas under the curves at time T=0.5 and T=1.0 are almost the same.It implies the conservation of probability.

    The procedure of generating Figs.6–8 can be executed as follows.

    Step 1TakeU(x)as defined in Eq.(54).For each fixed α,A,and ρk(k=0,1,...,35),by employing schemes(22)–(24)with q=4,τ=h=1/200,we get P(x,ρk,t)at time T=0.2.

    Step 2According to the numerical method,[36]we obtain P(x,A,t).

    Step 3By making use of the composite trapezoidal formula,we have the marginal PDF K(x).

    Step 4Letting U(x)=0 and using schemes(22)–(24)with q=4,we obtain the solution of the fractional Fokker–Planck equation KK(x).

    Figures 6–8 depict the marginal PDF K(x),as well as the numerical solution of fractional Fokker–Planck equation KK(x).We can see K(x)coincides with KK(x),which further verified the effectiveness of the proposed schemes.

    Fig.6.K(x)and KK(x)for Eq.(22),respectively.

    Fig.7.K(x)and KK(x)for Eq.(22),respectively.

    Fig.8.K(x)and KK(x)for Eq.(22),respectively.

    5.Conclusion

    In this paper,compact finite difference schemes for solving the backward fractional Feynman–Kac equation are proposed. These schemes are of the q-th(q=1,2,3,4)order accuracy in time and the fourth order accuracy in space,respectively.

    By generalizing the inner product in Ref.[18]to complex space,we prove that the first-order time discretization scheme is unconditionally stable and convergent in maximum norm.For all the schemes proposed,from first to fourth order approximations in temporal direction,abundant numerical experiments are carried out to verify the theoretical analysis and their effectiveness.Moreover,the derived errors and convergence orders are compared with the corresponding results obtained in Ref.[31],which shows that the method in this work is more accurate and efficient. Also,the problem with Dirac delta function as the initial condition is simulated.By employing the algorithm of numerical inversion of Laplace transforms[36]and the composite trapezoidal formula,we draw the curves of the marginal PDFs,as well as the numerical solution of the fractional Fokker–Planck equation,which further confirm the effectiveness of our methods.

    好男人电影高清在线观看| 老熟妇仑乱视频hdxx| 国产国语露脸激情在线看| 久久久久精品人妻al黑| 在线观看一区二区三区激情| 国产精品久久久久久精品电影小说| 成人18禁高潮啪啪吃奶动态图| 午夜老司机福利片| 亚洲中文av在线| 国产伦理片在线播放av一区| 日韩欧美国产一区二区入口| 日韩免费高清中文字幕av| 午夜免费鲁丝| 久久久久国产一级毛片高清牌| 99久久国产精品久久久| 成年人黄色毛片网站| 免费女性裸体啪啪无遮挡网站| 免费在线观看完整版高清| 国产精品麻豆人妻色哟哟久久| 成人av一区二区三区在线看| 欧美性长视频在线观看| 黄色丝袜av网址大全| 久久久久久久久久久久大奶| 亚洲人成77777在线视频| 亚洲精品美女久久久久99蜜臀| 精品一区二区三卡| 亚洲五月色婷婷综合| 欧美乱码精品一区二区三区| 多毛熟女@视频| 精品久久久久久电影网| 又大又爽又粗| 精品少妇黑人巨大在线播放| 国产不卡一卡二| 在线亚洲精品国产二区图片欧美| 久热爱精品视频在线9| 一级a爱视频在线免费观看| 亚洲专区字幕在线| 亚洲欧美日韩高清在线视频 | 久久久久久免费高清国产稀缺| 手机成人av网站| 成人永久免费在线观看视频 | 国产日韩欧美在线精品| 狠狠精品人妻久久久久久综合| 成年版毛片免费区| 搡老熟女国产l中国老女人| 国产精品一区二区免费欧美| 午夜成年电影在线免费观看| 99热国产这里只有精品6| 男女边摸边吃奶| 91av网站免费观看| 99精品欧美一区二区三区四区| 欧美老熟妇乱子伦牲交| 午夜福利欧美成人| 亚洲av成人不卡在线观看播放网| 国产成人欧美| 侵犯人妻中文字幕一二三四区| 久久国产亚洲av麻豆专区| 日日爽夜夜爽网站| 窝窝影院91人妻| 久久青草综合色| 亚洲精品av麻豆狂野| 亚洲第一欧美日韩一区二区三区 | 国产高清国产精品国产三级| 夜夜夜夜夜久久久久| 欧美人与性动交α欧美精品济南到| 久久久久国内视频| 欧美精品一区二区大全| 极品教师在线免费播放| 男女床上黄色一级片免费看| 他把我摸到了高潮在线观看 | 国内毛片毛片毛片毛片毛片| 国产精品香港三级国产av潘金莲| 丰满饥渴人妻一区二区三| 国产精品熟女久久久久浪| 国产一区二区 视频在线| 国产麻豆69| 亚洲国产av新网站| 色婷婷av一区二区三区视频| 中文欧美无线码| 亚洲av第一区精品v没综合| 久久中文看片网| 午夜视频精品福利| 激情在线观看视频在线高清 | 成人特级黄色片久久久久久久 | 成年人午夜在线观看视频| 国产片内射在线| 男人操女人黄网站| 视频在线观看一区二区三区| 国产精品一区二区在线观看99| 99re6热这里在线精品视频| 国产欧美日韩一区二区三区在线| 我要看黄色一级片免费的| 一级毛片精品| 国产精品免费大片| 别揉我奶头~嗯~啊~动态视频| 亚洲国产欧美一区二区综合| 亚洲av电影在线进入| 深夜精品福利| 久久精品熟女亚洲av麻豆精品| 精品一区二区三卡| 日韩免费av在线播放| 一级a爱视频在线免费观看| 亚洲午夜精品一区,二区,三区| 精品少妇久久久久久888优播| 国产亚洲欧美精品永久| 国产欧美日韩综合在线一区二区| 久9热在线精品视频| av超薄肉色丝袜交足视频| 成在线人永久免费视频| 国产一区二区三区综合在线观看| 精品少妇黑人巨大在线播放| 国产av一区二区精品久久| 欧美av亚洲av综合av国产av| 99久久人妻综合| 一个人免费看片子| 美女视频免费永久观看网站| 午夜两性在线视频| 亚洲欧美一区二区三区久久| 怎么达到女性高潮| 黑人欧美特级aaaaaa片| 青青草视频在线视频观看| 久久国产精品人妻蜜桃| 黄色丝袜av网址大全| 一级毛片电影观看| 国产精品亚洲av一区麻豆| 亚洲国产av影院在线观看| 欧美乱妇无乱码| 亚洲av欧美aⅴ国产| 国产精品 国内视频| 一级片免费观看大全| 高清黄色对白视频在线免费看| 久久精品成人免费网站| 黄片大片在线免费观看| 久久性视频一级片| 青草久久国产| 桃红色精品国产亚洲av| 免费人妻精品一区二区三区视频| 香蕉国产在线看| 这个男人来自地球电影免费观看| 视频在线观看一区二区三区| 久久性视频一级片| 一区二区三区精品91| 国产黄频视频在线观看| 欧美在线黄色| 午夜老司机福利片| 国产亚洲精品一区二区www | 午夜福利一区二区在线看| 欧美变态另类bdsm刘玥| 国产91精品成人一区二区三区 | 久久国产精品人妻蜜桃| 免费在线观看日本一区| 中文字幕高清在线视频| 啦啦啦视频在线资源免费观看| 高潮久久久久久久久久久不卡| xxxhd国产人妻xxx| 中文字幕高清在线视频| 91九色精品人成在线观看| 水蜜桃什么品种好| 午夜精品国产一区二区电影| 亚洲成人免费av在线播放| 亚洲精品久久成人aⅴ小说| 亚洲成人国产一区在线观看| 老司机影院毛片| 中国美女看黄片| 午夜精品久久久久久毛片777| 欧美成人免费av一区二区三区 | 欧美在线一区亚洲| 一级,二级,三级黄色视频| 91国产中文字幕| 亚洲人成电影免费在线| 国产成人av教育| 免费久久久久久久精品成人欧美视频| 亚洲综合色网址| 一级毛片电影观看| 热re99久久国产66热| 一级毛片精品| 精品福利观看| 女人高潮潮喷娇喘18禁视频| 国产高清激情床上av| 久久精品人人爽人人爽视色| 国产免费福利视频在线观看| 又大又爽又粗| 日本wwww免费看| 91老司机精品| 免费在线观看视频国产中文字幕亚洲| 黄色 视频免费看| 新久久久久国产一级毛片| 日韩欧美一区视频在线观看| 男女床上黄色一级片免费看| 欧美日韩亚洲综合一区二区三区_| 麻豆av在线久日| 精品一区二区三区四区五区乱码| 亚洲欧洲精品一区二区精品久久久| 色综合婷婷激情| 国产视频一区二区在线看| 亚洲美女黄片视频| 久久天堂一区二区三区四区| 久久国产精品大桥未久av| 男人操女人黄网站| 夜夜夜夜夜久久久久| 精品欧美一区二区三区在线| 国产高清国产精品国产三级| 香蕉久久夜色| 成人特级黄色片久久久久久久 | 亚洲久久久国产精品| 欧美激情高清一区二区三区| 美女扒开内裤让男人捅视频| 熟女少妇亚洲综合色aaa.| 黄色毛片三级朝国网站| 热99国产精品久久久久久7| 婷婷成人精品国产| tube8黄色片| 国产在线免费精品| 国产黄色免费在线视频| 菩萨蛮人人尽说江南好唐韦庄| 多毛熟女@视频| 久久国产亚洲av麻豆专区| 亚洲欧美激情在线| 天天影视国产精品| 国产精品二区激情视频| 俄罗斯特黄特色一大片| 波多野结衣一区麻豆| 在线播放国产精品三级| 啦啦啦视频在线资源免费观看| 日韩中文字幕欧美一区二区| 天天影视国产精品| 一个人免费在线观看的高清视频| 最新的欧美精品一区二区| 久久久久久亚洲精品国产蜜桃av| 久久久久久久久免费视频了| 亚洲va日本ⅴa欧美va伊人久久| 蜜桃国产av成人99| 一个人免费看片子| 十八禁网站免费在线| 欧美精品人与动牲交sv欧美| 日本一区二区免费在线视频| 美女扒开内裤让男人捅视频| netflix在线观看网站| 国产成人欧美| 久热这里只有精品99| 亚洲精品美女久久av网站| 久久精品91无色码中文字幕| 久久午夜亚洲精品久久| 操美女的视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧美网| 老司机亚洲免费影院| 丝袜在线中文字幕| 午夜福利乱码中文字幕| 91成年电影在线观看| 成人手机av| 少妇的丰满在线观看| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女 | 婷婷成人精品国产| h视频一区二区三区| 五月开心婷婷网| 两性夫妻黄色片| 午夜激情久久久久久久| 亚洲欧美一区二区三区久久| 欧美成人午夜精品| 亚洲成人免费av在线播放| 捣出白浆h1v1| 亚洲av欧美aⅴ国产| 久久精品国产99精品国产亚洲性色 | 国产在视频线精品| 热99国产精品久久久久久7| 免费黄频网站在线观看国产| 老司机影院毛片| 午夜老司机福利片| 一区二区三区乱码不卡18| 中文字幕制服av| 捣出白浆h1v1| 黄片大片在线免费观看| 一级片'在线观看视频| 夜夜骑夜夜射夜夜干| 国产深夜福利视频在线观看| 十八禁网站网址无遮挡| 桃红色精品国产亚洲av| 正在播放国产对白刺激| 老熟妇乱子伦视频在线观看| tube8黄色片| 天堂中文最新版在线下载| 亚洲国产av影院在线观看| 日日夜夜操网爽| 欧美亚洲日本最大视频资源| 久久天堂一区二区三区四区| 免费观看a级毛片全部| 亚洲成国产人片在线观看| 色播在线永久视频| 中文字幕制服av| 99re6热这里在线精品视频| bbb黄色大片| 超碰成人久久| 啦啦啦免费观看视频1| 国产精品偷伦视频观看了| 欧美精品av麻豆av| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品第一综合不卡| 成人免费观看视频高清| 中文欧美无线码| 91老司机精品| 日韩中文字幕欧美一区二区| 亚洲精品一二三| 亚洲精华国产精华精| 欧美中文综合在线视频| 老司机在亚洲福利影院| 亚洲成人免费av在线播放| 精品久久久久久久毛片微露脸| 精品国产乱码久久久久久小说| 国产精品电影一区二区三区 | 国产日韩欧美视频二区| 午夜福利,免费看| 久久午夜亚洲精品久久| 黑人欧美特级aaaaaa片| 一边摸一边做爽爽视频免费| 免费在线观看完整版高清| 免费观看a级毛片全部| 91精品国产国语对白视频| 超碰97精品在线观看| 成年版毛片免费区| videos熟女内射| 国产伦人伦偷精品视频| 老司机午夜福利在线观看视频 | 国产野战对白在线观看| 午夜福利在线免费观看网站| 国产一区二区在线观看av| 丝袜美足系列| 91字幕亚洲| av有码第一页| 午夜精品久久久久久毛片777| 亚洲中文日韩欧美视频| 色在线成人网| 亚洲av日韩在线播放| 国产精品 欧美亚洲| 手机成人av网站| 成年动漫av网址| 亚洲黑人精品在线| 精品欧美一区二区三区在线| 黄色成人免费大全| 日韩欧美三级三区| 日本av免费视频播放| 脱女人内裤的视频| 国产深夜福利视频在线观看| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 侵犯人妻中文字幕一二三四区| 在线观看免费视频网站a站| 一边摸一边抽搐一进一小说 | 两个人看的免费小视频| 国产成人欧美| 亚洲中文av在线| 久久久国产成人免费| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 在线看a的网站| 欧美中文综合在线视频| 久久久精品区二区三区| 久久久水蜜桃国产精品网| 操出白浆在线播放| 亚洲欧美一区二区三区久久| 搡老岳熟女国产| 欧美精品一区二区大全| 制服人妻中文乱码| 中文亚洲av片在线观看爽 | 深夜精品福利| 国产av又大| 精品国产国语对白av| av欧美777| 如日韩欧美国产精品一区二区三区| 中文字幕av电影在线播放| 成人av一区二区三区在线看| 黄色视频,在线免费观看| 一区二区三区精品91| 国产男女内射视频| 亚洲va日本ⅴa欧美va伊人久久| 久久人人97超碰香蕉20202| 精品久久久久久久毛片微露脸| 性少妇av在线| 老熟妇乱子伦视频在线观看| 十八禁网站网址无遮挡| 亚洲免费av在线视频| 亚洲欧美一区二区三区久久| 丁香欧美五月| a在线观看视频网站| 精品国产乱子伦一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 日本a在线网址| 亚洲欧洲日产国产| 黄色 视频免费看| 人人妻人人澡人人爽人人夜夜| 久久久久久亚洲精品国产蜜桃av| 美女国产高潮福利片在线看| 国产主播在线观看一区二区| 久久精品亚洲av国产电影网| 成人精品一区二区免费| 久久久国产欧美日韩av| 久久亚洲真实| 黄色丝袜av网址大全| 国产高清视频在线播放一区| 在线看a的网站| 久久热在线av| 日本五十路高清| 十八禁人妻一区二区| 日日夜夜操网爽| 欧美黑人精品巨大| 国产成人av教育| 国产精品98久久久久久宅男小说| 美女高潮到喷水免费观看| 三级毛片av免费| 色播在线永久视频| 啦啦啦中文免费视频观看日本| 老司机福利观看| 免费不卡黄色视频| 午夜福利在线观看吧| 国产精品二区激情视频| avwww免费| 亚洲精品自拍成人| 午夜免费鲁丝| 波多野结衣av一区二区av| 18在线观看网站| 91九色精品人成在线观看| 国产91精品成人一区二区三区 | 水蜜桃什么品种好| 亚洲中文av在线| 国产aⅴ精品一区二区三区波| 涩涩av久久男人的天堂| 亚洲精品自拍成人| 精品少妇内射三级| 亚洲av美国av| 成人三级做爰电影| 日韩免费av在线播放| 51午夜福利影视在线观看| 黄色毛片三级朝国网站| 18禁国产床啪视频网站| 女人精品久久久久毛片| 一边摸一边做爽爽视频免费| 国内毛片毛片毛片毛片毛片| 国产亚洲午夜精品一区二区久久| 亚洲 国产 在线| 国产成人精品久久二区二区91| 久久青草综合色| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 9热在线视频观看99| 国产成人精品在线电影| 亚洲精品国产一区二区精华液| 一区二区三区激情视频| 亚洲精品中文字幕一二三四区 | 热99久久久久精品小说推荐| 亚洲国产av新网站| 男女下面插进去视频免费观看| 三级毛片av免费| 国产精品亚洲一级av第二区| 久久人妻熟女aⅴ| 啦啦啦视频在线资源免费观看| 黄片小视频在线播放| 国产成人欧美在线观看 | 亚洲三区欧美一区| 少妇裸体淫交视频免费看高清 | 国产99久久九九免费精品| 成年动漫av网址| 色婷婷av一区二区三区视频| 又紧又爽又黄一区二区| 国产有黄有色有爽视频| 精品国内亚洲2022精品成人 | 女同久久另类99精品国产91| 亚洲欧美一区二区三区黑人| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 久久精品国产99精品国产亚洲性色 | 嫁个100分男人电影在线观看| 精品久久久精品久久久| 国产精品免费一区二区三区在线 | 亚洲av日韩精品久久久久久密| 男女高潮啪啪啪动态图| 丝袜喷水一区| 亚洲国产av新网站| 国产亚洲一区二区精品| 天堂中文最新版在线下载| 亚洲 欧美一区二区三区| 亚洲精品一二三| 欧美成人免费av一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 精品乱码久久久久久99久播| 国产亚洲午夜精品一区二区久久| 亚洲精品久久成人aⅴ小说| 国产单亲对白刺激| 久久精品国产a三级三级三级| 波多野结衣一区麻豆| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 丰满少妇做爰视频| 啦啦啦 在线观看视频| 久久热在线av| 精品人妻在线不人妻| 国产亚洲欧美精品永久| 日韩成人在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 亚洲精品中文字幕一二三四区 | 露出奶头的视频| 丰满迷人的少妇在线观看| 在线永久观看黄色视频| 日韩中文字幕视频在线看片| 亚洲伊人色综图| 热99re8久久精品国产| 不卡一级毛片| 黄片大片在线免费观看| 精品福利观看| 人成视频在线观看免费观看| a级毛片黄视频| 亚洲av电影在线进入| 国精品久久久久久国模美| 国产91精品成人一区二区三区 | 人人妻,人人澡人人爽秒播| 国产极品粉嫩免费观看在线| 老汉色∧v一级毛片| 高清毛片免费观看视频网站 | 国产欧美日韩一区二区三| 成人国语在线视频| 亚洲伊人色综图| 久9热在线精品视频| 国产无遮挡羞羞视频在线观看| 国产黄色免费在线视频| 欧美日韩精品网址| 中文字幕人妻丝袜制服| 国产亚洲午夜精品一区二区久久| 免费看a级黄色片| 成人手机av| 国产亚洲一区二区精品| 男女免费视频国产| 国产在视频线精品| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 99国产精品免费福利视频| 在线播放国产精品三级| 日韩欧美一区二区三区在线观看 | 欧美日韩亚洲综合一区二区三区_| 亚洲av片天天在线观看| 女性生殖器流出的白浆| 精品少妇内射三级| 90打野战视频偷拍视频| 久久青草综合色| 亚洲熟妇熟女久久| 人人妻人人添人人爽欧美一区卜| 国产免费av片在线观看野外av| 国产精品免费大片| 日韩 欧美 亚洲 中文字幕| 午夜激情久久久久久久| 国产不卡一卡二| 国产高清videossex| 在线永久观看黄色视频| 夫妻午夜视频| avwww免费| av网站在线播放免费| 久久狼人影院| 欧美一级毛片孕妇| 日韩 欧美 亚洲 中文字幕| 中文字幕色久视频| 搡老岳熟女国产| av又黄又爽大尺度在线免费看| tube8黄色片| 夜夜夜夜夜久久久久| 亚洲美女黄片视频| 精品一区二区三区四区五区乱码| 在线亚洲精品国产二区图片欧美| 久久天躁狠狠躁夜夜2o2o| 一边摸一边做爽爽视频免费| 免费人妻精品一区二区三区视频| 精品国产超薄肉色丝袜足j| 最新的欧美精品一区二区| 一边摸一边做爽爽视频免费| 国产精品成人在线| 妹子高潮喷水视频| 操出白浆在线播放| 免费看a级黄色片| 亚洲成a人片在线一区二区| 91字幕亚洲| aaaaa片日本免费| 丝袜喷水一区| 欧美一级毛片孕妇| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| 国产不卡一卡二| 国产精品 欧美亚洲| 久久久欧美国产精品| svipshipincom国产片| 国产精品久久久人人做人人爽| 色综合欧美亚洲国产小说| 97在线人人人人妻| 操美女的视频在线观看| 国产精品麻豆人妻色哟哟久久| 2018国产大陆天天弄谢| 日韩欧美一区视频在线观看| 成人18禁在线播放| 欧美黑人欧美精品刺激| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 超碰成人久久| 国产精品 国内视频| 日本黄色视频三级网站网址 | 久久人妻福利社区极品人妻图片| 99九九在线精品视频| 久久中文字幕人妻熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩视频在线欧美| 午夜久久久在线观看| 国产不卡av网站在线观看| 黑人欧美特级aaaaaa片| 五月开心婷婷网| 国产亚洲精品一区二区www | videosex国产| 中文字幕精品免费在线观看视频| 美女午夜性视频免费|