• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Magnetohydrodynamic Navier’s Slip Visco Nano fl uid Flow Induced by Rotating Disk with Heat Source/Sink

    2019-10-16 08:45:20AwaisBilalMalik3andKhalilurRehmanDepartmentofMathematicsAIRUniversitySectorAirComplexIslamabad44000Pakistan
    Communications in Theoretical Physics 2019年9期

    M.Awais,S.Bilal,M.Y.Malik,,3and Khalil-ur-RehmanDepartment of Mathematics,AIR University,Sector E-9,Air Complex,Islamabad 44000,Pakistan

    2Department of Mathematics,College of Sciences,King Khalid University,Abha 61413,Saudi Arabia

    3Department of Mathematics,Quaid-i-Azam University,Islamabad 44000,Pakistan

    (Received August 15,2018;revised manuscript received November 20,2018)

    AbstractCurrent exertion is made to depict and search out the flow features imparted to viscid fluid flow over a rotational disk.Impression of magnetic field with rotating fluid is generated by interacting it in radial direction.Nano structured particles with magnetized fluid are also incorporated in the upshot of chemical reaction and absorptive/generative heat induction.Von Kumaran procedure is executed to obtain flow narrating differential expressions.Flow pattern regarding thermal,momentum profiles are comprehended with the support of shooting method and Runge-Kutta methods.Furthermore,to get more realistic view of result description computational algorithm is modified by improving Runge-Kutta coefficients with Cash and Carp method.The aspects of flow controlling parameters like momentum slip parameter,magnetic strength parameter,Brownian motion parameter,thermophoresis parameter are adorned in sketches.Findings of these architects are accumulated in conclusion section.

    Key words:heat generation/absorption,viscous fluid model,nanoparticles,rotating disk,Navier slip,Cash and Carp method

    Nomenclature

    ?

    1 Introduction

    Mechanically fluid flow generated by rotating disc has attained prodigious attention of scientists and engineers in the recent past due to its superb applications in geophysics,aeronautical science,crystal growth process,thermal power generating system etc.Significant geophysical applications of rotating disk incorporate the subject of earth’s revolution in its orbit and magma movement.Other essential mechanical applications of rotating disk involve air purifying devices,centrifugal filtration process,biological devices,food manufacturing,rotating machinery,aero spaced field and in electrified power generated surroundings.Von Karman[1]coined the idea of rotating disc discussing fluid flow induced by it.Lately,numerical investigation on combined features of thermal and concentration transfer flow of viscid fluid by way of Darcy rotating disc was executed by Turkyilmozoglu and Senel.[2]Inspection of non-Newtonian liquid induced by rotated disc in permeable media was discussed by Guram and Anwar.[3]Rashidi et al.[4]addressed the entropy generated in viscous flow over rotated disk.Turkyilmozoglu[5]discoursed the flow generated by rotated disk in the attendance of nanostructures.Mustafa et al.[6]investigated dynamics of nanoliquid due to stretchable disk.Sheikholeslami et al.[7]studied viscous nanoliquid flow due to inclining rotated disk geometry.

    At present there is remarkable requirement of electronic devices in numerous industrial progressions.But recession in thermal conductivity of these equipments has abridged their valuable acknowledgement.Such confined products can be well-ordered by mounting new heat transfer liquids in laboratories.These engineered liquids can be prepared by accruing small solid size subdivisions into base fluids in order to aggrandize the thermophysical capability of host fluids.Researchers have concluded that with the inclusion of these small size particles the issues related to low thermal conductivity of fluids in thermal frameworks has been reduced.In view of these characteristics and promising utility nano-fluids are capitalized in thermal engineering,heat exchangers,chemical progression,cancer psychoanalysis and biomedicine etc.Enriched heat transferal proficiency can be engaged to many conspicuous solicitations comprising chilling of microelectronics such as microchips in computer processors,space refrigerating,improving the adeptness of hybrid powered engines,transformers oil cooling,and numerous others.Choi[8]shared the idea of nanofluids imparts as material for enrichment of thermal conductance.This characteristic of nanofluids has led it to diverse mechanical and biomedical uses such as in frosted engine,reducing agent for drag in refrigeration,chillers,oil engine transferal,heating and cooling of buildings,in exhaustion of boiler,fueled gas recovery,lubrication,reducing temperature in electronics,microwaved tubes,highly-powered lasers,drillers,transformer cooling oil,nuclear systems cooling and solar hydral heating.An extensive investigation of convectional transmission in this fluid was completed by Buongiorno.[9]Chen et al.[10]suggested a methodology to calculate the thermal conductivity of fluid comprising of nano-sized structures constructed on their rheological features.An extensive analysis of boundary layered flow over an exponential stretchable surface comprising of nanostructures was executed by Nadeem et al.[11]Significance of nanofluid in increasing the heavy-duty engine and automotive cooling rates was elucidated by Peyghambarzadeh et al.[12]

    The imposition or interaction of magnetic field with dynamical flows is renowned as magnetohydrodynamics and such fluids are called magnetized fluids.The fundamental concept of appliance of magnetic field is to instigate magnetic currents in movable conducting liquids,which consequently generates a resistive force on the fluid.So The analysis of fluid flows with the interaction of magnetic field has engrossed substantive focus of investigators.Such considerations is due to its utilization in various mechanical,industrial and technological processes i.e.enhanced oil recovery,magnetohydrodynamic generators,electronic packages,pumps,thermal insulators,flow meters,power generation,etc.Furthermore,the appliance of magnetic field molds the orientation of interacting fluid molecules and also controls the intensity of flow phenomenon.Due to above mentioned importance researchers are considering fluid flows in various orientations under the effect of applied magnetic field.Few recent works in this direction is described as follows.Alfven[13]was the first who described the class of MHD waves also known as Alfven waves.In fluid dynamics,magnetic flow of non-Newtonian liquids was initially examined by Sarpkaya[14]and then this work was further prolonged by many investigators.Liao[15]acquired HAM solution for non-Newtonian flow regime by way of linearly stretchable geometry under the account of magnetic field.He suggested that magnetic parameter amplifies the frictional drag coefficient.MHD stagnant flow incorporated with chemical reactive species immerse in Darcy stretchable configuration was deliberated by Mabood et al.[16]Malik et al.[17]configured the physical impact of MHD on hyperbolic tangent liquid over a stretchable cylindrical configuration.Akbar et al.[18]computationally analyzed Powel-Eyring liquid under the inspiration of magnetic field over a stretchable surface.Hayat et al.[19]addressed the analysis on magnetohydrodynamic flow of fluid on a rotating disk with slip effects.Gireesha[20]contemplated electrically conducting three dimensional Casson fluid under the impact of non-linear radiation and double diffusion aspect.They attained the computational solution of the problem by obliging Runge-Kutta method.Magnetohydrodynamic Falkner-Skan flow of a Casson nanofluid in the presence of non-linear thermal radiation and variable thermo-physical properties are investigated by Archana et al.[21]Gireesha[22]depicted analysis to scrutinize the laminar,boundary layer stagnation point flow of a nanofluid over a permeable,vertical stretching sheet by capitalizing the effects of Brownian motion with thermophoresis in the presence of uniform magnetic field,non-uniform source/sink and chemical reaction.Kumar et al.[23]adumbrated the thermo physical features of Prandtl fluid over a Riga plate in the presence of magnetic field and chemically reactive species.Archana et al.[24]interrogated the features imparted in three dimensional Maxwell fluid by non-linear radiative flux and magnetic field.

    Aforesaid extensive depictions witnesses that so far very lessliterature regarding the feature soffluid prompted by rotating rigid disk in the attendance of velocity slip,magnetic field,generative/absorptive heat and chemical reactive species are not taken into account.The generally accepted fundamental are utilized to obtain the ultimate mathematical equations.For solution purpose,a numerical method is implemented by improving it to Cash and Carp procedure.Regarding structure of the manuscript is concerned,Sec.1 is all about literature survey while Sec.2 is made to of fer mathematical treatment subject to viscous nanofluid flow due to rotating disk.The numerical scheme for present fluid flow problem is given in Sec.3.The attained interpretations are shared in Sec.4 while the corresponding graphs are given in Sec.5.The key outcomes are abridged in Sec.6.

    2 Mathematical Formulation

    Let us assume 2-dimensional,laminar,magneto hydrodynamic boundary layered flow of an incompressible viscous nanoliquid yields by rotational disk with slip condition.The disk at z=0 rotates with angular velocity vz.Velocity component along radial r-direction is vr,vθis the velocity component along tangential θ-direction and vzis velocity component along axial z-direction.An unvarying magnetic strength B0is employed in the z-direction.Flow situation is taken with chemical reactive species and generative/absorptive heat effects.The physical structure of fl ow regime via rotating disk is elucidated in accompanied Fig.1.

    Fig.1 (Color online)Schematic diagram of rotating disk.

    In the current situation the governing boundary layer equations take the following forms

    The corresponding boundary conditions are

    where ν = μ/ρfis the kinematic viscosity, μ is the dynamic viscosity,σ is the electrical conductivity of the fluid,p denotes the pressure,ρ is the density,ρfis the density of the base fluid,(ρc)pis the effective heat capacity of nanoparticles, α =k/(ρc)fis the thermal diffusivity,(ρc)fis the heat capacity,is the temperature,is the concentration,DBis the Brownian diffusion coefficient,DTis the thermophoretic diffusion coefficient,A1is the velocity slip constant,A2is the temperature jump,is the surface temperature,is the ambient temperature,is the surface concentration,is the ambient concentration,Q0is the thermal generation coefficient,and K is the rate of chemical reactive species.

    Now the subsequent dimensionless variables are as under:

    Now Eq.(1)is fully identicalized and Eqs.(2)–(8)take the accompanied forms

    the associate boundary conditions are given as:

    Here β is the magnetic field parameter, λ is the velocity slip parameter,λ1thermal slip parameter,Pr is the Prandtl number,Nb is the Brownian motion parameter,Nt is the thermophoresis parameter,H is the heat generation/absorption parameter,δcis the chemical reaction parameter and Sc is the Schmidth number.These variables are described as follows:

    The shear stress rate coefficient,local convectional transmission coefficient and local massive flux magnitude are defined as:

    in which Rer=(?r)r/2ν.

    3 Numerical Scheme

    As the consequential partial differential expressions of this problem are transformed into ordinary differential equation after applying suitable transformation.But these governing ordinary differential equations(Eqs.(11),(12),and(13))are highly nonlinear and hard to control their analytical solutions.Keeping in mind the end goal to unravel this system with associated boundary conditions we must solve it i.e.Eq.(14)by numerically.There are many numerical methods which can solve this problem but we solve this problem by shooting technique with RKF-method.For further accuracy of computed results an improvement is made by adding the coefficient of RKF method by Cash and Carp method.Hence first governing boundary value expressions are transmuted into initial value problem,thus governing equations are re-written as

    To find the numerical solution of these equations by Runge-Kutta scheme,first these equations should be transmuted into system of seven linearized ordered equations with seven unknowns,by letting

    under new variables defined in Eq.(21),are given

    The associated boundary conditions from Eq.(14)in new forms are defined in Eq.(22),take the form

    To compute the first order differential equations presented in Eq.(23)–(29)seven initial restrictions must be identifiable,but the initial conditions at s3,s5,and s7are not mentioned.Though,the boundary conditions s2(η),s4(η),and s6(η)are recommended at η → ∞ Thus,these boundary restrictions are used to capitalize three missed initial restrictions.Now,letting the missing initial conditions by ω1,ω2,ω3,and ω4,it converts the given boundary conditions into initial conditions,new conditions are deif ned as:

    Initially,the values of ω1, ω2, ω3,and ω4are chosen?1,?1,?1,and ?1 respectively.Now solve this system of seven first order ordinary differential equation with initial conditions,the Runge-Kutta-Fehlberg method is used.The Runge-Kutta 4thand 5thorder formulas derived by Fehlberg are

    where subscript 5 and 4 denote 5thand 4thorder formula.Also K1,Ki,F and Z are defined as:

    where

    In Eq.(45),determination of step size h is very important.If we take h to large,the truncation error may be unacceptable,if h is too small,then iterative process is long enough.So initially we take the value of h is 0.1 and this modified is each step.The coefficients in Runge-Kutta Fehlberg formula are defined as shown is Table 1.

    Table 1 Numerical values of the coefficient given by Cash and Carp.

    Equations(23)–(29)are solved with the 5thorder formula.The 4thorder formula is used only to estimate the truncation error,defined as:

    The computed values of s2(∞),s4(∞),s6(∞),and s8(∞)are function of ω1,ω2,ω3,and ω4i.e.

    The correct values of ω1,ω2,ω3,and ω4give the boundary conditions at η∞that satisfy the relation:

    where E(ω1),E(ω2),E(ω3),and E(ω4)represent the difference between the computed and given boundary values called residuals.If boundary residuals are less than error tolerance i.e.10?6then it is final solution.On the other hand Eq.(29)can be solved for ω1, ω2, ω3,and ω4by using Newton method to refined value of ω1,ω2,ω3,and ω4.This procedure is continue until,it satisfies the convergence criteria.

    4 Results Proclamation

    This section is enchanted to sketch the complete interpretation of sundry variables on flow,temperature and nano particle concentration profiles.To get thorough intellect about the present analysis Runge-Kutta method is implemented and to produce highly accurate results the coefficients of RK-method is improved by Cash and Carp scheme.Figures 2 and 3 are adorned to check out the behavior of velocity slip parameter λ on f′(η)and g(η)in the presence and absence of magnetic field β.Firstly,Fig.2 is plotted to analyze the behavior of momentum slip parameter λ on radial velocity component for magnetic and non-magnetic cases.From the displayed sketch it is manifested that velocity field curves show diminishing magnitude with respect to incrementing values of momentum slip parameter λ in the presence of magnetic field β =0 and in absence of magnetic field β =0.The reason behind this delineating aspect is that the radial velocity is persuaded by the rotational force.It is observed that the radial velocity diminishes thus the location of the maximum velocity shifts towards the rotated wall as momentum slip parameter λ upsurges.It is also witnessed from these curves that without magnetic field momentum profile exhibits a significant increase as compared to the curves attained for magnetic field consideration.This is because the magnetic field is resistive force in nature that is why flow profile increases in absence of magnetic field and decreases in the presence of magnetic field.The attribute of tangential velocity curves for various values of momentum slip parameter λ is plotted in Fig.3.This sketch examines decreased manner in g(η)for mounting values of slip parameter λ.Physically,when momentum slip aspects λ come into action the partial part of the fluid moves towards the non-azimuthal direction as an outcome g(η)shows decrementing manner.Furthermore it also evident from this graph that magnetic field has same qualitatively effect on tangential velocity as λ does on radial velocity,i.e.strong Lorentz force opposed the fluid motion.

    Fig.2 Effect of momentum slip parameter and magnetic parameter on f′(η).

    Figures 4 and 5 are drawn to evaluate the graphical aspects of thermophoretic parameter Nt on thermal distribution θ(η)under the influence of heat generation/absorption parameter.It is obvious from Figs.4 and 5 that the thermal field of fluid flow mounts by intensifying the magnitude of heat generation in comparison to the variation in heat absorption coefficient.The fact is revealed due to the reason that by uplifting the magnitude of heat generation coefficient the thermal energy of the system raises and hence temperature of fluid flow enriches.Figures 4 and 5 assess the physical significance of thermophores is parameter Nt on fluid temperature.

    Fig.4 Effect of thermophoresis parameter and heat generation parameter on θ(η).

    Fig.5 Effect of thermophoresis and heat absorption parameter on θ(η).

    Figure 4 is depicted to analyze the behavior of temperature curve against the inciting values of Nt in the presence and absence of heat generation parameterIt is seen from these curves that the thermophoresis parameter Nt is responsible for the increase of temperature and also corresponding boundary layer thickness.The reason behind that,thermophoresis is a force,which pushes the nano particle from higher temperature region to lower temperature region.Therefore higher values of thermophores is parameter Nt correspond to the strong thermophoretic force due to which movement of particle from hotter to colder region increases significantly.As a result fluid temperature enhances for positive values of thermophoresis parameter.Furthermore it is also divulged from the profile that temperature of fluid flow rises for heat generationparameter as compared to the absence of heat generation parameter.In Fig.5 the behavior of thermal distribution with respect to thermophoresis parameter and heat absorption parameteris interpreted.Similar behavior against Nt is observed in temperature is observed.But in Fig.5 thermal distribution enriches in the absence of heat absorption parameteras compared to the presence of.

    Fig.6 Effect of Brownian motion parameter and chemical reaction parameter on ?(η).

    Profiles of non-dimensional concentration profiles are plotted in Figs.6 and 7 for altering magnitude of Brownian motion parameter and Schmidth number in the absence/attendance of chemical reaction.From these curves in Fig.6 it is depicted that nanoparticle concentration and respective solutal boundary layer thickness shows an consequence trend against positive values of Nb.It is seen that higher values of Nb drops the nanoparticle concentration because increment in Nb is responsible for random motion of nanoparticle as a consequence concentration boundary layer thickness decreases which results decrease in concentration profile.While Fig.7 displays the impact of Schmidth number on nano particle concentration profile.One can see that Schmidth number decline the volumetric fraction of nanoparticle massively.Mathematically Schmidth number is the ratio of thermal to mass diffusion,therefore inciting values of Schmidth number moderates mass diffusivity and hence concentration of nanoparticles.As for the physical significance of constructive chemical reaction on nanoparticle concentration profile is identically same in both figures.Both of these figures display the concentration pro file across the fl ow domain and it is evident that existence of constructive chemical reaction increases the concentration profile resulting thicker concentration boundary layer.Trends with the aid of numerical data disclosed in Tables 2 and 3 with respect to magnetic parameter β,momentum slip parameter λ,thermophoresis parameter Nt,Schmidth number Sc and Prandtl number Pr on Nusselt number()?1/2Nu are elucidated.From the attained data it is found that by intensifying the magnitude of magnetic parameter β,Schmidth number Sc and Prandtl number Pr there is uplift in values of heat transfer coefficient whereas diminishing attribute is observed against up surging values of momentum slip parameter λ,thermophoresis parameter Nt and Brownian motion parameter Nb.The mounting behavior of Nusselt number()?1/2Nu with respect to β,Sc,and Pr can be justified by the fact that all of these parameters produces resistive force in the flow field.So this productivity of resistance among fluid molecules raises the temperature of the fluid flow and hence the coefficient of convective heat transfer enriches.Furthermore these results are compared with the previous literature published by Hayat et al.[19]It is found from the comparison that results are total covenant to each other.Numerical variation in()?1/2Sh is disclosed in Tables 2 and 3 with respect to magnetic parameter β,momentum slip parameter λ,thermophoresis parameter Nt,Schmidth number Sc and Prandtl number Pr is manipulated.From the calculated values it is found that by increasing Nt,Sc,Pr,and Nb mass flux coefficient enhances.But reverse pattern is found for incrementing values of β and λ.The intensifying magnitude of mass flux coefficient with respect to Nt,Sc,Pr,and Nb is due to the reason that all of these mentioned factors decease the motion of fluid molecules and hence the concentration profile boosts.Furthermore these results are also compared to check the assurance of present computed results by making excellent matching with finding provided by Hayat et al.[19]

    Fig.7 Effect of Schmidth number and chemical reaction parameter on ?(η).

    Table 2 Comparison and Variation for Nusselt number w.r.t above mentioned parameters.

    Table 3 Comparison and Variation for Nusselt number w.r.t above mentioned parameters.

    Table 4 Comparison and Variation in Sherwood number w.r.t above mentioned parameters.

    Table 5 Comparison and Variation in Sherwood number w.r.t above mentioned parameters.

    5 Closing Remarks

    The viscid nanoliquid flow due to rotational rigid disk is considered along with some other physical effects.The obtained observations are itemized as follows:

    (i)The application of magnetic field brings decline in fluid velocity.

    (ii)Tangential velocity is diminishing function of velocity slip parameter.

    (iii)Temperature profile reflects higher values via heat generative parameter while opposite trends are perceived towards heat absorption parameter.

    (iv)Nanoparticle concentration admits same variations towards both Brownian motion and Schmidth number.

    Acknowledgment

    The authors would like to express their gratitude to King Khalid University,Abha 61413,Saudi Arabia,for providing administrative and technical support.

    久久精品成人免费网站| 激情视频va一区二区三区| 国产成人av激情在线播放| 久久午夜综合久久蜜桃| 夫妻午夜视频| 久久热在线av| 天堂8中文在线网| 丰满迷人的少妇在线观看| 啦啦啦中文免费视频观看日本| 啦啦啦中文免费视频观看日本| 国产在视频线精品| 曰老女人黄片| 亚洲精品国产区一区二| 亚洲 国产 在线| 涩涩av久久男人的天堂| 自线自在国产av| 午夜福利一区二区在线看| 国产欧美日韩一区二区三| 久久精品国产亚洲av高清一级| 99热网站在线观看| 超碰成人久久| 又紧又爽又黄一区二区| 蜜桃国产av成人99| 老熟女久久久| 老熟妇仑乱视频hdxx| 精品国产亚洲在线| 好男人电影高清在线观看| 丁香欧美五月| 一进一出好大好爽视频| 捣出白浆h1v1| 国内毛片毛片毛片毛片毛片| 日韩欧美三级三区| 欧美黄色片欧美黄色片| 国产精品成人在线| 色视频在线一区二区三区| 国产精品久久久久久精品电影小说| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人爽人人夜夜| 精品熟女少妇八av免费久了| 日日摸夜夜添夜夜添小说| 999久久久精品免费观看国产| 1024香蕉在线观看| 麻豆国产av国片精品| 黑人猛操日本美女一级片| 激情在线观看视频在线高清 | 女人被躁到高潮嗷嗷叫费观| 性高湖久久久久久久久免费观看| 桃花免费在线播放| 在线 av 中文字幕| 少妇被粗大的猛进出69影院| 久久性视频一级片| 国产精品一区二区免费欧美| 无限看片的www在线观看| 无限看片的www在线观看| 99国产精品一区二区三区| 成年版毛片免费区| 激情在线观看视频在线高清 | 又大又爽又粗| 亚洲熟女精品中文字幕| 久久这里只有精品19| 国产欧美日韩一区二区精品| 国产成人av教育| 午夜老司机福利片| 国产97色在线日韩免费| av天堂久久9| 黄色怎么调成土黄色| 一本久久精品| 欧美成人午夜精品| 午夜精品国产一区二区电影| 美女午夜性视频免费| 人人妻人人爽人人添夜夜欢视频| 99国产综合亚洲精品| 国产成人影院久久av| aaaaa片日本免费| 久久午夜综合久久蜜桃| 又黄又粗又硬又大视频| 日韩一区二区三区影片| 亚洲精品在线观看二区| 美女国产高潮福利片在线看| 欧美精品av麻豆av| 久久ye,这里只有精品| 中文字幕精品免费在线观看视频| 国产视频一区二区在线看| 伊人久久大香线蕉亚洲五| 国产不卡一卡二| 国产欧美亚洲国产| 麻豆av在线久日| 精品一区二区三区四区五区乱码| 高清av免费在线| 亚洲色图综合在线观看| a级毛片黄视频| 亚洲精品在线美女| 亚洲视频免费观看视频| 欧美黑人精品巨大| 欧美激情极品国产一区二区三区| 日韩人妻精品一区2区三区| 国产av又大| 亚洲综合色网址| 日本av手机在线免费观看| 在线 av 中文字幕| 欧美+亚洲+日韩+国产| 热99久久久久精品小说推荐| 日韩视频一区二区在线观看| 汤姆久久久久久久影院中文字幕| 最新在线观看一区二区三区| 国产精品一区二区免费欧美| 亚洲一区中文字幕在线| 自线自在国产av| 国产精品免费一区二区三区在线 | 蜜桃国产av成人99| 欧美黑人精品巨大| 91成人精品电影| 在线观看免费高清a一片| 757午夜福利合集在线观看| 999精品在线视频| 国产无遮挡羞羞视频在线观看| 国产男靠女视频免费网站| 国产淫语在线视频| 国产一卡二卡三卡精品| 精品久久久久久久毛片微露脸| 亚洲国产精品一区二区三区在线| 久久精品亚洲av国产电影网| 欧美日韩一级在线毛片| 操美女的视频在线观看| 成人影院久久| 女人爽到高潮嗷嗷叫在线视频| 9热在线视频观看99| 亚洲伊人色综图| 搡老岳熟女国产| 国产精品二区激情视频| 精品久久久久久久毛片微露脸| av超薄肉色丝袜交足视频| 午夜老司机福利片| 色综合欧美亚洲国产小说| 中文字幕最新亚洲高清| 黄色毛片三级朝国网站| 欧美乱码精品一区二区三区| 激情视频va一区二区三区| 精品一品国产午夜福利视频| 国产男女超爽视频在线观看| 国产黄频视频在线观看| 午夜老司机福利片| 国产日韩一区二区三区精品不卡| 我要看黄色一级片免费的| 动漫黄色视频在线观看| 日韩欧美一区视频在线观看| 亚洲人成77777在线视频| 国产熟女午夜一区二区三区| 欧美久久黑人一区二区| 欧美国产精品va在线观看不卡| 国产一区二区三区视频了| 国产又爽黄色视频| 亚洲男人天堂网一区| 国产一区二区三区视频了| 两个人免费观看高清视频| 国产男女超爽视频在线观看| 中亚洲国语对白在线视频| 成人国产av品久久久| 国产日韩一区二区三区精品不卡| 国产色视频综合| 久久久精品国产亚洲av高清涩受| 正在播放国产对白刺激| 日日摸夜夜添夜夜添小说| 精品久久久精品久久久| 中文字幕制服av| 欧美黄色片欧美黄色片| 人人妻人人澡人人看| 男女高潮啪啪啪动态图| 中文字幕最新亚洲高清| 黑人操中国人逼视频| 激情视频va一区二区三区| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区黑人| 首页视频小说图片口味搜索| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 中文字幕人妻丝袜一区二区| 男女之事视频高清在线观看| 欧美精品一区二区免费开放| 一级片'在线观看视频| 亚洲国产欧美网| 十八禁高潮呻吟视频| 90打野战视频偷拍视频| 午夜老司机福利片| 高潮久久久久久久久久久不卡| 黄色视频在线播放观看不卡| 亚洲成人国产一区在线观看| 中亚洲国语对白在线视频| 久久午夜综合久久蜜桃| 妹子高潮喷水视频| 国产一区二区激情短视频| 免费观看a级毛片全部| 国产1区2区3区精品| 丝瓜视频免费看黄片| 天天添夜夜摸| 精品久久蜜臀av无| 香蕉久久夜色| 国产又色又爽无遮挡免费看| 99riav亚洲国产免费| 脱女人内裤的视频| 少妇粗大呻吟视频| 免费在线观看日本一区| 无限看片的www在线观看| 乱人伦中国视频| 五月开心婷婷网| 1024视频免费在线观看| 视频区图区小说| 一级毛片精品| 亚洲午夜精品一区,二区,三区| 狠狠精品人妻久久久久久综合| 欧美黑人精品巨大| 交换朋友夫妻互换小说| 可以免费在线观看a视频的电影网站| 亚洲成人手机| 婷婷成人精品国产| 日韩欧美三级三区| 成人手机av| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 人人妻人人爽人人添夜夜欢视频| 高清毛片免费观看视频网站 | 一级黄色大片毛片| 欧美黄色片欧美黄色片| 99香蕉大伊视频| 丰满少妇做爰视频| av线在线观看网站| 精品国产乱码久久久久久男人| 日本一区二区免费在线视频| 淫妇啪啪啪对白视频| 色婷婷久久久亚洲欧美| 亚洲少妇的诱惑av| av有码第一页| 国产成人一区二区三区免费视频网站| 国产免费视频播放在线视频| 热re99久久精品国产66热6| 国产日韩欧美亚洲二区| 亚洲中文av在线| 日本av免费视频播放| 欧美日韩亚洲国产一区二区在线观看 | av天堂在线播放| 国产三级黄色录像| 美女主播在线视频| 久久 成人 亚洲| 纯流量卡能插随身wifi吗| 欧美日本中文国产一区发布| 在线观看免费午夜福利视频| 精品高清国产在线一区| 在线观看人妻少妇| 香蕉丝袜av| 日本wwww免费看| 日日爽夜夜爽网站| 成人特级黄色片久久久久久久 | 久久精品人人爽人人爽视色| 美女主播在线视频| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 国产精品.久久久| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| 悠悠久久av| 国产不卡av网站在线观看| 这个男人来自地球电影免费观看| 最近最新中文字幕大全电影3 | 欧美精品av麻豆av| 精品亚洲成国产av| 黄色片一级片一级黄色片| www日本在线高清视频| 岛国毛片在线播放| 亚洲欧洲精品一区二区精品久久久| 久久久久久久国产电影| 美女高潮到喷水免费观看| 欧美精品人与动牲交sv欧美| 亚洲综合色网址| 美女国产高潮福利片在线看| 日韩 欧美 亚洲 中文字幕| 啪啪无遮挡十八禁网站| 美女扒开内裤让男人捅视频| 在线观看免费高清a一片| 午夜免费成人在线视频| 免费观看av网站的网址| 别揉我奶头~嗯~啊~动态视频| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 黄色视频,在线免费观看| 国产高清国产精品国产三级| 欧美日韩亚洲高清精品| 满18在线观看网站| 淫妇啪啪啪对白视频| 国产成人系列免费观看| 国产黄色免费在线视频| 日日爽夜夜爽网站| 久久狼人影院| 亚洲色图 男人天堂 中文字幕| 亚洲精品av麻豆狂野| avwww免费| 香蕉国产在线看| 国产成人免费无遮挡视频| 乱人伦中国视频| 色精品久久人妻99蜜桃| 精品高清国产在线一区| h视频一区二区三区| 成人黄色视频免费在线看| 真人做人爱边吃奶动态| 涩涩av久久男人的天堂| 肉色欧美久久久久久久蜜桃| 成人国产av品久久久| 日韩欧美国产一区二区入口| 亚洲精品粉嫩美女一区| e午夜精品久久久久久久| 99国产精品一区二区三区| 国产精品久久久人人做人人爽| 免费不卡黄色视频| 精品亚洲乱码少妇综合久久| 极品人妻少妇av视频| 欧美日韩亚洲高清精品| av福利片在线| 热re99久久精品国产66热6| 1024视频免费在线观看| 变态另类成人亚洲欧美熟女 | 国产亚洲一区二区精品| 日韩大码丰满熟妇| 九色亚洲精品在线播放| a级毛片在线看网站| 老司机深夜福利视频在线观看| 女人久久www免费人成看片| 一级毛片女人18水好多| 黄片小视频在线播放| svipshipincom国产片| 日韩视频在线欧美| 一级片'在线观看视频| 色在线成人网| 女人精品久久久久毛片| 中文亚洲av片在线观看爽 | 一个人免费在线观看的高清视频| 91麻豆av在线| 下体分泌物呈黄色| 国产欧美亚洲国产| www.熟女人妻精品国产| 久热这里只有精品99| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 性少妇av在线| 亚洲美女黄片视频| 别揉我奶头~嗯~啊~动态视频| 高清欧美精品videossex| 天天躁狠狠躁夜夜躁狠狠躁| 电影成人av| 9色porny在线观看| 极品少妇高潮喷水抽搐| 日本a在线网址| 国产一区二区 视频在线| 男人舔女人的私密视频| 亚洲五月婷婷丁香| 精品国产超薄肉色丝袜足j| a级毛片在线看网站| 777久久人妻少妇嫩草av网站| 纵有疾风起免费观看全集完整版| 欧美日韩精品网址| 午夜福利在线观看吧| 757午夜福利合集在线观看| 香蕉丝袜av| 天天躁日日躁夜夜躁夜夜| 精品久久久久久久毛片微露脸| 一区二区三区国产精品乱码| 国产成人精品在线电影| 亚洲欧美一区二区三区久久| 免费观看人在逋| 日韩免费高清中文字幕av| 91成年电影在线观看| 亚洲中文日韩欧美视频| 日韩视频一区二区在线观看| 久久精品亚洲精品国产色婷小说| 中文字幕另类日韩欧美亚洲嫩草| 无限看片的www在线观看| 久久中文字幕一级| 在线 av 中文字幕| 日韩人妻精品一区2区三区| 国产精品久久久久久精品电影小说| 久久99一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 老熟女久久久| 亚洲国产av新网站| 色在线成人网| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美视频二区| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 亚洲午夜精品一区,二区,三区| 亚洲成人国产一区在线观看| e午夜精品久久久久久久| 又紧又爽又黄一区二区| 国产成人精品在线电影| 在线播放国产精品三级| 成人国产一区最新在线观看| 亚洲av欧美aⅴ国产| 大片免费播放器 马上看| 久久久欧美国产精品| 日本wwww免费看| 国产亚洲av高清不卡| 国产亚洲欧美在线一区二区| 欧美国产精品一级二级三级| 亚洲精品中文字幕在线视频| 久久99一区二区三区| 中文字幕av电影在线播放| 在线永久观看黄色视频| 成人国语在线视频| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| 精品一品国产午夜福利视频| 国产aⅴ精品一区二区三区波| 高清视频免费观看一区二区| 啦啦啦中文免费视频观看日本| 成人免费观看视频高清| 香蕉久久夜色| 交换朋友夫妻互换小说| 日本黄色视频三级网站网址 | 亚洲欧美日韩高清在线视频 | 色老头精品视频在线观看| cao死你这个sao货| 一级a爱视频在线免费观看| 嫁个100分男人电影在线观看| 日韩中文字幕欧美一区二区| 69精品国产乱码久久久| 国产视频一区二区在线看| 99国产综合亚洲精品| 国产精品 欧美亚洲| 男人舔女人的私密视频| 日本av免费视频播放| 变态另类成人亚洲欧美熟女 | 日韩有码中文字幕| 欧美激情久久久久久爽电影 | 操美女的视频在线观看| 美女视频免费永久观看网站| 欧美激情高清一区二区三区| 精品一区二区三区av网在线观看 | a级毛片在线看网站| 热re99久久国产66热| 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区 | 亚洲人成77777在线视频| 午夜福利影视在线免费观看| 一级片免费观看大全| 中文亚洲av片在线观看爽 | 男男h啪啪无遮挡| 国产一区二区三区在线臀色熟女 | 咕卡用的链子| 亚洲国产精品一区二区三区在线| 又紧又爽又黄一区二区| 在线观看免费午夜福利视频| 丝袜喷水一区| 欧美精品av麻豆av| 国产在线免费精品| 欧美性长视频在线观看| 免费看十八禁软件| 夜夜爽天天搞| 一区二区日韩欧美中文字幕| 亚洲一区二区三区欧美精品| 午夜福利影视在线免费观看| 亚洲av日韩精品久久久久久密| 国产高清videossex| 久久国产精品男人的天堂亚洲| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区 | 久久久国产欧美日韩av| 成年人黄色毛片网站| 久久精品亚洲精品国产色婷小说| 日韩欧美一区视频在线观看| 午夜成年电影在线免费观看| 亚洲国产看品久久| 2018国产大陆天天弄谢| 日韩成人在线观看一区二区三区| 十分钟在线观看高清视频www| 极品少妇高潮喷水抽搐| bbb黄色大片| 免费在线观看影片大全网站| 国产av又大| 757午夜福利合集在线观看| 久久国产精品大桥未久av| 亚洲av片天天在线观看| 久久中文看片网| 性少妇av在线| 欧美日韩亚洲高清精品| 国产成人影院久久av| 在线观看舔阴道视频| 成人亚洲精品一区在线观看| 亚洲色图综合在线观看| 99re6热这里在线精品视频| 亚洲情色 制服丝袜| a级片在线免费高清观看视频| 亚洲综合色网址| 国产真人三级小视频在线观看| 老司机午夜福利在线观看视频 | 女人精品久久久久毛片| 日韩欧美一区二区三区在线观看 | 搡老熟女国产l中国老女人| 在线看a的网站| 在线观看www视频免费| 精品国产一区二区久久| 国产不卡一卡二| 黄色怎么调成土黄色| 叶爱在线成人免费视频播放| 日韩一区二区三区影片| 人人妻人人澡人人看| 男女无遮挡免费网站观看| 久久国产精品人妻蜜桃| 黄色视频,在线免费观看| 欧美精品亚洲一区二区| 99热国产这里只有精品6| 国产真人三级小视频在线观看| 久久久久久久久免费视频了| 黑丝袜美女国产一区| 97人妻天天添夜夜摸| 波多野结衣一区麻豆| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3 | 汤姆久久久久久久影院中文字幕| 日韩欧美国产一区二区入口| 欧美国产精品一级二级三级| 成人亚洲精品一区在线观看| av免费在线观看网站| bbb黄色大片| av在线播放免费不卡| 国产99久久九九免费精品| 男女之事视频高清在线观看| 国产无遮挡羞羞视频在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一二三| 99九九在线精品视频| 久久久久国内视频| 午夜免费成人在线视频| 制服人妻中文乱码| 丝袜美腿诱惑在线| 亚洲欧美激情在线| 老司机午夜十八禁免费视频| kizo精华| 丰满少妇做爰视频| 91国产中文字幕| tube8黄色片| 久久久久久久久免费视频了| 精品国产一区二区三区久久久樱花| 国产精品99久久99久久久不卡| 日本一区二区免费在线视频| 国产高清激情床上av| 日日摸夜夜添夜夜添小说| 国产成人精品久久二区二区91| 国产高清视频在线播放一区| 美女扒开内裤让男人捅视频| 国产在线免费精品| 97人妻天天添夜夜摸| 国产精品秋霞免费鲁丝片| 久久亚洲精品不卡| 热re99久久国产66热| 又大又爽又粗| videos熟女内射| 黑人欧美特级aaaaaa片| 国产亚洲精品久久久久5区| 欧美日韩黄片免| 精品欧美一区二区三区在线| 19禁男女啪啪无遮挡网站| 精品福利观看| 无人区码免费观看不卡 | 脱女人内裤的视频| 欧美在线一区亚洲| 伊人久久大香线蕉亚洲五| 国产片内射在线| 俄罗斯特黄特色一大片| 妹子高潮喷水视频| 大码成人一级视频| 亚洲精品国产精品久久久不卡| 黄色视频在线播放观看不卡| 国产一区二区在线观看av| 1024香蕉在线观看| 亚洲欧美日韩高清在线视频 | 一区二区三区国产精品乱码| 欧美日韩亚洲综合一区二区三区_| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 午夜激情av网站| 亚洲人成电影观看| 中文字幕制服av| 精品一区二区三区四区五区乱码| 久久久国产欧美日韩av| 人妻久久中文字幕网| 国产av一区二区精品久久| 伦理电影免费视频| 十八禁网站免费在线| 成人精品一区二区免费| 中文字幕另类日韩欧美亚洲嫩草| 老司机在亚洲福利影院| 亚洲五月婷婷丁香| 自线自在国产av| 中文字幕色久视频| 久久久欧美国产精品| 日本av手机在线免费观看| 久久99一区二区三区| 亚洲全国av大片| 最近最新中文字幕大全电影3 | 青草久久国产| 巨乳人妻的诱惑在线观看| 中文字幕av电影在线播放| 中国美女看黄片| 国产在线观看jvid| 日日摸夜夜添夜夜添小说| a在线观看视频网站| 亚洲第一av免费看| 亚洲中文日韩欧美视频| 桃红色精品国产亚洲av| 国产不卡一卡二| 在线观看舔阴道视频| 后天国语完整版免费观看| 国产av一区二区精品久久| 成人永久免费在线观看视频 | 日韩 欧美 亚洲 中文字幕| 亚洲成人手机|