• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Magnetohydrodynamic Navier’s Slip Visco Nano fl uid Flow Induced by Rotating Disk with Heat Source/Sink

    2019-10-16 08:45:20AwaisBilalMalik3andKhalilurRehmanDepartmentofMathematicsAIRUniversitySectorAirComplexIslamabad44000Pakistan
    Communications in Theoretical Physics 2019年9期

    M.Awais,S.Bilal,M.Y.Malik,,3and Khalil-ur-RehmanDepartment of Mathematics,AIR University,Sector E-9,Air Complex,Islamabad 44000,Pakistan

    2Department of Mathematics,College of Sciences,King Khalid University,Abha 61413,Saudi Arabia

    3Department of Mathematics,Quaid-i-Azam University,Islamabad 44000,Pakistan

    (Received August 15,2018;revised manuscript received November 20,2018)

    AbstractCurrent exertion is made to depict and search out the flow features imparted to viscid fluid flow over a rotational disk.Impression of magnetic field with rotating fluid is generated by interacting it in radial direction.Nano structured particles with magnetized fluid are also incorporated in the upshot of chemical reaction and absorptive/generative heat induction.Von Kumaran procedure is executed to obtain flow narrating differential expressions.Flow pattern regarding thermal,momentum profiles are comprehended with the support of shooting method and Runge-Kutta methods.Furthermore,to get more realistic view of result description computational algorithm is modified by improving Runge-Kutta coefficients with Cash and Carp method.The aspects of flow controlling parameters like momentum slip parameter,magnetic strength parameter,Brownian motion parameter,thermophoresis parameter are adorned in sketches.Findings of these architects are accumulated in conclusion section.

    Key words:heat generation/absorption,viscous fluid model,nanoparticles,rotating disk,Navier slip,Cash and Carp method

    Nomenclature

    ?

    1 Introduction

    Mechanically fluid flow generated by rotating disc has attained prodigious attention of scientists and engineers in the recent past due to its superb applications in geophysics,aeronautical science,crystal growth process,thermal power generating system etc.Significant geophysical applications of rotating disk incorporate the subject of earth’s revolution in its orbit and magma movement.Other essential mechanical applications of rotating disk involve air purifying devices,centrifugal filtration process,biological devices,food manufacturing,rotating machinery,aero spaced field and in electrified power generated surroundings.Von Karman[1]coined the idea of rotating disc discussing fluid flow induced by it.Lately,numerical investigation on combined features of thermal and concentration transfer flow of viscid fluid by way of Darcy rotating disc was executed by Turkyilmozoglu and Senel.[2]Inspection of non-Newtonian liquid induced by rotated disc in permeable media was discussed by Guram and Anwar.[3]Rashidi et al.[4]addressed the entropy generated in viscous flow over rotated disk.Turkyilmozoglu[5]discoursed the flow generated by rotated disk in the attendance of nanostructures.Mustafa et al.[6]investigated dynamics of nanoliquid due to stretchable disk.Sheikholeslami et al.[7]studied viscous nanoliquid flow due to inclining rotated disk geometry.

    At present there is remarkable requirement of electronic devices in numerous industrial progressions.But recession in thermal conductivity of these equipments has abridged their valuable acknowledgement.Such confined products can be well-ordered by mounting new heat transfer liquids in laboratories.These engineered liquids can be prepared by accruing small solid size subdivisions into base fluids in order to aggrandize the thermophysical capability of host fluids.Researchers have concluded that with the inclusion of these small size particles the issues related to low thermal conductivity of fluids in thermal frameworks has been reduced.In view of these characteristics and promising utility nano-fluids are capitalized in thermal engineering,heat exchangers,chemical progression,cancer psychoanalysis and biomedicine etc.Enriched heat transferal proficiency can be engaged to many conspicuous solicitations comprising chilling of microelectronics such as microchips in computer processors,space refrigerating,improving the adeptness of hybrid powered engines,transformers oil cooling,and numerous others.Choi[8]shared the idea of nanofluids imparts as material for enrichment of thermal conductance.This characteristic of nanofluids has led it to diverse mechanical and biomedical uses such as in frosted engine,reducing agent for drag in refrigeration,chillers,oil engine transferal,heating and cooling of buildings,in exhaustion of boiler,fueled gas recovery,lubrication,reducing temperature in electronics,microwaved tubes,highly-powered lasers,drillers,transformer cooling oil,nuclear systems cooling and solar hydral heating.An extensive investigation of convectional transmission in this fluid was completed by Buongiorno.[9]Chen et al.[10]suggested a methodology to calculate the thermal conductivity of fluid comprising of nano-sized structures constructed on their rheological features.An extensive analysis of boundary layered flow over an exponential stretchable surface comprising of nanostructures was executed by Nadeem et al.[11]Significance of nanofluid in increasing the heavy-duty engine and automotive cooling rates was elucidated by Peyghambarzadeh et al.[12]

    The imposition or interaction of magnetic field with dynamical flows is renowned as magnetohydrodynamics and such fluids are called magnetized fluids.The fundamental concept of appliance of magnetic field is to instigate magnetic currents in movable conducting liquids,which consequently generates a resistive force on the fluid.So The analysis of fluid flows with the interaction of magnetic field has engrossed substantive focus of investigators.Such considerations is due to its utilization in various mechanical,industrial and technological processes i.e.enhanced oil recovery,magnetohydrodynamic generators,electronic packages,pumps,thermal insulators,flow meters,power generation,etc.Furthermore,the appliance of magnetic field molds the orientation of interacting fluid molecules and also controls the intensity of flow phenomenon.Due to above mentioned importance researchers are considering fluid flows in various orientations under the effect of applied magnetic field.Few recent works in this direction is described as follows.Alfven[13]was the first who described the class of MHD waves also known as Alfven waves.In fluid dynamics,magnetic flow of non-Newtonian liquids was initially examined by Sarpkaya[14]and then this work was further prolonged by many investigators.Liao[15]acquired HAM solution for non-Newtonian flow regime by way of linearly stretchable geometry under the account of magnetic field.He suggested that magnetic parameter amplifies the frictional drag coefficient.MHD stagnant flow incorporated with chemical reactive species immerse in Darcy stretchable configuration was deliberated by Mabood et al.[16]Malik et al.[17]configured the physical impact of MHD on hyperbolic tangent liquid over a stretchable cylindrical configuration.Akbar et al.[18]computationally analyzed Powel-Eyring liquid under the inspiration of magnetic field over a stretchable surface.Hayat et al.[19]addressed the analysis on magnetohydrodynamic flow of fluid on a rotating disk with slip effects.Gireesha[20]contemplated electrically conducting three dimensional Casson fluid under the impact of non-linear radiation and double diffusion aspect.They attained the computational solution of the problem by obliging Runge-Kutta method.Magnetohydrodynamic Falkner-Skan flow of a Casson nanofluid in the presence of non-linear thermal radiation and variable thermo-physical properties are investigated by Archana et al.[21]Gireesha[22]depicted analysis to scrutinize the laminar,boundary layer stagnation point flow of a nanofluid over a permeable,vertical stretching sheet by capitalizing the effects of Brownian motion with thermophoresis in the presence of uniform magnetic field,non-uniform source/sink and chemical reaction.Kumar et al.[23]adumbrated the thermo physical features of Prandtl fluid over a Riga plate in the presence of magnetic field and chemically reactive species.Archana et al.[24]interrogated the features imparted in three dimensional Maxwell fluid by non-linear radiative flux and magnetic field.

    Aforesaid extensive depictions witnesses that so far very lessliterature regarding the feature soffluid prompted by rotating rigid disk in the attendance of velocity slip,magnetic field,generative/absorptive heat and chemical reactive species are not taken into account.The generally accepted fundamental are utilized to obtain the ultimate mathematical equations.For solution purpose,a numerical method is implemented by improving it to Cash and Carp procedure.Regarding structure of the manuscript is concerned,Sec.1 is all about literature survey while Sec.2 is made to of fer mathematical treatment subject to viscous nanofluid flow due to rotating disk.The numerical scheme for present fluid flow problem is given in Sec.3.The attained interpretations are shared in Sec.4 while the corresponding graphs are given in Sec.5.The key outcomes are abridged in Sec.6.

    2 Mathematical Formulation

    Let us assume 2-dimensional,laminar,magneto hydrodynamic boundary layered flow of an incompressible viscous nanoliquid yields by rotational disk with slip condition.The disk at z=0 rotates with angular velocity vz.Velocity component along radial r-direction is vr,vθis the velocity component along tangential θ-direction and vzis velocity component along axial z-direction.An unvarying magnetic strength B0is employed in the z-direction.Flow situation is taken with chemical reactive species and generative/absorptive heat effects.The physical structure of fl ow regime via rotating disk is elucidated in accompanied Fig.1.

    Fig.1 (Color online)Schematic diagram of rotating disk.

    In the current situation the governing boundary layer equations take the following forms

    The corresponding boundary conditions are

    where ν = μ/ρfis the kinematic viscosity, μ is the dynamic viscosity,σ is the electrical conductivity of the fluid,p denotes the pressure,ρ is the density,ρfis the density of the base fluid,(ρc)pis the effective heat capacity of nanoparticles, α =k/(ρc)fis the thermal diffusivity,(ρc)fis the heat capacity,is the temperature,is the concentration,DBis the Brownian diffusion coefficient,DTis the thermophoretic diffusion coefficient,A1is the velocity slip constant,A2is the temperature jump,is the surface temperature,is the ambient temperature,is the surface concentration,is the ambient concentration,Q0is the thermal generation coefficient,and K is the rate of chemical reactive species.

    Now the subsequent dimensionless variables are as under:

    Now Eq.(1)is fully identicalized and Eqs.(2)–(8)take the accompanied forms

    the associate boundary conditions are given as:

    Here β is the magnetic field parameter, λ is the velocity slip parameter,λ1thermal slip parameter,Pr is the Prandtl number,Nb is the Brownian motion parameter,Nt is the thermophoresis parameter,H is the heat generation/absorption parameter,δcis the chemical reaction parameter and Sc is the Schmidth number.These variables are described as follows:

    The shear stress rate coefficient,local convectional transmission coefficient and local massive flux magnitude are defined as:

    in which Rer=(?r)r/2ν.

    3 Numerical Scheme

    As the consequential partial differential expressions of this problem are transformed into ordinary differential equation after applying suitable transformation.But these governing ordinary differential equations(Eqs.(11),(12),and(13))are highly nonlinear and hard to control their analytical solutions.Keeping in mind the end goal to unravel this system with associated boundary conditions we must solve it i.e.Eq.(14)by numerically.There are many numerical methods which can solve this problem but we solve this problem by shooting technique with RKF-method.For further accuracy of computed results an improvement is made by adding the coefficient of RKF method by Cash and Carp method.Hence first governing boundary value expressions are transmuted into initial value problem,thus governing equations are re-written as

    To find the numerical solution of these equations by Runge-Kutta scheme,first these equations should be transmuted into system of seven linearized ordered equations with seven unknowns,by letting

    under new variables defined in Eq.(21),are given

    The associated boundary conditions from Eq.(14)in new forms are defined in Eq.(22),take the form

    To compute the first order differential equations presented in Eq.(23)–(29)seven initial restrictions must be identifiable,but the initial conditions at s3,s5,and s7are not mentioned.Though,the boundary conditions s2(η),s4(η),and s6(η)are recommended at η → ∞ Thus,these boundary restrictions are used to capitalize three missed initial restrictions.Now,letting the missing initial conditions by ω1,ω2,ω3,and ω4,it converts the given boundary conditions into initial conditions,new conditions are deif ned as:

    Initially,the values of ω1, ω2, ω3,and ω4are chosen?1,?1,?1,and ?1 respectively.Now solve this system of seven first order ordinary differential equation with initial conditions,the Runge-Kutta-Fehlberg method is used.The Runge-Kutta 4thand 5thorder formulas derived by Fehlberg are

    where subscript 5 and 4 denote 5thand 4thorder formula.Also K1,Ki,F and Z are defined as:

    where

    In Eq.(45),determination of step size h is very important.If we take h to large,the truncation error may be unacceptable,if h is too small,then iterative process is long enough.So initially we take the value of h is 0.1 and this modified is each step.The coefficients in Runge-Kutta Fehlberg formula are defined as shown is Table 1.

    Table 1 Numerical values of the coefficient given by Cash and Carp.

    Equations(23)–(29)are solved with the 5thorder formula.The 4thorder formula is used only to estimate the truncation error,defined as:

    The computed values of s2(∞),s4(∞),s6(∞),and s8(∞)are function of ω1,ω2,ω3,and ω4i.e.

    The correct values of ω1,ω2,ω3,and ω4give the boundary conditions at η∞that satisfy the relation:

    where E(ω1),E(ω2),E(ω3),and E(ω4)represent the difference between the computed and given boundary values called residuals.If boundary residuals are less than error tolerance i.e.10?6then it is final solution.On the other hand Eq.(29)can be solved for ω1, ω2, ω3,and ω4by using Newton method to refined value of ω1,ω2,ω3,and ω4.This procedure is continue until,it satisfies the convergence criteria.

    4 Results Proclamation

    This section is enchanted to sketch the complete interpretation of sundry variables on flow,temperature and nano particle concentration profiles.To get thorough intellect about the present analysis Runge-Kutta method is implemented and to produce highly accurate results the coefficients of RK-method is improved by Cash and Carp scheme.Figures 2 and 3 are adorned to check out the behavior of velocity slip parameter λ on f′(η)and g(η)in the presence and absence of magnetic field β.Firstly,Fig.2 is plotted to analyze the behavior of momentum slip parameter λ on radial velocity component for magnetic and non-magnetic cases.From the displayed sketch it is manifested that velocity field curves show diminishing magnitude with respect to incrementing values of momentum slip parameter λ in the presence of magnetic field β =0 and in absence of magnetic field β =0.The reason behind this delineating aspect is that the radial velocity is persuaded by the rotational force.It is observed that the radial velocity diminishes thus the location of the maximum velocity shifts towards the rotated wall as momentum slip parameter λ upsurges.It is also witnessed from these curves that without magnetic field momentum profile exhibits a significant increase as compared to the curves attained for magnetic field consideration.This is because the magnetic field is resistive force in nature that is why flow profile increases in absence of magnetic field and decreases in the presence of magnetic field.The attribute of tangential velocity curves for various values of momentum slip parameter λ is plotted in Fig.3.This sketch examines decreased manner in g(η)for mounting values of slip parameter λ.Physically,when momentum slip aspects λ come into action the partial part of the fluid moves towards the non-azimuthal direction as an outcome g(η)shows decrementing manner.Furthermore it also evident from this graph that magnetic field has same qualitatively effect on tangential velocity as λ does on radial velocity,i.e.strong Lorentz force opposed the fluid motion.

    Fig.2 Effect of momentum slip parameter and magnetic parameter on f′(η).

    Figures 4 and 5 are drawn to evaluate the graphical aspects of thermophoretic parameter Nt on thermal distribution θ(η)under the influence of heat generation/absorption parameter.It is obvious from Figs.4 and 5 that the thermal field of fluid flow mounts by intensifying the magnitude of heat generation in comparison to the variation in heat absorption coefficient.The fact is revealed due to the reason that by uplifting the magnitude of heat generation coefficient the thermal energy of the system raises and hence temperature of fluid flow enriches.Figures 4 and 5 assess the physical significance of thermophores is parameter Nt on fluid temperature.

    Fig.4 Effect of thermophoresis parameter and heat generation parameter on θ(η).

    Fig.5 Effect of thermophoresis and heat absorption parameter on θ(η).

    Figure 4 is depicted to analyze the behavior of temperature curve against the inciting values of Nt in the presence and absence of heat generation parameterIt is seen from these curves that the thermophoresis parameter Nt is responsible for the increase of temperature and also corresponding boundary layer thickness.The reason behind that,thermophoresis is a force,which pushes the nano particle from higher temperature region to lower temperature region.Therefore higher values of thermophores is parameter Nt correspond to the strong thermophoretic force due to which movement of particle from hotter to colder region increases significantly.As a result fluid temperature enhances for positive values of thermophoresis parameter.Furthermore it is also divulged from the profile that temperature of fluid flow rises for heat generationparameter as compared to the absence of heat generation parameter.In Fig.5 the behavior of thermal distribution with respect to thermophoresis parameter and heat absorption parameteris interpreted.Similar behavior against Nt is observed in temperature is observed.But in Fig.5 thermal distribution enriches in the absence of heat absorption parameteras compared to the presence of.

    Fig.6 Effect of Brownian motion parameter and chemical reaction parameter on ?(η).

    Profiles of non-dimensional concentration profiles are plotted in Figs.6 and 7 for altering magnitude of Brownian motion parameter and Schmidth number in the absence/attendance of chemical reaction.From these curves in Fig.6 it is depicted that nanoparticle concentration and respective solutal boundary layer thickness shows an consequence trend against positive values of Nb.It is seen that higher values of Nb drops the nanoparticle concentration because increment in Nb is responsible for random motion of nanoparticle as a consequence concentration boundary layer thickness decreases which results decrease in concentration profile.While Fig.7 displays the impact of Schmidth number on nano particle concentration profile.One can see that Schmidth number decline the volumetric fraction of nanoparticle massively.Mathematically Schmidth number is the ratio of thermal to mass diffusion,therefore inciting values of Schmidth number moderates mass diffusivity and hence concentration of nanoparticles.As for the physical significance of constructive chemical reaction on nanoparticle concentration profile is identically same in both figures.Both of these figures display the concentration pro file across the fl ow domain and it is evident that existence of constructive chemical reaction increases the concentration profile resulting thicker concentration boundary layer.Trends with the aid of numerical data disclosed in Tables 2 and 3 with respect to magnetic parameter β,momentum slip parameter λ,thermophoresis parameter Nt,Schmidth number Sc and Prandtl number Pr on Nusselt number()?1/2Nu are elucidated.From the attained data it is found that by intensifying the magnitude of magnetic parameter β,Schmidth number Sc and Prandtl number Pr there is uplift in values of heat transfer coefficient whereas diminishing attribute is observed against up surging values of momentum slip parameter λ,thermophoresis parameter Nt and Brownian motion parameter Nb.The mounting behavior of Nusselt number()?1/2Nu with respect to β,Sc,and Pr can be justified by the fact that all of these parameters produces resistive force in the flow field.So this productivity of resistance among fluid molecules raises the temperature of the fluid flow and hence the coefficient of convective heat transfer enriches.Furthermore these results are compared with the previous literature published by Hayat et al.[19]It is found from the comparison that results are total covenant to each other.Numerical variation in()?1/2Sh is disclosed in Tables 2 and 3 with respect to magnetic parameter β,momentum slip parameter λ,thermophoresis parameter Nt,Schmidth number Sc and Prandtl number Pr is manipulated.From the calculated values it is found that by increasing Nt,Sc,Pr,and Nb mass flux coefficient enhances.But reverse pattern is found for incrementing values of β and λ.The intensifying magnitude of mass flux coefficient with respect to Nt,Sc,Pr,and Nb is due to the reason that all of these mentioned factors decease the motion of fluid molecules and hence the concentration profile boosts.Furthermore these results are also compared to check the assurance of present computed results by making excellent matching with finding provided by Hayat et al.[19]

    Fig.7 Effect of Schmidth number and chemical reaction parameter on ?(η).

    Table 2 Comparison and Variation for Nusselt number w.r.t above mentioned parameters.

    Table 3 Comparison and Variation for Nusselt number w.r.t above mentioned parameters.

    Table 4 Comparison and Variation in Sherwood number w.r.t above mentioned parameters.

    Table 5 Comparison and Variation in Sherwood number w.r.t above mentioned parameters.

    5 Closing Remarks

    The viscid nanoliquid flow due to rotational rigid disk is considered along with some other physical effects.The obtained observations are itemized as follows:

    (i)The application of magnetic field brings decline in fluid velocity.

    (ii)Tangential velocity is diminishing function of velocity slip parameter.

    (iii)Temperature profile reflects higher values via heat generative parameter while opposite trends are perceived towards heat absorption parameter.

    (iv)Nanoparticle concentration admits same variations towards both Brownian motion and Schmidth number.

    Acknowledgment

    The authors would like to express their gratitude to King Khalid University,Abha 61413,Saudi Arabia,for providing administrative and technical support.

    欧美+亚洲+日韩+国产| 亚洲第一电影网av| 在线观看一区二区三区| 亚洲第一区二区三区不卡| 两个人视频免费观看高清| 婷婷精品国产亚洲av在线| 一级毛片aaaaaa免费看小| 国产一区二区在线av高清观看| 日韩成人伦理影院| 女人十人毛片免费观看3o分钟| 亚洲性久久影院| 夜夜夜夜夜久久久久| 99久久精品国产国产毛片| 国产亚洲91精品色在线| 又粗又爽又猛毛片免费看| av福利片在线观看| 成人欧美大片| 天堂影院成人在线观看| 日本欧美国产在线视频| 日韩欧美 国产精品| 亚洲成人久久爱视频| avwww免费| av在线亚洲专区| 女生性感内裤真人,穿戴方法视频| 天堂av国产一区二区熟女人妻| 两个人视频免费观看高清| 国产午夜精品久久久久久一区二区三区 | 亚洲经典国产精华液单| 少妇人妻精品综合一区二区 | 国产精品综合久久久久久久免费| 日韩三级伦理在线观看| 亚洲国产高清在线一区二区三| 啦啦啦韩国在线观看视频| 国产v大片淫在线免费观看| 给我免费播放毛片高清在线观看| 国产一区二区激情短视频| 色吧在线观看| 国产激情偷乱视频一区二区| 综合色丁香网| 在线观看av片永久免费下载| 国产在线精品亚洲第一网站| 国产精品一二三区在线看| 九色成人免费人妻av| 国产一级毛片七仙女欲春2| 成年版毛片免费区| 欧美极品一区二区三区四区| 国产欧美日韩精品亚洲av| 精品熟女少妇av免费看| 亚洲性久久影院| 国产乱人偷精品视频| 欧美色欧美亚洲另类二区| 69av精品久久久久久| а√天堂www在线а√下载| 国国产精品蜜臀av免费| 欧美激情国产日韩精品一区| 国产麻豆成人av免费视频| 免费不卡的大黄色大毛片视频在线观看 | 蜜臀久久99精品久久宅男| 成人亚洲精品av一区二区| 我要搜黄色片| 黄色视频,在线免费观看| 听说在线观看完整版免费高清| 日韩三级伦理在线观看| 国国产精品蜜臀av免费| 狂野欧美激情性xxxx在线观看| 天堂动漫精品| 亚洲一级一片aⅴ在线观看| 丰满人妻一区二区三区视频av| 看非洲黑人一级黄片| 久久久久久久亚洲中文字幕| 午夜福利在线在线| 亚洲天堂国产精品一区在线| 精品午夜福利在线看| 国产探花极品一区二区| 99久久成人亚洲精品观看| 日本欧美国产在线视频| 嫩草影院精品99| 五月伊人婷婷丁香| 高清午夜精品一区二区三区 | 国产成人影院久久av| 丰满人妻一区二区三区视频av| 国产成人精品久久久久久| 亚洲精华国产精华液的使用体验 | 69人妻影院| 午夜影院日韩av| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕久久专区| 99热这里只有是精品在线观看| 禁无遮挡网站| 日韩欧美免费精品| 欧美性猛交╳xxx乱大交人| a级毛片a级免费在线| 在线观看美女被高潮喷水网站| 久久韩国三级中文字幕| 狠狠狠狠99中文字幕| 嫩草影院新地址| 久久韩国三级中文字幕| 18禁在线无遮挡免费观看视频 | 国内精品久久久久精免费| 免费人成在线观看视频色| 免费一级毛片在线播放高清视频| 国产精品美女特级片免费视频播放器| 中国国产av一级| 精品久久久久久久久亚洲| 国产免费一级a男人的天堂| 国产伦一二天堂av在线观看| 亚洲第一电影网av| 国产精品日韩av在线免费观看| 黄色欧美视频在线观看| 最后的刺客免费高清国语| 女生性感内裤真人,穿戴方法视频| av国产免费在线观看| 插逼视频在线观看| 看黄色毛片网站| 亚洲国产精品国产精品| 少妇人妻精品综合一区二区 | 婷婷精品国产亚洲av| 啦啦啦观看免费观看视频高清| 欧美中文日本在线观看视频| 日本欧美国产在线视频| 一区二区三区四区激情视频 | 日本与韩国留学比较| 此物有八面人人有两片| 亚洲中文日韩欧美视频| 国产 一区 欧美 日韩| 久久99热6这里只有精品| 99riav亚洲国产免费| 精品免费久久久久久久清纯| 国产精品人妻久久久影院| 久久99热这里只有精品18| 日本五十路高清| 高清午夜精品一区二区三区 | 十八禁国产超污无遮挡网站| 亚洲精品456在线播放app| 别揉我奶头~嗯~啊~动态视频| 久久6这里有精品| 色哟哟·www| 色综合亚洲欧美另类图片| 18禁黄网站禁片免费观看直播| 1000部很黄的大片| 伦理电影大哥的女人| 国产亚洲精品av在线| 欧美一级a爱片免费观看看| 精品日产1卡2卡| 秋霞在线观看毛片| 国产成人影院久久av| 校园人妻丝袜中文字幕| 露出奶头的视频| 九九久久精品国产亚洲av麻豆| 成人av一区二区三区在线看| 看免费成人av毛片| 91在线观看av| 人妻丰满熟妇av一区二区三区| 亚洲av电影不卡..在线观看| 成人鲁丝片一二三区免费| 久久久久性生活片| 国产真实乱freesex| 一区二区三区免费毛片| 麻豆国产97在线/欧美| 国产精品久久久久久精品电影| 欧美日本亚洲视频在线播放| 午夜福利18| 国产三级中文精品| 人妻夜夜爽99麻豆av| 大香蕉久久网| 午夜精品一区二区三区免费看| 久久久a久久爽久久v久久| 午夜福利成人在线免费观看| 少妇熟女欧美另类| 国产精品一区www在线观看| 美女cb高潮喷水在线观看| 国产亚洲精品久久久com| 天天躁日日操中文字幕| 美女xxoo啪啪120秒动态图| 丰满乱子伦码专区| 久久久久久久久久黄片| 精品一区二区免费观看| 国产精品av视频在线免费观看| 无遮挡黄片免费观看| 日韩人妻高清精品专区| 国产精品一区二区性色av| 不卡一级毛片| 欧美日韩综合久久久久久| 内射极品少妇av片p| 18+在线观看网站| 国产在线男女| 欧美最黄视频在线播放免费| 精品久久久噜噜| 国产又黄又爽又无遮挡在线| 亚洲图色成人| 国产精品久久电影中文字幕| 啦啦啦观看免费观看视频高清| 少妇的逼水好多| 少妇的逼水好多| 黄片wwwwww| 亚洲美女黄片视频| 精品一区二区三区视频在线观看免费| 国产精品一区二区性色av| 日韩人妻高清精品专区| 亚洲电影在线观看av| 人妻夜夜爽99麻豆av| 91午夜精品亚洲一区二区三区| 免费av观看视频| 日韩大尺度精品在线看网址| 亚洲三级黄色毛片| 真实男女啪啪啪动态图| 男人和女人高潮做爰伦理| 最近2019中文字幕mv第一页| 一边摸一边抽搐一进一小说| 亚洲精品一区av在线观看| 国产午夜精品论理片| 欧美+日韩+精品| 亚洲成人久久性| 看非洲黑人一级黄片| 最近视频中文字幕2019在线8| 日韩高清综合在线| 国产精品一二三区在线看| 99久久成人亚洲精品观看| 亚洲国产日韩欧美精品在线观看| 欧美激情久久久久久爽电影| 老司机午夜福利在线观看视频| 国产欧美日韩一区二区精品| 亚洲av一区综合| 欧美一区二区亚洲| 一级毛片电影观看 | 国产女主播在线喷水免费视频网站 | 成人特级av手机在线观看| 久久久久久国产a免费观看| а√天堂www在线а√下载| 麻豆乱淫一区二区| 啦啦啦啦在线视频资源| 内地一区二区视频在线| 麻豆一二三区av精品| 欧美日本视频| 99久久九九国产精品国产免费| 波野结衣二区三区在线| 午夜影院日韩av| 精品一区二区三区人妻视频| 在线播放无遮挡| 三级男女做爰猛烈吃奶摸视频| 日韩大尺度精品在线看网址| 三级男女做爰猛烈吃奶摸视频| 欧美日本视频| 国产亚洲精品久久久久久毛片| 欧美激情国产日韩精品一区| 国产极品精品免费视频能看的| 国产老妇女一区| 特级一级黄色大片| 91狼人影院| 亚洲中文日韩欧美视频| 国产亚洲精品久久久久久毛片| 身体一侧抽搐| 搡女人真爽免费视频火全软件 | 一个人观看的视频www高清免费观看| 熟女人妻精品中文字幕| 国产色爽女视频免费观看| 精品久久久久久久久久免费视频| 特级一级黄色大片| 又黄又爽又免费观看的视频| 黄色一级大片看看| 亚洲国产高清在线一区二区三| 国产亚洲精品久久久久久毛片| 蜜臀久久99精品久久宅男| 男女做爰动态图高潮gif福利片| 97碰自拍视频| 99视频精品全部免费 在线| 欧美zozozo另类| 国产精品日韩av在线免费观看| 免费av毛片视频| 午夜福利18| 一进一出抽搐gif免费好疼| 三级男女做爰猛烈吃奶摸视频| 日韩一本色道免费dvd| 久久人人精品亚洲av| 床上黄色一级片| 免费看美女性在线毛片视频| 日韩av在线大香蕉| 男女视频在线观看网站免费| 我要搜黄色片| 亚洲七黄色美女视频| 18禁裸乳无遮挡免费网站照片| 欧美成人一区二区免费高清观看| 亚洲四区av| 国产成人影院久久av| 国产黄色视频一区二区在线观看 | 成年女人看的毛片在线观看| 欧美日韩精品成人综合77777| 狂野欧美激情性xxxx在线观看| 99久久精品国产国产毛片| 久久久国产成人精品二区| 九九爱精品视频在线观看| 又爽又黄a免费视频| 亚洲不卡免费看| 美女被艹到高潮喷水动态| 国产免费男女视频| 麻豆久久精品国产亚洲av| 日韩欧美精品v在线| 色哟哟·www| 日本欧美国产在线视频| 亚洲国产精品国产精品| 国内精品久久久久精免费| 看免费成人av毛片| 久久欧美精品欧美久久欧美| 亚洲熟妇熟女久久| 久久久久九九精品影院| 美女 人体艺术 gogo| 人妻丰满熟妇av一区二区三区| 欧美人与善性xxx| 国内少妇人妻偷人精品xxx网站| 亚洲av美国av| 美女内射精品一级片tv| 色尼玛亚洲综合影院| 伊人久久精品亚洲午夜| 午夜福利18| 最近视频中文字幕2019在线8| 国产精品一区www在线观看| 亚洲四区av| 国产片特级美女逼逼视频| 老司机影院成人| 国产视频内射| 女人被狂操c到高潮| 联通29元200g的流量卡| 午夜精品一区二区三区免费看| 国产精品乱码一区二三区的特点| 欧美不卡视频在线免费观看| av天堂中文字幕网| 99国产极品粉嫩在线观看| 国产一区二区亚洲精品在线观看| 精品欧美国产一区二区三| 又黄又爽又刺激的免费视频.| 少妇高潮的动态图| 日本与韩国留学比较| 噜噜噜噜噜久久久久久91| 一本一本综合久久| 日韩欧美国产在线观看| 亚洲av二区三区四区| 草草在线视频免费看| 99久久无色码亚洲精品果冻| 麻豆精品久久久久久蜜桃| 99久国产av精品国产电影| 国产精品伦人一区二区| 丝袜喷水一区| 日本黄色视频三级网站网址| 少妇被粗大猛烈的视频| 欧美日韩精品成人综合77777| 亚洲精品日韩av片在线观看| www.色视频.com| 观看美女的网站| 简卡轻食公司| 精品99又大又爽又粗少妇毛片| 午夜视频国产福利| 亚洲成人av在线免费| 亚洲成人精品中文字幕电影| 大香蕉久久网| 午夜福利在线在线| 久久久精品94久久精品| 国模一区二区三区四区视频| 精品久久久久久成人av| 国产黄片美女视频| 亚洲综合色惰| 久久久久国内视频| 观看免费一级毛片| 久久精品国产亚洲av涩爱 | 成人欧美大片| 欧美潮喷喷水| 国产高清不卡午夜福利| 五月伊人婷婷丁香| 亚洲七黄色美女视频| 亚洲av电影不卡..在线观看| 三级经典国产精品| 搡老岳熟女国产| 99在线人妻在线中文字幕| 少妇裸体淫交视频免费看高清| 国产欧美日韩精品亚洲av| 国产精品一区www在线观看| 午夜精品一区二区三区免费看| 成年免费大片在线观看| 内地一区二区视频在线| 人妻制服诱惑在线中文字幕| 成人亚洲欧美一区二区av| 日韩欧美三级三区| 免费观看的影片在线观看| 国产色爽女视频免费观看| 欧美一区二区精品小视频在线| 热99在线观看视频| 夜夜爽天天搞| 丝袜喷水一区| 精品一区二区三区视频在线观看免费| 寂寞人妻少妇视频99o| 亚洲精品成人久久久久久| 亚洲精品粉嫩美女一区| 麻豆国产av国片精品| 亚洲国产精品国产精品| 国产精品国产高清国产av| 久久精品夜夜夜夜夜久久蜜豆| 日韩强制内射视频| 亚洲国产精品成人久久小说 | 精品欧美国产一区二区三| 亚洲人成网站在线观看播放| 国产免费一级a男人的天堂| 亚洲国产欧美人成| 99在线视频只有这里精品首页| 久久久欧美国产精品| 亚洲成人精品中文字幕电影| 99久久无色码亚洲精品果冻| 又爽又黄无遮挡网站| 欧美绝顶高潮抽搐喷水| 日本与韩国留学比较| 日本精品一区二区三区蜜桃| 亚洲国产精品成人综合色| 亚洲精品456在线播放app| 不卡视频在线观看欧美| 久久久成人免费电影| 午夜老司机福利剧场| 淫妇啪啪啪对白视频| 男人舔奶头视频| 亚洲av第一区精品v没综合| 人妻久久中文字幕网| av福利片在线观看| 国产私拍福利视频在线观看| 好男人在线观看高清免费视频| 成人欧美大片| 国产午夜精品久久久久久一区二区三区 | 国产三级中文精品| 日韩欧美免费精品| 色尼玛亚洲综合影院| 三级国产精品欧美在线观看| 亚洲av.av天堂| 国产真实乱freesex| av在线亚洲专区| 男女做爰动态图高潮gif福利片| 99在线视频只有这里精品首页| 日韩在线高清观看一区二区三区| 亚洲成人久久性| 91麻豆精品激情在线观看国产| 欧美色视频一区免费| 亚洲国产精品久久男人天堂| 久久久久国产网址| 久久人人精品亚洲av| 毛片女人毛片| 天天躁夜夜躁狠狠久久av| 激情 狠狠 欧美| 欧美中文日本在线观看视频| 国产老妇女一区| 黄色视频,在线免费观看| 久99久视频精品免费| 看片在线看免费视频| 欧美bdsm另类| 成人性生交大片免费视频hd| 色综合色国产| 国产成人福利小说| 色视频www国产| 婷婷精品国产亚洲av| 国产精品三级大全| 国产亚洲欧美98| 亚洲中文字幕一区二区三区有码在线看| 国产精品爽爽va在线观看网站| 精品久久久久久成人av| 男女啪啪激烈高潮av片| 少妇猛男粗大的猛烈进出视频 | av在线老鸭窝| 三级国产精品欧美在线观看| 久久久精品欧美日韩精品| 精品久久久久久久久久久久久| 寂寞人妻少妇视频99o| 免费人成视频x8x8入口观看| 成人综合一区亚洲| 欧美日韩在线观看h| 美女内射精品一级片tv| 中文字幕久久专区| 97人妻精品一区二区三区麻豆| 一级毛片我不卡| 中国美白少妇内射xxxbb| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品亚洲一区二区| 高清毛片免费观看视频网站| 亚洲成av人片在线播放无| 亚洲综合色惰| 中出人妻视频一区二区| 国产女主播在线喷水免费视频网站 | 一级黄色大片毛片| 免费不卡的大黄色大毛片视频在线观看 | 一进一出抽搐gif免费好疼| 嫩草影院精品99| 一个人看的www免费观看视频| 久久亚洲国产成人精品v| 99热这里只有是精品在线观看| 97超碰精品成人国产| 亚洲成人中文字幕在线播放| 两个人视频免费观看高清| 午夜福利成人在线免费观看| 婷婷亚洲欧美| 噜噜噜噜噜久久久久久91| 淫妇啪啪啪对白视频| 一进一出好大好爽视频| 成年女人毛片免费观看观看9| 久久人人精品亚洲av| 国产麻豆成人av免费视频| 人妻夜夜爽99麻豆av| 亚洲va在线va天堂va国产| 国产成人一区二区在线| or卡值多少钱| 国产激情偷乱视频一区二区| 国产男人的电影天堂91| 亚洲av成人精品一区久久| 色噜噜av男人的天堂激情| 美女高潮的动态| 国产男靠女视频免费网站| 国产精品一区www在线观看| 日本-黄色视频高清免费观看| videossex国产| 网址你懂的国产日韩在线| 岛国在线免费视频观看| 亚洲人成网站在线观看播放| 国产成年人精品一区二区| 尤物成人国产欧美一区二区三区| 亚洲精品成人久久久久久| 极品教师在线视频| 又粗又爽又猛毛片免费看| 在线免费十八禁| 国内精品美女久久久久久| 亚洲va在线va天堂va国产| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 熟妇人妻久久中文字幕3abv| 日韩欧美免费精品| 在线播放无遮挡| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| 国产91av在线免费观看| avwww免费| 日本黄色片子视频| 欧美一区二区精品小视频在线| 午夜福利在线观看吧| 婷婷亚洲欧美| 亚洲高清免费不卡视频| 看十八女毛片水多多多| av卡一久久| 国产毛片a区久久久久| 岛国在线免费视频观看| 天天一区二区日本电影三级| 久久久精品欧美日韩精品| av在线亚洲专区| av在线天堂中文字幕| 中国美白少妇内射xxxbb| 国产一区二区激情短视频| 国产成人a区在线观看| 十八禁网站免费在线| 精品久久久噜噜| 国产av不卡久久| 免费人成在线观看视频色| 国产男人的电影天堂91| 青春草视频在线免费观看| 国产精品一区二区三区四区久久| 老师上课跳d突然被开到最大视频| 婷婷色综合大香蕉| 午夜福利成人在线免费观看| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线播| 欧美日韩在线观看h| 禁无遮挡网站| 欧美日韩综合久久久久久| videossex国产| 亚洲欧美精品自产自拍| 日韩亚洲欧美综合| 国产乱人视频| 51国产日韩欧美| 欧美+亚洲+日韩+国产| 夜夜夜夜夜久久久久| 亚洲自拍偷在线| 欧美成人免费av一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲天堂国产精品一区在线| 久久中文看片网| 男女那种视频在线观看| 天堂动漫精品| 国产探花在线观看一区二区| 色哟哟·www| 中国美白少妇内射xxxbb| 两个人视频免费观看高清| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 久久热精品热| 欧美色欧美亚洲另类二区| 少妇丰满av| 尤物成人国产欧美一区二区三区| 99在线人妻在线中文字幕| 亚洲中文日韩欧美视频| 亚洲av熟女| 在线天堂最新版资源| 少妇人妻精品综合一区二区 | 亚洲精品在线观看二区| 亚洲精品国产成人久久av| 黄色欧美视频在线观看| 欧美一区二区国产精品久久精品| 成人精品一区二区免费| av在线天堂中文字幕| 国内精品一区二区在线观看| 国产精品久久久久久av不卡| 中文亚洲av片在线观看爽| 毛片女人毛片| 又粗又爽又猛毛片免费看| 免费看日本二区| 一区福利在线观看| 级片在线观看| 亚洲av成人av| 天堂av国产一区二区熟女人妻| 嫩草影院精品99| 一个人看视频在线观看www免费| 毛片一级片免费看久久久久|