• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Magnetohydrodynamic Navier’s Slip Visco Nano fl uid Flow Induced by Rotating Disk with Heat Source/Sink

    2019-10-16 08:45:20AwaisBilalMalik3andKhalilurRehmanDepartmentofMathematicsAIRUniversitySectorAirComplexIslamabad44000Pakistan
    Communications in Theoretical Physics 2019年9期

    M.Awais,S.Bilal,M.Y.Malik,,3and Khalil-ur-RehmanDepartment of Mathematics,AIR University,Sector E-9,Air Complex,Islamabad 44000,Pakistan

    2Department of Mathematics,College of Sciences,King Khalid University,Abha 61413,Saudi Arabia

    3Department of Mathematics,Quaid-i-Azam University,Islamabad 44000,Pakistan

    (Received August 15,2018;revised manuscript received November 20,2018)

    AbstractCurrent exertion is made to depict and search out the flow features imparted to viscid fluid flow over a rotational disk.Impression of magnetic field with rotating fluid is generated by interacting it in radial direction.Nano structured particles with magnetized fluid are also incorporated in the upshot of chemical reaction and absorptive/generative heat induction.Von Kumaran procedure is executed to obtain flow narrating differential expressions.Flow pattern regarding thermal,momentum profiles are comprehended with the support of shooting method and Runge-Kutta methods.Furthermore,to get more realistic view of result description computational algorithm is modified by improving Runge-Kutta coefficients with Cash and Carp method.The aspects of flow controlling parameters like momentum slip parameter,magnetic strength parameter,Brownian motion parameter,thermophoresis parameter are adorned in sketches.Findings of these architects are accumulated in conclusion section.

    Key words:heat generation/absorption,viscous fluid model,nanoparticles,rotating disk,Navier slip,Cash and Carp method

    Nomenclature

    ?

    1 Introduction

    Mechanically fluid flow generated by rotating disc has attained prodigious attention of scientists and engineers in the recent past due to its superb applications in geophysics,aeronautical science,crystal growth process,thermal power generating system etc.Significant geophysical applications of rotating disk incorporate the subject of earth’s revolution in its orbit and magma movement.Other essential mechanical applications of rotating disk involve air purifying devices,centrifugal filtration process,biological devices,food manufacturing,rotating machinery,aero spaced field and in electrified power generated surroundings.Von Karman[1]coined the idea of rotating disc discussing fluid flow induced by it.Lately,numerical investigation on combined features of thermal and concentration transfer flow of viscid fluid by way of Darcy rotating disc was executed by Turkyilmozoglu and Senel.[2]Inspection of non-Newtonian liquid induced by rotated disc in permeable media was discussed by Guram and Anwar.[3]Rashidi et al.[4]addressed the entropy generated in viscous flow over rotated disk.Turkyilmozoglu[5]discoursed the flow generated by rotated disk in the attendance of nanostructures.Mustafa et al.[6]investigated dynamics of nanoliquid due to stretchable disk.Sheikholeslami et al.[7]studied viscous nanoliquid flow due to inclining rotated disk geometry.

    At present there is remarkable requirement of electronic devices in numerous industrial progressions.But recession in thermal conductivity of these equipments has abridged their valuable acknowledgement.Such confined products can be well-ordered by mounting new heat transfer liquids in laboratories.These engineered liquids can be prepared by accruing small solid size subdivisions into base fluids in order to aggrandize the thermophysical capability of host fluids.Researchers have concluded that with the inclusion of these small size particles the issues related to low thermal conductivity of fluids in thermal frameworks has been reduced.In view of these characteristics and promising utility nano-fluids are capitalized in thermal engineering,heat exchangers,chemical progression,cancer psychoanalysis and biomedicine etc.Enriched heat transferal proficiency can be engaged to many conspicuous solicitations comprising chilling of microelectronics such as microchips in computer processors,space refrigerating,improving the adeptness of hybrid powered engines,transformers oil cooling,and numerous others.Choi[8]shared the idea of nanofluids imparts as material for enrichment of thermal conductance.This characteristic of nanofluids has led it to diverse mechanical and biomedical uses such as in frosted engine,reducing agent for drag in refrigeration,chillers,oil engine transferal,heating and cooling of buildings,in exhaustion of boiler,fueled gas recovery,lubrication,reducing temperature in electronics,microwaved tubes,highly-powered lasers,drillers,transformer cooling oil,nuclear systems cooling and solar hydral heating.An extensive investigation of convectional transmission in this fluid was completed by Buongiorno.[9]Chen et al.[10]suggested a methodology to calculate the thermal conductivity of fluid comprising of nano-sized structures constructed on their rheological features.An extensive analysis of boundary layered flow over an exponential stretchable surface comprising of nanostructures was executed by Nadeem et al.[11]Significance of nanofluid in increasing the heavy-duty engine and automotive cooling rates was elucidated by Peyghambarzadeh et al.[12]

    The imposition or interaction of magnetic field with dynamical flows is renowned as magnetohydrodynamics and such fluids are called magnetized fluids.The fundamental concept of appliance of magnetic field is to instigate magnetic currents in movable conducting liquids,which consequently generates a resistive force on the fluid.So The analysis of fluid flows with the interaction of magnetic field has engrossed substantive focus of investigators.Such considerations is due to its utilization in various mechanical,industrial and technological processes i.e.enhanced oil recovery,magnetohydrodynamic generators,electronic packages,pumps,thermal insulators,flow meters,power generation,etc.Furthermore,the appliance of magnetic field molds the orientation of interacting fluid molecules and also controls the intensity of flow phenomenon.Due to above mentioned importance researchers are considering fluid flows in various orientations under the effect of applied magnetic field.Few recent works in this direction is described as follows.Alfven[13]was the first who described the class of MHD waves also known as Alfven waves.In fluid dynamics,magnetic flow of non-Newtonian liquids was initially examined by Sarpkaya[14]and then this work was further prolonged by many investigators.Liao[15]acquired HAM solution for non-Newtonian flow regime by way of linearly stretchable geometry under the account of magnetic field.He suggested that magnetic parameter amplifies the frictional drag coefficient.MHD stagnant flow incorporated with chemical reactive species immerse in Darcy stretchable configuration was deliberated by Mabood et al.[16]Malik et al.[17]configured the physical impact of MHD on hyperbolic tangent liquid over a stretchable cylindrical configuration.Akbar et al.[18]computationally analyzed Powel-Eyring liquid under the inspiration of magnetic field over a stretchable surface.Hayat et al.[19]addressed the analysis on magnetohydrodynamic flow of fluid on a rotating disk with slip effects.Gireesha[20]contemplated electrically conducting three dimensional Casson fluid under the impact of non-linear radiation and double diffusion aspect.They attained the computational solution of the problem by obliging Runge-Kutta method.Magnetohydrodynamic Falkner-Skan flow of a Casson nanofluid in the presence of non-linear thermal radiation and variable thermo-physical properties are investigated by Archana et al.[21]Gireesha[22]depicted analysis to scrutinize the laminar,boundary layer stagnation point flow of a nanofluid over a permeable,vertical stretching sheet by capitalizing the effects of Brownian motion with thermophoresis in the presence of uniform magnetic field,non-uniform source/sink and chemical reaction.Kumar et al.[23]adumbrated the thermo physical features of Prandtl fluid over a Riga plate in the presence of magnetic field and chemically reactive species.Archana et al.[24]interrogated the features imparted in three dimensional Maxwell fluid by non-linear radiative flux and magnetic field.

    Aforesaid extensive depictions witnesses that so far very lessliterature regarding the feature soffluid prompted by rotating rigid disk in the attendance of velocity slip,magnetic field,generative/absorptive heat and chemical reactive species are not taken into account.The generally accepted fundamental are utilized to obtain the ultimate mathematical equations.For solution purpose,a numerical method is implemented by improving it to Cash and Carp procedure.Regarding structure of the manuscript is concerned,Sec.1 is all about literature survey while Sec.2 is made to of fer mathematical treatment subject to viscous nanofluid flow due to rotating disk.The numerical scheme for present fluid flow problem is given in Sec.3.The attained interpretations are shared in Sec.4 while the corresponding graphs are given in Sec.5.The key outcomes are abridged in Sec.6.

    2 Mathematical Formulation

    Let us assume 2-dimensional,laminar,magneto hydrodynamic boundary layered flow of an incompressible viscous nanoliquid yields by rotational disk with slip condition.The disk at z=0 rotates with angular velocity vz.Velocity component along radial r-direction is vr,vθis the velocity component along tangential θ-direction and vzis velocity component along axial z-direction.An unvarying magnetic strength B0is employed in the z-direction.Flow situation is taken with chemical reactive species and generative/absorptive heat effects.The physical structure of fl ow regime via rotating disk is elucidated in accompanied Fig.1.

    Fig.1 (Color online)Schematic diagram of rotating disk.

    In the current situation the governing boundary layer equations take the following forms

    The corresponding boundary conditions are

    where ν = μ/ρfis the kinematic viscosity, μ is the dynamic viscosity,σ is the electrical conductivity of the fluid,p denotes the pressure,ρ is the density,ρfis the density of the base fluid,(ρc)pis the effective heat capacity of nanoparticles, α =k/(ρc)fis the thermal diffusivity,(ρc)fis the heat capacity,is the temperature,is the concentration,DBis the Brownian diffusion coefficient,DTis the thermophoretic diffusion coefficient,A1is the velocity slip constant,A2is the temperature jump,is the surface temperature,is the ambient temperature,is the surface concentration,is the ambient concentration,Q0is the thermal generation coefficient,and K is the rate of chemical reactive species.

    Now the subsequent dimensionless variables are as under:

    Now Eq.(1)is fully identicalized and Eqs.(2)–(8)take the accompanied forms

    the associate boundary conditions are given as:

    Here β is the magnetic field parameter, λ is the velocity slip parameter,λ1thermal slip parameter,Pr is the Prandtl number,Nb is the Brownian motion parameter,Nt is the thermophoresis parameter,H is the heat generation/absorption parameter,δcis the chemical reaction parameter and Sc is the Schmidth number.These variables are described as follows:

    The shear stress rate coefficient,local convectional transmission coefficient and local massive flux magnitude are defined as:

    in which Rer=(?r)r/2ν.

    3 Numerical Scheme

    As the consequential partial differential expressions of this problem are transformed into ordinary differential equation after applying suitable transformation.But these governing ordinary differential equations(Eqs.(11),(12),and(13))are highly nonlinear and hard to control their analytical solutions.Keeping in mind the end goal to unravel this system with associated boundary conditions we must solve it i.e.Eq.(14)by numerically.There are many numerical methods which can solve this problem but we solve this problem by shooting technique with RKF-method.For further accuracy of computed results an improvement is made by adding the coefficient of RKF method by Cash and Carp method.Hence first governing boundary value expressions are transmuted into initial value problem,thus governing equations are re-written as

    To find the numerical solution of these equations by Runge-Kutta scheme,first these equations should be transmuted into system of seven linearized ordered equations with seven unknowns,by letting

    under new variables defined in Eq.(21),are given

    The associated boundary conditions from Eq.(14)in new forms are defined in Eq.(22),take the form

    To compute the first order differential equations presented in Eq.(23)–(29)seven initial restrictions must be identifiable,but the initial conditions at s3,s5,and s7are not mentioned.Though,the boundary conditions s2(η),s4(η),and s6(η)are recommended at η → ∞ Thus,these boundary restrictions are used to capitalize three missed initial restrictions.Now,letting the missing initial conditions by ω1,ω2,ω3,and ω4,it converts the given boundary conditions into initial conditions,new conditions are deif ned as:

    Initially,the values of ω1, ω2, ω3,and ω4are chosen?1,?1,?1,and ?1 respectively.Now solve this system of seven first order ordinary differential equation with initial conditions,the Runge-Kutta-Fehlberg method is used.The Runge-Kutta 4thand 5thorder formulas derived by Fehlberg are

    where subscript 5 and 4 denote 5thand 4thorder formula.Also K1,Ki,F and Z are defined as:

    where

    In Eq.(45),determination of step size h is very important.If we take h to large,the truncation error may be unacceptable,if h is too small,then iterative process is long enough.So initially we take the value of h is 0.1 and this modified is each step.The coefficients in Runge-Kutta Fehlberg formula are defined as shown is Table 1.

    Table 1 Numerical values of the coefficient given by Cash and Carp.

    Equations(23)–(29)are solved with the 5thorder formula.The 4thorder formula is used only to estimate the truncation error,defined as:

    The computed values of s2(∞),s4(∞),s6(∞),and s8(∞)are function of ω1,ω2,ω3,and ω4i.e.

    The correct values of ω1,ω2,ω3,and ω4give the boundary conditions at η∞that satisfy the relation:

    where E(ω1),E(ω2),E(ω3),and E(ω4)represent the difference between the computed and given boundary values called residuals.If boundary residuals are less than error tolerance i.e.10?6then it is final solution.On the other hand Eq.(29)can be solved for ω1, ω2, ω3,and ω4by using Newton method to refined value of ω1,ω2,ω3,and ω4.This procedure is continue until,it satisfies the convergence criteria.

    4 Results Proclamation

    This section is enchanted to sketch the complete interpretation of sundry variables on flow,temperature and nano particle concentration profiles.To get thorough intellect about the present analysis Runge-Kutta method is implemented and to produce highly accurate results the coefficients of RK-method is improved by Cash and Carp scheme.Figures 2 and 3 are adorned to check out the behavior of velocity slip parameter λ on f′(η)and g(η)in the presence and absence of magnetic field β.Firstly,Fig.2 is plotted to analyze the behavior of momentum slip parameter λ on radial velocity component for magnetic and non-magnetic cases.From the displayed sketch it is manifested that velocity field curves show diminishing magnitude with respect to incrementing values of momentum slip parameter λ in the presence of magnetic field β =0 and in absence of magnetic field β =0.The reason behind this delineating aspect is that the radial velocity is persuaded by the rotational force.It is observed that the radial velocity diminishes thus the location of the maximum velocity shifts towards the rotated wall as momentum slip parameter λ upsurges.It is also witnessed from these curves that without magnetic field momentum profile exhibits a significant increase as compared to the curves attained for magnetic field consideration.This is because the magnetic field is resistive force in nature that is why flow profile increases in absence of magnetic field and decreases in the presence of magnetic field.The attribute of tangential velocity curves for various values of momentum slip parameter λ is plotted in Fig.3.This sketch examines decreased manner in g(η)for mounting values of slip parameter λ.Physically,when momentum slip aspects λ come into action the partial part of the fluid moves towards the non-azimuthal direction as an outcome g(η)shows decrementing manner.Furthermore it also evident from this graph that magnetic field has same qualitatively effect on tangential velocity as λ does on radial velocity,i.e.strong Lorentz force opposed the fluid motion.

    Fig.2 Effect of momentum slip parameter and magnetic parameter on f′(η).

    Figures 4 and 5 are drawn to evaluate the graphical aspects of thermophoretic parameter Nt on thermal distribution θ(η)under the influence of heat generation/absorption parameter.It is obvious from Figs.4 and 5 that the thermal field of fluid flow mounts by intensifying the magnitude of heat generation in comparison to the variation in heat absorption coefficient.The fact is revealed due to the reason that by uplifting the magnitude of heat generation coefficient the thermal energy of the system raises and hence temperature of fluid flow enriches.Figures 4 and 5 assess the physical significance of thermophores is parameter Nt on fluid temperature.

    Fig.4 Effect of thermophoresis parameter and heat generation parameter on θ(η).

    Fig.5 Effect of thermophoresis and heat absorption parameter on θ(η).

    Figure 4 is depicted to analyze the behavior of temperature curve against the inciting values of Nt in the presence and absence of heat generation parameterIt is seen from these curves that the thermophoresis parameter Nt is responsible for the increase of temperature and also corresponding boundary layer thickness.The reason behind that,thermophoresis is a force,which pushes the nano particle from higher temperature region to lower temperature region.Therefore higher values of thermophores is parameter Nt correspond to the strong thermophoretic force due to which movement of particle from hotter to colder region increases significantly.As a result fluid temperature enhances for positive values of thermophoresis parameter.Furthermore it is also divulged from the profile that temperature of fluid flow rises for heat generationparameter as compared to the absence of heat generation parameter.In Fig.5 the behavior of thermal distribution with respect to thermophoresis parameter and heat absorption parameteris interpreted.Similar behavior against Nt is observed in temperature is observed.But in Fig.5 thermal distribution enriches in the absence of heat absorption parameteras compared to the presence of.

    Fig.6 Effect of Brownian motion parameter and chemical reaction parameter on ?(η).

    Profiles of non-dimensional concentration profiles are plotted in Figs.6 and 7 for altering magnitude of Brownian motion parameter and Schmidth number in the absence/attendance of chemical reaction.From these curves in Fig.6 it is depicted that nanoparticle concentration and respective solutal boundary layer thickness shows an consequence trend against positive values of Nb.It is seen that higher values of Nb drops the nanoparticle concentration because increment in Nb is responsible for random motion of nanoparticle as a consequence concentration boundary layer thickness decreases which results decrease in concentration profile.While Fig.7 displays the impact of Schmidth number on nano particle concentration profile.One can see that Schmidth number decline the volumetric fraction of nanoparticle massively.Mathematically Schmidth number is the ratio of thermal to mass diffusion,therefore inciting values of Schmidth number moderates mass diffusivity and hence concentration of nanoparticles.As for the physical significance of constructive chemical reaction on nanoparticle concentration profile is identically same in both figures.Both of these figures display the concentration pro file across the fl ow domain and it is evident that existence of constructive chemical reaction increases the concentration profile resulting thicker concentration boundary layer.Trends with the aid of numerical data disclosed in Tables 2 and 3 with respect to magnetic parameter β,momentum slip parameter λ,thermophoresis parameter Nt,Schmidth number Sc and Prandtl number Pr on Nusselt number()?1/2Nu are elucidated.From the attained data it is found that by intensifying the magnitude of magnetic parameter β,Schmidth number Sc and Prandtl number Pr there is uplift in values of heat transfer coefficient whereas diminishing attribute is observed against up surging values of momentum slip parameter λ,thermophoresis parameter Nt and Brownian motion parameter Nb.The mounting behavior of Nusselt number()?1/2Nu with respect to β,Sc,and Pr can be justified by the fact that all of these parameters produces resistive force in the flow field.So this productivity of resistance among fluid molecules raises the temperature of the fluid flow and hence the coefficient of convective heat transfer enriches.Furthermore these results are compared with the previous literature published by Hayat et al.[19]It is found from the comparison that results are total covenant to each other.Numerical variation in()?1/2Sh is disclosed in Tables 2 and 3 with respect to magnetic parameter β,momentum slip parameter λ,thermophoresis parameter Nt,Schmidth number Sc and Prandtl number Pr is manipulated.From the calculated values it is found that by increasing Nt,Sc,Pr,and Nb mass flux coefficient enhances.But reverse pattern is found for incrementing values of β and λ.The intensifying magnitude of mass flux coefficient with respect to Nt,Sc,Pr,and Nb is due to the reason that all of these mentioned factors decease the motion of fluid molecules and hence the concentration profile boosts.Furthermore these results are also compared to check the assurance of present computed results by making excellent matching with finding provided by Hayat et al.[19]

    Fig.7 Effect of Schmidth number and chemical reaction parameter on ?(η).

    Table 2 Comparison and Variation for Nusselt number w.r.t above mentioned parameters.

    Table 3 Comparison and Variation for Nusselt number w.r.t above mentioned parameters.

    Table 4 Comparison and Variation in Sherwood number w.r.t above mentioned parameters.

    Table 5 Comparison and Variation in Sherwood number w.r.t above mentioned parameters.

    5 Closing Remarks

    The viscid nanoliquid flow due to rotational rigid disk is considered along with some other physical effects.The obtained observations are itemized as follows:

    (i)The application of magnetic field brings decline in fluid velocity.

    (ii)Tangential velocity is diminishing function of velocity slip parameter.

    (iii)Temperature profile reflects higher values via heat generative parameter while opposite trends are perceived towards heat absorption parameter.

    (iv)Nanoparticle concentration admits same variations towards both Brownian motion and Schmidth number.

    Acknowledgment

    The authors would like to express their gratitude to King Khalid University,Abha 61413,Saudi Arabia,for providing administrative and technical support.

    欧美日本中文国产一区发布| 一区二区三区精品91| 国产一级毛片在线| 18禁观看日本| 午夜影院在线不卡| 国产精品影院久久| 亚洲欧美色中文字幕在线| 久久亚洲国产成人精品v| 19禁男女啪啪无遮挡网站| 亚洲欧美精品自产自拍| 久久久国产成人免费| 亚洲精品乱久久久久久| 精品一区二区三区av网在线观看 | 中文精品一卡2卡3卡4更新| 中文字幕最新亚洲高清| 黄色毛片三级朝国网站| 欧美人与性动交α欧美软件| 人妻人人澡人人爽人人| 国产老妇伦熟女老妇高清| 韩国高清视频一区二区三区| 国产一级毛片在线| 99国产极品粉嫩在线观看| 在线精品无人区一区二区三| 亚洲精品久久久久久婷婷小说| 一级片'在线观看视频| 午夜91福利影院| 国产亚洲一区二区精品| 亚洲成人免费av在线播放| 亚洲第一青青草原| 少妇裸体淫交视频免费看高清 | 免费在线观看完整版高清| 欧美激情高清一区二区三区| tocl精华| 国产精品 欧美亚洲| 丝袜美足系列| 黑人巨大精品欧美一区二区mp4| 精品亚洲成a人片在线观看| 91麻豆精品激情在线观看国产 | 中文字幕制服av| 在线观看一区二区三区激情| 1024香蕉在线观看| 91av网站免费观看| 99热国产这里只有精品6| 少妇的丰满在线观看| av在线播放精品| 老司机在亚洲福利影院| 日韩免费高清中文字幕av| 一区二区三区激情视频| 一区福利在线观看| 天天添夜夜摸| 国产一区二区三区av在线| 一本色道久久久久久精品综合| 亚洲欧美日韩高清在线视频 | 亚洲专区国产一区二区| 极品少妇高潮喷水抽搐| 欧美变态另类bdsm刘玥| 性色av乱码一区二区三区2| 久久久国产成人免费| 一级毛片电影观看| 色婷婷久久久亚洲欧美| 成人国产一区最新在线观看| 深夜精品福利| 亚洲国产欧美一区二区综合| 18禁裸乳无遮挡动漫免费视频| 一区二区三区四区激情视频| 午夜激情av网站| 十八禁高潮呻吟视频| 午夜福利,免费看| 交换朋友夫妻互换小说| 一进一出抽搐动态| 亚洲欧洲精品一区二区精品久久久| 欧美乱码精品一区二区三区| 久久久久久人人人人人| a级片在线免费高清观看视频| 国产伦人伦偷精品视频| 国产国语露脸激情在线看| 国产一区二区 视频在线| 男人爽女人下面视频在线观看| 人人妻,人人澡人人爽秒播| 考比视频在线观看| 国产免费福利视频在线观看| 亚洲国产av影院在线观看| 黄色a级毛片大全视频| 9热在线视频观看99| 精品人妻一区二区三区麻豆| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 国产成人啪精品午夜网站| 免费在线观看视频国产中文字幕亚洲 | 在线观看一区二区三区激情| 超色免费av| 精品国产一区二区久久| 久久青草综合色| 侵犯人妻中文字幕一二三四区| 国产真人三级小视频在线观看| 亚洲中文av在线| 在线观看免费日韩欧美大片| 国产区一区二久久| 国产1区2区3区精品| 亚洲熟女毛片儿| 欧美黑人精品巨大| 国产免费福利视频在线观看| 亚洲精品乱久久久久久| 搡老熟女国产l中国老女人| 12—13女人毛片做爰片一| 国产又色又爽无遮挡免| 人成视频在线观看免费观看| 色综合欧美亚洲国产小说| 91九色精品人成在线观看| 飞空精品影院首页| 欧美黑人欧美精品刺激| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 亚洲精品国产av成人精品| 在线亚洲精品国产二区图片欧美| 深夜精品福利| 纵有疾风起免费观看全集完整版| 婷婷丁香在线五月| 又黄又粗又硬又大视频| 免费黄频网站在线观看国产| 午夜福利在线免费观看网站| 日韩有码中文字幕| xxxhd国产人妻xxx| 国产精品一二三区在线看| 在线永久观看黄色视频| 亚洲黑人精品在线| 可以免费在线观看a视频的电影网站| 丝袜美足系列| 成人国产一区最新在线观看| 女性生殖器流出的白浆| 亚洲欧美成人综合另类久久久| 黄色怎么调成土黄色| 亚洲欧美激情在线| kizo精华| 悠悠久久av| 国产精品二区激情视频| 免费在线观看黄色视频的| 亚洲av成人一区二区三| 男女无遮挡免费网站观看| 免费看十八禁软件| 啦啦啦视频在线资源免费观看| 午夜免费成人在线视频| 满18在线观看网站| 国产一区二区 视频在线| 狠狠精品人妻久久久久久综合| 天天添夜夜摸| 多毛熟女@视频| 欧美亚洲日本最大视频资源| 亚洲性夜色夜夜综合| 2018国产大陆天天弄谢| 性色av一级| 国产三级黄色录像| 欧美黄色淫秽网站| 老司机影院成人| 国产精品国产av在线观看| 国产av又大| 午夜日韩欧美国产| 青春草视频在线免费观看| 免费看十八禁软件| 99国产精品99久久久久| 亚洲第一av免费看| 汤姆久久久久久久影院中文字幕| 国产成人a∨麻豆精品| 亚洲国产毛片av蜜桃av| 一区二区三区精品91| 亚洲成人手机| 在线观看免费视频网站a站| 黄片大片在线免费观看| 丰满少妇做爰视频| 人妻 亚洲 视频| 国产av又大| av电影中文网址| 国产主播在线观看一区二区| av福利片在线| 高清欧美精品videossex| 久久毛片免费看一区二区三区| 美女主播在线视频| 老司机深夜福利视频在线观看 | 青青草视频在线视频观看| 日韩制服丝袜自拍偷拍| 交换朋友夫妻互换小说| 啦啦啦视频在线资源免费观看| 国产精品久久久av美女十八| 亚洲五月婷婷丁香| 搡老熟女国产l中国老女人| 久久毛片免费看一区二区三区| 欧美日韩一级在线毛片| 在线十欧美十亚洲十日本专区| 午夜福利,免费看| 亚洲av男天堂| 日韩一区二区三区影片| 久久人妻福利社区极品人妻图片| 亚洲欧洲精品一区二区精品久久久| 999久久久国产精品视频| 在线看a的网站| 青青草视频在线视频观看| 国产日韩欧美亚洲二区| 亚洲激情五月婷婷啪啪| 欧美日韩国产mv在线观看视频| 一区福利在线观看| 99久久国产精品久久久| 黄色视频在线播放观看不卡| 精品少妇黑人巨大在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩黄片免| 91av网站免费观看| 精品国产乱子伦一区二区三区 | 丰满迷人的少妇在线观看| 亚洲av成人不卡在线观看播放网 | 悠悠久久av| 免费观看av网站的网址| 久久人人爽av亚洲精品天堂| 午夜福利视频在线观看免费| 欧美成狂野欧美在线观看| 美国免费a级毛片| 国产91精品成人一区二区三区 | 欧美日韩国产mv在线观看视频| 老司机靠b影院| 12—13女人毛片做爰片一| 啦啦啦免费观看视频1| 他把我摸到了高潮在线观看 | 黄色视频,在线免费观看| 国产成人一区二区三区免费视频网站| 脱女人内裤的视频| 欧美日韩亚洲高清精品| videosex国产| 午夜日韩欧美国产| 国产在线一区二区三区精| 女性生殖器流出的白浆| 人人妻人人澡人人看| 国产成人免费无遮挡视频| 久久久久久人人人人人| 色94色欧美一区二区| 成人国语在线视频| 亚洲成人手机| 91成人精品电影| 成年美女黄网站色视频大全免费| 多毛熟女@视频| av线在线观看网站| 久久久久国内视频| 亚洲专区字幕在线| 老汉色av国产亚洲站长工具| 亚洲欧洲日产国产| 乱人伦中国视频| 亚洲av国产av综合av卡| 一本久久精品| 亚洲国产日韩一区二区| 夫妻午夜视频| 好男人电影高清在线观看| 亚洲国产日韩一区二区| 久久久久精品国产欧美久久久 | 免费女性裸体啪啪无遮挡网站| 国产精品一区二区免费欧美 | 亚洲情色 制服丝袜| 亚洲第一av免费看| 99久久国产精品久久久| 亚洲精品在线美女| 99国产精品一区二区蜜桃av | xxxhd国产人妻xxx| 久久毛片免费看一区二区三区| 桃花免费在线播放| 在线亚洲精品国产二区图片欧美| 亚洲精品久久久久久婷婷小说| 超碰成人久久| 欧美变态另类bdsm刘玥| 久久久久国产一级毛片高清牌| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o| 欧美乱码精品一区二区三区| 亚洲精品粉嫩美女一区| 国产高清videossex| 精品亚洲成a人片在线观看| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区mp4| 黄频高清免费视频| 真人做人爱边吃奶动态| 91精品三级在线观看| svipshipincom国产片| 99国产极品粉嫩在线观看| 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 国产成人av激情在线播放| 久久亚洲精品不卡| 亚洲伊人久久精品综合| 国产成人欧美| 最新的欧美精品一区二区| 高清欧美精品videossex| 国产亚洲欧美在线一区二区| 久久久久久久精品精品| 久久久欧美国产精品| 各种免费的搞黄视频| 天天躁夜夜躁狠狠躁躁| 后天国语完整版免费观看| 97人妻天天添夜夜摸| 日韩欧美免费精品| 久久精品国产综合久久久| 精品少妇黑人巨大在线播放| 久久影院123| 国产xxxxx性猛交| 亚洲av男天堂| 亚洲精品一区蜜桃| bbb黄色大片| 久久久精品区二区三区| 又大又爽又粗| 少妇 在线观看| 男女之事视频高清在线观看| 国产成人精品久久二区二区免费| 欧美激情极品国产一区二区三区| 久久影院123| 人妻 亚洲 视频| 老司机福利观看| 人人妻,人人澡人人爽秒播| 午夜精品久久久久久毛片777| 久久久久国产精品人妻一区二区| 亚洲黑人精品在线| 色老头精品视频在线观看| 俄罗斯特黄特色一大片| 午夜日韩欧美国产| 成人亚洲精品一区在线观看| 中文字幕av电影在线播放| 亚洲久久久国产精品| 男女高潮啪啪啪动态图| 久久久精品免费免费高清| 狂野欧美激情性xxxx| 老熟女久久久| 久久久精品国产亚洲av高清涩受| 国产高清视频在线播放一区 | 亚洲精品一区蜜桃| 久久久精品国产亚洲av高清涩受| 伊人久久大香线蕉亚洲五| 麻豆国产av国片精品| 国产精品一二三区在线看| 亚洲精品自拍成人| av免费在线观看网站| 男女下面插进去视频免费观看| 无限看片的www在线观看| 99精国产麻豆久久婷婷| 9191精品国产免费久久| 五月开心婷婷网| 午夜免费鲁丝| 亚洲久久久国产精品| 亚洲av电影在线观看一区二区三区| av视频免费观看在线观看| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 最新在线观看一区二区三区| 在线观看人妻少妇| 日韩一卡2卡3卡4卡2021年| www.自偷自拍.com| 18禁黄网站禁片午夜丰满| 另类精品久久| 久久精品亚洲av国产电影网| 欧美成人午夜精品| 久久久久国内视频| 韩国高清视频一区二区三区| 91国产中文字幕| 黑人巨大精品欧美一区二区mp4| 老鸭窝网址在线观看| 久久精品亚洲熟妇少妇任你| 91av网站免费观看| 久久精品亚洲熟妇少妇任你| 99国产精品一区二区蜜桃av | netflix在线观看网站| 色94色欧美一区二区| 国产成人a∨麻豆精品| 国产精品.久久久| av在线播放精品| 19禁男女啪啪无遮挡网站| 国产av国产精品国产| 亚洲久久久国产精品| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人爽人人添夜夜欢视频| 看免费av毛片| 欧美激情极品国产一区二区三区| 亚洲中文日韩欧美视频| 免费高清在线观看日韩| 亚洲欧美一区二区三区久久| 中文字幕人妻丝袜制服| 色老头精品视频在线观看| 永久免费av网站大全| 女性被躁到高潮视频| 男女之事视频高清在线观看| 曰老女人黄片| 丝袜人妻中文字幕| 韩国高清视频一区二区三区| 久9热在线精品视频| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 久久人人97超碰香蕉20202| 三级毛片av免费| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| 新久久久久国产一级毛片| 最新在线观看一区二区三区| 日韩视频在线欧美| 法律面前人人平等表现在哪些方面 | 亚洲一区二区三区欧美精品| 又紧又爽又黄一区二区| 欧美成狂野欧美在线观看| 免费在线观看影片大全网站| 日本wwww免费看| 男女午夜视频在线观看| 中文字幕色久视频| 亚洲精品久久成人aⅴ小说| www.精华液| 欧美变态另类bdsm刘玥| 我的亚洲天堂| 午夜福利免费观看在线| 高清欧美精品videossex| 国产福利在线免费观看视频| 国产精品99久久99久久久不卡| 亚洲av国产av综合av卡| 国产成人欧美| 色婷婷av一区二区三区视频| 美女午夜性视频免费| 法律面前人人平等表现在哪些方面 | 亚洲av男天堂| 青春草视频在线免费观看| svipshipincom国产片| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 香蕉丝袜av| 欧美性长视频在线观看| 男女边摸边吃奶| 建设人人有责人人尽责人人享有的| 国产av又大| www.自偷自拍.com| av又黄又爽大尺度在线免费看| 久久亚洲精品不卡| 黄色a级毛片大全视频| 国产在线免费精品| 亚洲精品国产av成人精品| 国产成人精品无人区| 少妇 在线观看| 欧美成狂野欧美在线观看| 三上悠亚av全集在线观看| 精品国产一区二区久久| 欧美在线黄色| 成人影院久久| 亚洲国产日韩一区二区| 国产成+人综合+亚洲专区| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 亚洲人成电影免费在线| 免费黄频网站在线观看国产| www.熟女人妻精品国产| 亚洲精品美女久久久久99蜜臀| 亚洲一区中文字幕在线| 久久免费观看电影| 免费在线观看影片大全网站| 国产区一区二久久| 80岁老熟妇乱子伦牲交| xxxhd国产人妻xxx| 国内毛片毛片毛片毛片毛片| 手机成人av网站| 大香蕉久久成人网| 91字幕亚洲| 国产成人免费观看mmmm| 午夜福利一区二区在线看| 午夜免费鲁丝| 国内毛片毛片毛片毛片毛片| 少妇 在线观看| 波多野结衣一区麻豆| 亚洲 国产 在线| 可以免费在线观看a视频的电影网站| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产一区二区精华液| 亚洲成人国产一区在线观看| 大片免费播放器 马上看| 最近最新中文字幕大全免费视频| 在线观看www视频免费| 热99re8久久精品国产| 搡老岳熟女国产| av天堂久久9| 国产在线视频一区二区| 高清欧美精品videossex| 1024视频免费在线观看| 91字幕亚洲| 中文精品一卡2卡3卡4更新| 久久亚洲国产成人精品v| 91精品国产国语对白视频| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲av高清不卡| 久久香蕉激情| 免费少妇av软件| 国产日韩一区二区三区精品不卡| 亚洲av电影在线进入| 岛国在线观看网站| 成人黄色视频免费在线看| av在线app专区| 国产精品免费大片| 99re6热这里在线精品视频| 搡老熟女国产l中国老女人| 中亚洲国语对白在线视频| 午夜视频精品福利| 各种免费的搞黄视频| 宅男免费午夜| 欧美日韩国产mv在线观看视频| a级毛片在线看网站| 黄色 视频免费看| 国产成人免费观看mmmm| 亚洲成人国产一区在线观看| 久久精品国产综合久久久| 最近最新免费中文字幕在线| 男人舔女人的私密视频| www.精华液| 国产欧美亚洲国产| 国产老妇伦熟女老妇高清| 欧美日韩视频精品一区| 午夜福利视频在线观看免费| 久久热在线av| 叶爱在线成人免费视频播放| 亚洲欧美激情在线| 两人在一起打扑克的视频| 另类亚洲欧美激情| 91精品伊人久久大香线蕉| 美女大奶头黄色视频| 国产欧美日韩一区二区三区在线| 熟女少妇亚洲综合色aaa.| 捣出白浆h1v1| 久久久久网色| 99精品久久久久人妻精品| 啦啦啦免费观看视频1| 日本av手机在线免费观看| 成年美女黄网站色视频大全免费| 国产无遮挡羞羞视频在线观看| av片东京热男人的天堂| a级片在线免费高清观看视频| 欧美日韩国产mv在线观看视频| 久久久久国内视频| 新久久久久国产一级毛片| 国产精品一区二区在线不卡| 老司机影院毛片| 99热全是精品| 日韩大片免费观看网站| 国产精品二区激情视频| 国产精品熟女久久久久浪| 成人黄色视频免费在线看| 久久国产精品男人的天堂亚洲| 久久综合国产亚洲精品| 天堂中文最新版在线下载| 999精品在线视频| 777米奇影视久久| 在线精品无人区一区二区三| 五月天丁香电影| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 久久 成人 亚洲| 国产精品久久久久久人妻精品电影 | 日本91视频免费播放| 黑人欧美特级aaaaaa片| 男女之事视频高清在线观看| 12—13女人毛片做爰片一| 熟女少妇亚洲综合色aaa.| 亚洲中文av在线| 狂野欧美激情性bbbbbb| 日本一区二区免费在线视频| 丁香六月天网| 精品欧美一区二区三区在线| 美女国产高潮福利片在线看| 午夜视频精品福利| 一进一出抽搐动态| 精品人妻一区二区三区麻豆| 精品久久久久久电影网| videos熟女内射| 国产精品欧美亚洲77777| 欧美午夜高清在线| 啦啦啦视频在线资源免费观看| videosex国产| 亚洲国产欧美网| 俄罗斯特黄特色一大片| 免费日韩欧美在线观看| 色精品久久人妻99蜜桃| videos熟女内射| 高潮久久久久久久久久久不卡| 男女下面插进去视频免费观看| 天天躁夜夜躁狠狠躁躁| 成人影院久久| 51午夜福利影视在线观看| 美女视频免费永久观看网站| 亚洲欧洲日产国产| 国产av精品麻豆| 啦啦啦啦在线视频资源| 欧美另类亚洲清纯唯美| 90打野战视频偷拍视频| 一区二区三区激情视频| 亚洲综合色网址| 国产成人精品在线电影| 精品国产超薄肉色丝袜足j| 久久久国产一区二区| 视频区欧美日本亚洲| 欧美成人午夜精品| 精品欧美一区二区三区在线| 性高湖久久久久久久久免费观看| 欧美成人午夜精品| 中文精品一卡2卡3卡4更新| 90打野战视频偷拍视频| 精品国产超薄肉色丝袜足j| 欧美另类亚洲清纯唯美| 天天添夜夜摸| 老司机靠b影院| av一本久久久久| 中文字幕人妻丝袜制服| 午夜精品国产一区二区电影| 久久午夜综合久久蜜桃| 亚洲一码二码三码区别大吗| 亚洲精品一区蜜桃| 久久久久久久精品精品| 中国美女看黄片| 天天影视国产精品| 大片免费播放器 马上看| 香蕉国产在线看| 欧美黑人精品巨大| 亚洲专区字幕在线|