申須仁,董名揚(yáng),王朝勇,王 杰,周 強(qiáng),3*
(1.吉首大學(xué)植物資源保護(hù)與利用湖南省高校重點(diǎn)實(shí)驗(yàn)室,湖南 吉首 416000;2.錳鋅釩產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心,湖南 吉首416000;3.錳鋅礦業(yè)重金屬污染綜合防治技術(shù)湖南省工程實(shí)驗(yàn)室,湖南 吉首 416000)
錳(Mn)是植物代謝過程中必需的微量元素,當(dāng)Mn含量超標(biāo)時,植物會發(fā)生Mn毒反應(yīng),對植物的產(chǎn)量、生長發(fā)育、光合作用、礦質(zhì)營養(yǎng)吸收等生理代謝活動均產(chǎn)生負(fù)面的影響[1-2]。Mn毒害也被認(rèn)為是限制植物在酸性及漬水土壤生長的重要因素[3]。在我國南方地區(qū)的酸性土壤中、pH較低的水稻土壤中以及Mn礦區(qū)及尾渣庫區(qū)的土壤中,Mn離子大量積累,對農(nóng)作物生長及農(nóng)產(chǎn)品環(huán)境安全造成巨大的危害[4]。尤其是在礦區(qū),Mn元素可以通過各種途徑進(jìn)入農(nóng)田土壤中[5],灌溉農(nóng)田土壤中Mn含量可達(dá)5700 mg·kg-1,其最大值可達(dá)10 000 mg·kg-1。礦渣堆周邊的農(nóng)田土壤Mn含量也接近1000 mg·kg-1,蔬菜中的Mn含量超過正常值5~80倍,亟待治理[6-7]。
近年來,重金屬植物修復(fù)技術(shù)日益受到社會的重視和關(guān)注[8]。香根草[Vetiveria zizanioides(L.)Nash]是禾本科香根草屬多年生C4類草本植物,根系發(fā)達(dá)、生物量大,每年干草產(chǎn)量可達(dá)100 t·hm-2。能夠適應(yīng)旱澇、酸堿等多種環(huán)境,并對多種重金屬都有較強(qiáng)的耐受和積累能力,已廣泛應(yīng)用于環(huán)境修復(fù)領(lǐng)域[9-10]。其在農(nóng)田生態(tài)系統(tǒng)中也有較廣泛的應(yīng)用。通過與作物間作,香根草可以防止農(nóng)田水土流失、誘集作物害蟲、修復(fù)多環(huán)芳烴污染土壤等[11-12]。所以,香根草在農(nóng)業(yè)及廢棄地的生態(tài)修復(fù)領(lǐng)域有著良好的應(yīng)用前景。但目前對于采用植物修復(fù)技術(shù)治理高M(jìn)n污染的基礎(chǔ)和應(yīng)用研究較少,香根草對高M(jìn)n脅迫耐受和生理響應(yīng)也未見報道。所以,本文采用實(shí)驗(yàn)室水培試驗(yàn),研究高M(jìn)n脅迫對香根草礦質(zhì)元素吸收和光合系統(tǒng)的影響,揭示香根草對高M(jìn)n脅迫的耐受范圍、Mn積累特征及生理響應(yīng),以期為香根草用于高M(jìn)n污染地區(qū)環(huán)境修復(fù)提供科學(xué)依據(jù)。
試驗(yàn)所用香根草由試驗(yàn)室長年種植在未受污染的苗圃中,在試驗(yàn)準(zhǔn)備階段,將分蘗繁殖得到的香根草幼苗單株培養(yǎng),挑選長勢健壯的香根草(苗齡5個月)置于1/2Hoagland營養(yǎng)液中培養(yǎng),待其恢復(fù)生長后進(jìn)行Mn脅迫處理。
每3株香根草固定于1個500 mL塑料盆中,以1/2Hoagland營養(yǎng)液作為培養(yǎng)液,Mn以MnSO4·H2O的形式直接加入營養(yǎng)液中。以1/2Hoagland營養(yǎng)液作為對照處理,其他處理組的Mn濃度分別為:15、30、60、120 mmol·L-1,營養(yǎng)液pH調(diào)節(jié)至5.8,并隔日更換。于植物培養(yǎng)箱中生長60 d。培養(yǎng)條件為晝夜溫度分別為(28±2)℃和(22±2)℃;白晝16 h·d-1;光照強(qiáng)度1000 μmol·m-2·s-1。每處理設(shè)置3個重復(fù)(即每處理3盆9株苗)。
將植物用去離子水多次沖洗,吸干表面水分稱鮮質(zhì)量。分離根、葉組織,在105℃下殺青20 min,70℃下烘48 h至恒質(zhì)量,冷卻至室溫后稱干質(zhì)量(即整個植株干物質(zhì)質(zhì)量)。植物含水率=(鮮質(zhì)量-干質(zhì)量)/鮮質(zhì)量×100%。植物株高用卷尺測量基部到葉片最高點(diǎn)的高度。采用SPAD-502葉綠素儀(Konica Minolta Sensing,日本)夾取植物倒3或倒4葉的1/4處和3/4處測量植物SPAD值。
將香根草干樣粉碎過60目篩。稱取0.1 g并加入HNO3和HClO4(V∶V=4∶1)靜置6~8 h,然后于石墨消解儀消煮至溶液澄清,冷卻并定容于25 mL,再經(jīng)濾紙過濾,于安捷倫240fs火焰原子吸收光譜儀(安捷倫,美國)測定礦質(zhì)元素含量[13];以24種金屬元素混合標(biāo)準(zhǔn)液(GSB04-1767-2004)配制5個梯度濃度的標(biāo)準(zhǔn)液,制作標(biāo)準(zhǔn)曲線。每測定5~10個樣品,將儀器重新置零,并測量一個濃度的標(biāo)準(zhǔn)品,以監(jiān)測儀器的穩(wěn)定性。
Mn的根系富集系數(shù)=Croot/Csolution
Mn的轉(zhuǎn)移系數(shù)=Cleaf/Croot×100%
富集量=Wroot×Croot+Wleaf×Croot
式中:Csolution表示培養(yǎng)液中的Mn含量;Croot表示根中的Mn含量;Cleaf表示葉中的Mn含量;Wroot表示根的干物質(zhì)量;Wleaf表示葉的干物質(zhì)量。
采用Li-6400便攜式光合儀(LICOR,美國)于9:30—11:00進(jìn)行測定,植物先在陽光下進(jìn)行充分光誘導(dǎo),然后進(jìn)行光合測量。葉室光強(qiáng)根據(jù)環(huán)境光強(qiáng)設(shè)置為 1300 μmol·m-2·s-1,凈光合速率(Pn)、氣孔導(dǎo)度(Cond)、胞間二氧化碳濃度(Ci)、蒸騰速率(Trmmol)均從儀器直接讀取。
圖1不同濃度Mn對香根草SPAD值(A)、葉片含水率(B)、株高(C)和植株干物質(zhì)質(zhì)量(D)的影響Figure 1 Effects of different concentrations of manganese on SPAD(A),leaf water content(B),plant height(C)and plant dry weight(D)of vetiver grass
采用PAM-2500(Walz,德國)于20:00以后進(jìn)行測定,植物先放置在黑暗環(huán)境下進(jìn)行30 min暗適應(yīng)。梯度作用光強(qiáng)為 8、16、32、90、165、245、325、430、580、770、1100、1400、1700 μmol·m-2·s-1,測定間隔為30 s。PSⅡ最大光化學(xué)效率(Fv/Fm)、潛在最大電子傳導(dǎo)率(ETRmax)直接從儀器上讀取,PSⅡ?qū)嶋H光化學(xué)效率[Y(Ⅱ)]、調(diào)節(jié)性主動耗散[Y(NPQ)]、非調(diào)節(jié)性被動能量耗散[Y(NO)]均通過系統(tǒng)自動擬合得出。
以上試驗(yàn)數(shù)據(jù)使用SPSS 20.0進(jìn)行Tukey算法以及多重比較分析,顯著性水平為P<0.05,數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)誤表示。并采用該軟件中Pearson相關(guān)系數(shù)和雙側(cè)顯著性檢驗(yàn)進(jìn)行相關(guān)性分析。
與對照相比,15、30 mmol·L-1Mn處理中,SPAD略微下降,但未達(dá)到顯著差異水平;當(dāng)Mn處理濃度在60 mmol·L-1和120 mmol·L-1時其出現(xiàn)顯著性下降,且在120 mmol·L-1時,SPDA值最低,僅為對照的35.5%(圖1A)。而香根草的含水率、株高、植株干物質(zhì)質(zhì)量在Mn處理濃度≥30 mmol·L-1時即出現(xiàn)明顯的降低,株高、植株干物質(zhì)質(zhì)量下降已達(dá)到顯著差異水平。隨著Mn處理濃度的增加,3個參數(shù)下降的幅度更大。在120 mmol·L-1時,其分別為對照組的51.5%、70.3%和50.5%(圖1B、圖1C、圖1D)。
Mn處理的根、葉中Mn含量均顯著高于對照。在根部,30~120 mmol·L-1處理組間的Mn含量沒有明顯差異,且顯著高于15 mmol·L-1Mn處理組(圖2A)。而在葉中,15~60 mmol·L-1處理組間的Mn含量沒有明顯差異,但在120 mmol·L-1Mn處理時出現(xiàn)大幅度上升(圖2B)。其轉(zhuǎn)移系數(shù)的變化與葉片中的Mn含量變化一致。在15~60 mmol·L-1Mn處理下,轉(zhuǎn)移系數(shù)為24.5%~28.1%,在120 mmol·L-1時,轉(zhuǎn)移系數(shù)增加至66.5%(圖2C)。香根草根系對Mn的富集系數(shù)隨著Mn處理濃度的增加而顯著降低,在120 mmol·L-1時降至2.9;Mn處理下根系的Mn富集系數(shù)始終大于1(圖2D)。而富集量則在99.9~135.1 mg·株-1間波動。其中,120 mmol·L-1處理下的富集量要顯著高于30、60 mmol·L-1處理(圖2E)。
圖2 不同濃度Mn對香根草根葉中錳含量、富集系數(shù)和轉(zhuǎn)移系數(shù)的影響Figure 2 Effects of different concentrations of manganese on manganese content in roots and leaves,and transfer coefficients enrichment coefficients and bioaccumulation quantity
Mn處理的根、葉中K含量呈現(xiàn)下降的趨勢,當(dāng)處理濃度≥30 mmol·L-1時,達(dá)到顯著性差異,其中,根中K含量的下降幅度遠(yuǎn)大于葉中(圖3A)。根中的Mg含量在Mn處理下顯著下降,僅為對照的25.5%~39.4%,且Mn處理組之間的變化較?。▓D3B)。根的Fe含量則與Mg的變化相反,在Mn處理下呈現(xiàn)出不同程度的增幅,比對照組增加了1.9~3.9倍(圖3C)。與對照相比,葉中Mg和Fe的含量在各處理組有上升和下降不同的變化,但變化幅度總體不大(圖3B、圖3C)。
圖3 不同濃度Mn對香根草K、Mg、Fe吸收的影響Figure 3 Effect of different concentrations of manganese on the absorption of K,Mg and Fe in vetiver grass
與對照組相比,Mn處理下Pn顯著降低了37.3%~81.0%,并隨著Mn濃度的增加而總體呈下降趨勢。尤其在120 mmol·L-1處理組,其Pn值僅為對照的19.0%(圖4A)。與Pn變化趨勢相反,Ci在Mn處理下顯著高于對照,且Mn處理組間的Ci較為相似(圖4C)。Trmmol和Cond的變化趨勢一致,在15 mmol·L-1處理組中,其與對照組無明顯變化,在30、60 mmol·L-1處理下則出現(xiàn)一定程度的增加,但在120 mmol·L-1處理下則出現(xiàn)大幅度的下降,并顯著低于對照水平(圖4B、圖4D)。
Mn處理下香根草的Fv/Fm和ETRmax均呈現(xiàn)下降的趨勢。ETRmax在15 mmol·L-1處理下即出現(xiàn)顯著的下降,在60~120 mmol·L-1下降的幅度更大(圖5B)。而Fv/Fm在15~30 mmol·L-1處理下保持穩(wěn)定,當(dāng)Mn濃度上升至60、120 mmol·L-1時,其顯著低于對照組(圖5A)。隨著光強(qiáng)的增加,Y(Ⅱ)呈現(xiàn)下降的趨勢,而Y(NPQ)呈現(xiàn)上升的趨勢,Y(NO)基本保持穩(wěn)定。Mn處理組的Y(Ⅱ)均低于對照,而Y(NO)均高于對照(圖5C、圖5E);15、30 mmol·L-1Mn脅迫下,Y(NPQ)接近或低于對照;而30~120 mmol·L-1Mn脅迫下,Y(NPQ)總體高于對照(圖5D)。
過量的Mn會對植物產(chǎn)生一系列的生理毒害作用,多數(shù)植物對Mn的耐受濃度通常低于15 mmol·L-1。僅有水蓼[15]、木荷[16]等Mn超富集植物能夠耐受高濃度的Mn脅迫??紤]到礦區(qū)土壤中可能存在高濃度的Mn離子,所以,本研究中設(shè)置的Mn處理濃度達(dá)到了120 mmol·L-1,與金政等[16]在木荷研究使用Mn濃度接近。PSⅡ的最大量子產(chǎn)量(Fv/Fm)是衡量原初光能捕獲的最大能力的指標(biāo),植物處于逆境下,F(xiàn)v/Fm下降,其直接反映植物受到外界脅迫程度[17]。植物葉綠素含量降低也是高M(jìn)n導(dǎo)致的脅迫傷害癥狀之一[18]。諸多研究表明在Mn脅迫下植物的Fv/Fm和葉綠素含量會明顯下降[19-20]。本研究發(fā)現(xiàn),香根草Fv/Fm(圖5A)和SPAD(圖1A)在15~60 mmol·L-1內(nèi)接近正常水平,植株干物質(zhì)量(圖1D)也能維持在對照的77.6%~88.1%。說明香根草能夠耐受60 mmol·L-1以下的Mn環(huán)境,具有良好的Mn耐受能力。在60 mmol·L-1以下的Mn處理中,根和葉中的Mn含量分別為14 393~18 845 mg·kg-1和4118~4782 mg·kg-1;并且,根中的Mn富集系數(shù)也大于1??傮w而言,香根草有良好的Mn積累能力,遠(yuǎn)超于大多數(shù)植物(20~500 mg·kg-1)[19]。而且,在15~60 mmol·L-1的Mn環(huán)境下,根中的Mn含量已經(jīng)達(dá)到Mn超積累植物的標(biāo)準(zhǔn)(Mn含量大于10 000 mg·kg-1)[19],葉中的Mn含量達(dá)到該標(biāo)準(zhǔn)的40%。此外,試驗(yàn)中香根草Mn的富集量在15~60 mmol·L-1的Mn環(huán)境中差異不顯著,可達(dá)99.9~115.2 mg·株-1。由于試驗(yàn)用苗是苗期,其生物量并不大(對照組生物量僅23.4 g·株-1),導(dǎo)致富集量偏小,有研究報道在4株·m-2密度下,經(jīng)過8個月的生長,香根草的每株生物量可達(dá)300 g[21],據(jù)此推測,香根草在高M(jìn)n環(huán)境中富集量相當(dāng)可觀,顯示其具有用于高M(jìn)n污染環(huán)境修復(fù)的潛力。
圖4 不同濃度Mn對香根草凈光合速率、氣孔導(dǎo)度、胞間二氧化碳濃度、蒸騰速率的影響Figure 4 Effect of different concentrations of manganese on net photosynthetic rate(Pn),stomatal conductance(Cond),intercellular carbon dioxide concentration(Ci)and transpiration rate(Trmmol)of vetiver grass
在Mn處理下,香根草根部Mn的含量高于葉片,Mn轉(zhuǎn)移系數(shù)為24.5%~28.1%(圖2A、圖2B、圖2D),說明香根草的根部是富集Mn的主要器官,劉云國等[22]的研究也表明香根草根部是Cd離子的主要富集部位。隨著Mn濃度的增加,根、葉中Mn含量表現(xiàn)出不一樣的變化。在30~120 mmol·L-1Mn處理下根中的Mn含量保持穩(wěn)定(圖2A)。在15~60 mmol·L-1處理下葉中的Mn含量和轉(zhuǎn)移系數(shù)無顯著差異;但在120 mmol·L-1處理下,葉中Mn含量和轉(zhuǎn)移系數(shù)均出現(xiàn)大幅度的增加(圖2B、圖2D)。結(jié)果表明在一定Mn濃度內(nèi),香根草根、葉中的Mn離子并沒有隨著Mn處理濃度的增加而遞增。在木荷的根中也發(fā)現(xiàn)了類似的現(xiàn)象[16]。這可能是在高M(jìn)n環(huán)境中,香根草存在著限制Mn吸收和向葉片轉(zhuǎn)運(yùn)的機(jī)制。在超高M(jìn)n濃度下(120 mmol·L-1),可能由于該機(jī)制受到破壞,才導(dǎo)致Mn離子向地上部位運(yùn)輸增加,葉中Mn離子大量積累。
Mn過量會產(chǎn)生大量的活性氧,破壞葉綠素,影響PSⅠ與PSⅡ的活性,降低植物的光合速率[23]。水稻等農(nóng)作物在Mn毒害下光合速率會顯著降低,光合系統(tǒng)的有關(guān)基因表達(dá)會發(fā)生改變[24-25],本研究發(fā)現(xiàn),香根草光合作用受抑制程度與Mn處理濃度、根、葉中Mn含量呈極顯著負(fù)相關(guān)(表1)。Pn顯著下降,Ci顯著增高(圖4A、圖4C),同時,ETRmax、Y(Ⅱ)也顯著下降(圖5B、圖5C),這說明造成香根草光合速率下降的主要因素并不是氣孔受限,而是光合系統(tǒng)和光合代謝活動受到了損傷。在Mn脅迫下,隨著光照強(qiáng)度的增加,Y(NO)保持穩(wěn)定,而Y(NPQ)顯著增加(圖5D、圖5E),表明PSⅡ以熱耗散等保護(hù)性調(diào)節(jié)機(jī)制消耗的光能增加。Y(NPQ)的增加是植物的一種保護(hù)機(jī)制[26]。梁文斌等[19]也認(rèn)為是Mn超積累植物垂序商陸的保護(hù)機(jī)制之一。
圖5 不同濃度Mn對香根草光系統(tǒng)Ⅱ最大光化學(xué)效率(Fv/Fm)、潛在最大相對電子傳遞速率(ETRmax)、光系統(tǒng)量子效率[Y(Ⅱ)]、光系統(tǒng)Ⅱ調(diào)節(jié)性能量耗散[Y(NPQ)]、光系統(tǒng)Ⅱ非調(diào)節(jié)性能量耗散[Y(NO)]的影響Figure 5 Effects of different concentrations of manganese on maximum photochemical efficiency(Fv/Fm),potential maximum relative electron conductivity(ETRmax),quantum efficiency of photosystem Ⅱ [Y(Ⅱ)],down-regulation energy dissipation[Y(NPQ)],non-light induced energy dissipation[Y(NO)]of vetiver grass
植物體內(nèi)礦質(zhì)元素平衡是其正常生長發(fā)育的必要條件,重金屬脅迫會改變植物體內(nèi)礦質(zhì)元素的吸收與分布[27]。本研究選取了大量元素K、中量元素Mg、微量元素Fe作為陽離子礦質(zhì)元素的代表進(jìn)行分析,結(jié)果顯示,在高濃度Mn脅迫下,植物體內(nèi)的3種元素在根、葉中表現(xiàn)出不同的變化趨勢。在葉中,除K含量有一定程度的降低外(圖3A),Mg和Fe的含量基本維持穩(wěn)定(圖3B、圖3C)。但在根中,K和Mg的含量均出現(xiàn)大幅度下降(圖3A、圖3B),而Fe則顯著增加(圖3C)。相關(guān)性分析發(fā)現(xiàn),根、葉中的K含量和根中的Mg含量與根、葉中Mn的含量呈極顯著負(fù)相關(guān)(表1)。這可能是因?yàn)楦進(jìn)n能抑制植物對K、Mg的吸收[28-29]。本試驗(yàn)發(fā)現(xiàn)根、葉中K含量與植株干物質(zhì)質(zhì)量和Fv/Fm呈極顯著正相關(guān)(相關(guān)系數(shù)為0.675和0.674,0.772和0.750),暗示K營養(yǎng)在香根草耐受高M(jìn)n脅迫中具有重要的作用。此外,有研究發(fā)現(xiàn)Mn脅迫下Mn耐受型水稻根、葉中的Fe含量增加[28]。香根草根中Fe含量的增加可能是Mn耐受力強(qiáng)的表現(xiàn)。但有關(guān)機(jī)制還未見報道。
表1 處理溶液及根葉中Mn含量與香根草凈光合速率、根葉中K、Mg含量的相關(guān)系數(shù)Table 1 Correlation coefficients between Mn contents in solutions,roots,leaves and net photosynthetic rate or K and Mg contents in roots,leaves of vetiver grass
香根草能夠長時間耐受60 mmol·L-1以下的Mn環(huán)境,并能夠在根、葉中積累高含量的Mn,具有修復(fù)Mn污染環(huán)境的潛力。限制Mn離子的吸收和轉(zhuǎn)運(yùn)、增加PSⅡ調(diào)節(jié)性能量耗散消耗、維持葉中Mg、Fe的相對穩(wěn)定是香根草對高M(jìn)n脅迫的適應(yīng)性響應(yīng)。