• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability Analysis of Indirect Adaptive Tracking Systems for Simple Linear Plants with Unknown Control Direction

    2019-10-16 01:45:06PANQingfei潘青飛RUANRongyao阮榮耀XIEPeng謝鵬
    應(yīng)用數(shù)學(xué) 2019年4期
    關(guān)鍵詞:榮耀

    PAN Qingfei(潘青飛),RUAN Rongyao(阮榮耀),XIE Peng(謝鵬)

    ( 1.Sanming University,Sanming 365004,China;2.Department of Mathematics,East China Normal University,Shanghai 200241,China;3.School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074,China)

    Abstract: The paper deals with the adaptive tracker for a class of first-order linear continuous-time plants,with different estimators and modified certainty-equivalence control law.We overcome the difficulty of the loss of stabilizability (or controllability) as the estimate of the plant gain is zero and correct a few substantive mistakes of the results from Middleton and Kokotovic’s paper (1992) about the indirect adaptive regulation of the above-mentioned plant.In the constructed adaptive tracking systems,the explicit expression for the phase-plane trajectories or the explicit solution completely describing the nonlinear behavior of the resultant closed-loop systems is obtained,and some problems of the designed adaptive tracking systems,which due to a loss of stabilizability of the estimated model probably are analyzed.The paper also discusses the impact of these results for the indirect adaptive tracking case of higher order linear continuous-time plants.Meanwhile,we discuss the unknown both control direction and model parameters by making use of the similar pattern.

    Key words: Indirect adaptive tracking;Stability analysis;Boundedness property;Control direction;Nonlinear behavior

    1.Introduction

    Let us consider a plant described by the following model:

    whereu(t),y(t) are the plant input and output,respectively,Kpis the gain parameter of the plant,andsdenotes the differential operator.The mimic polynomialsA(s),B(s)are coprime and of degreesn,mrespectively,wherenm,andB(s)is Hurwitz(i.e.B(s)0,?Res0).

    Assume the sign of the plant gain (i.e.the so-called control direction[2?3]of the plant)is unknown in this paper.However,it does usually need to assume that the sign of the plant gain is known both in direct adaptive control and indirect adaptive control[4].In indirect adaptive control,the unknown control direction may cause the loss of stabilizability of the estimated plant model.In particular,the controllability is lost when the estimate of the unknown plant gain is zero.Therefore,the indirect adaptive control with unknown control direction is still a problem which has not been solved completely yet.How to use the different estimators together with a modified certainty-equivalence control law handling the passage of the gain estimate through zero? Which of their signals,if any,go unbounded? Do the causes for unboundedness suggest some“natural fixes”,and should they be in the estimate algorithms or in the control law?

    Middleton and Kokotovic[1]answered such basic questions on several extremely simple examples.Unfortunately,it didn’t hit the point.We cite three examples in Section III of [1]as following:

    1) For the control law (3.1) (i.e.u(t)=?2y(t)/),if we choose<0 in the case ofb>0,or choose>0 in the case ofb<0,the initial controlu(0)of the resultant adaptive regulation system is positive feedback,which is a mistaken control direction.Its subsequent states will be divergent.Namely,it is impossible for them to keep boundedness properties.Even if sign(b)=1 is known,the control law(3.1)is still incorrect control strategy as selecting the initial estimate<0,which did not completely guarantee the boundedness properties of the controlled states of the resultant closed-loop system.

    2) “It is clear from (3.1) that the controlu(t) is grown unboundedly asapproaches zero fory(t)0”.This is a obvious mistake too.Since when→0,althoughy(t)0,it would converge to zero whenconverges to zero,this meansu(t) does not have to be unbounded.Ifu(t) does increase unboundedly,then the boundedness properties of the controlled states of the resultantadaptive regulation system are no guarantee,which denies the main conclusion of themselves.

    3)It was a crucial mistake that there is an unstable zero-pole cancellation when dividing the second equation in (3.6) by (3.3),thus the explicit expression of (3.8),the integral curve family defined by the equation(3.7)(see Fig.2 in[1]),is not the phase-diagram of the nonlinear state-space equations (3.2) and (3.3) (since the phase-plane trajectories of this system are undefined at=0),and the boundedness properties ofηsatisfying (3.7) does not mean the boundedness properties ofywhich satisfies (3.2) and (3.3).Therefore the proof of the boundedness properties of the controlled states is incorrect completely.

    Even so,[1]is useful in certain sense.It contributes an important result thathas an unchanged sign which characterizes the significant property of related trajectories on the phase-plane.If we can choose sign()=sign(b),which means the sign of the plant gainbneeds to be known,then the boundedness properties could be guaranteed.However,in this case,there no longer exists problem of whetherpasses through zero.For a class of simple linear discrete-time plants,the correspondent adaptive regulation problem had solved completely due to [5].

    Enlightened by[1,5],this paper,based on the same simple examples,provides a completely proper answer to the basic question above-mentioned and corrects a few mistakes in[1].We consider the examples of the unstable first-order linear continuous-time plant with the known pole at the right half plane and the unknown both sign and value of the plant gain.Using three different estimate algorithms (i.e.the unnormalized gradient,the normalized gradient and the least squares) and combining with the modified certainty-equivalence pole-placement control law to handle the passage of the plant gain estimate through zero,we proceed on stabilizability analysis by finding the explicit solution to the nonlinear state space equationsor the explicit expression for the phase-plane trajectories,and discuss both boundedness properties and transient behavior of the controlled states of the resultantclosed-loop systems.This analysis provides us with a complete quantitative description of the boundedness properties and their limit properties.

    2.The Formation of Adaptive Tracking System

    I Plant model

    Consider the first-order linear plant

    wherey(t)andu(t)are the plant output and input,respectively,andbis an unknown nonzero constant parameter.We assume that an upper bound on the size ofbis known,i.e.

    While we assume that the sign ofbis unknown,this is crucial.

    Remark 2.1In[1],the lower bound on the size ofbis assumed,that is abs(b)ε>0.But it is only used to SCE control law (2.17) and DCE control law (2.18),not applied to the estimating algorithms(2.6)-(2.9)in[1].In this paper,we don’t need this restricted condition,but we need to know the upper bound of,which may reduce the scope of the selected initial valueso as to move the closed-loop pole to the left plane (e.g.,takes=?1) as soon as possible by adaptive tracking control.

    II Parameter estimate algorithms

    Assume that the bounded reference signalr(t) is known,which will be the outputy(t)’s tracking target of the resultant closed-loop system.Letb(t) denote the estimate of unknown parameterbat timet.We define the prediction errore(t) of the designed adaptive tracking system is

    The regressor in the above case is the scalar (the notation is also applied to the vector case)

    Remark 2.2In order to simplify the calculations and avoid the trouble of constructing filters,we assume that the time derivativeof the outputy(t)is available to the parameter estimators.But in order to preserve the realism of the feedback control problem,we also assume that the signalis not available to the feedback control itself.

    The following three estimators to be analyzed are standard continuous-time parameter estimate algorithms for updating the parameter estimate[6?8].Each of them defines the rate of changeofb(t)as a function of the regressor,prediction error,and a gain(either a fixedλin the first two cases,or a variablep(t) in the final case).

    (a) UG-unnormalized gradient:

    (b) NG-normalized gradient:

    (c) LS-least squares:

    The initial estimate value in the three above algorithms should be selected within[?σ,σ].Without loss of generality,we assume thatλandp(0) are all selected to be positive values larger than 1.

    Before we design the feedback control law and proceed with the analysis,let us introduce a property of the LS algorithm established in [1],which effectively eliminates one of the three state components in the analysis (but not in the implementation) of the LS-based adaptive tracking.

    Lemma 2.1For the plant (2.1),the least squares estimators (2.7) and (2.8) have the following property:

    Proof of the equality (2.9) had given in Lemma 2.1 of [1].When≠0,the equality(2.10) has deduced immediately from the equality (2.9).

    III Control law

    Assumption H:The known reference signalr(t) is continuous and bounded,and its time derivativeis also piecewise continuous and bounded.

    Leter(t) denote the adaptive tracking error at timet,i.e.,er(t)=y(t)?r(t).We give a modified certainty equivalence pole-placement control strategy,attempting to place the closed-loop pole at the left plane (takes=?1):

    whereg(·) is a special sign function,and it is defined as

    and

    Here the initial timet0may be taken as zero,?tdenotes a fixed sampling period in the simulations or the implementations of the adaptive tracking control,y(t0) andy(t1) are the outputs of the plant (2.1) at the timest0andt1,respectively,andK(t) are a function about the gainsλorp(t) for the estimators UG,NG or LS.for NG and

    The control law (2.11) clearly has a singularity whenb(t) is zero,while it is a removable singularity.Onceb(t) reaches zero at the timet=tz,we can obtain from (2.11) and (2.5),(2.6) or (2.7) that for alln1,t=tz+n?t,b(t)≡the true valueb(under the cases of used UG,NG or LS estimators) after implementing the control strategyu(er(t),b(t))=1/K(t).

    Remark 2.3Although the control direction of the plant (2.1) is unknown,we may guess sign(b)=1.If our guess is really right,the control strategyu(0) defined in (2.11) starts to work whateverb(0) is positive or negative,and can be defined from (2.12) thatg(t)=?1 for alltt0.In this case,the implemented feedback control(2.11)for the plant(2.1)is always negative feedback.If our guess is wrong,then the sign of the plant gainbis negative.It shows that the initial controlu(0) of the adaptive tracking systems is positive feedback,which is a mistaken control direction.It can be calculated from (2.12) thatg(t)=1 for alltt1.Thus subsequent feedback controlu(er(t),b(t)) for alltt1will be corrected immediately as negative feedback.Therefore the control direction ofu(t),?tt1,defined by (2.11) are always right,and sign(bg(t))=?1,?tt1.The mistake of the control direction will at the most occur at the timet0,which would not continually affect the succeeding controlled states.

    3.Boundedness Properties of the Controlled States

    In this section,we now proceed to analyze the three adaptive tracking systems with the modified certainty equivalence pole-placement control law (2.11) and with one estimate algorithm UG,and the rest two trackers (based on the estimate algorithms NG or LS) are omitted,since they follow a similar pattern.An important feature of these analyses is that we generate the explicit expression for the phase-plane trajectories or the explicit solution to the nonlinear state space equations.Therefore,they are able to completely describe the nonlinear behavior of the designed adaptive tracking systems.

    Let us analyze the adaptive tracking systems with the unnormalized gradient estimation algorithm UG and the modified certainty equivalence pole-placement control law (2.11).For estimate algorithm UG,formula (2.11) may be rewritten as follows

    The sign functiong(·) in (3.1) is defined by (2.12).It is clear from (2.11) or (3.1) that the feedback control gain 2g(t)/|b(t)|grow unboundedly asb(t)approaches zero.The sign function in(3.1)is defined by(2.12).It is clear from(2.11)or(3.1)that the feedback control gain grow unboundedly as approaches zero.The main question here is that whether such an unbounded feedbackcontrol gain will force the controlled state of the designed adaptive tracking system to grow unboundedly.Our answer is in the negative for such adaptive tracking system.Even whenb(t) passes through zero,the controlled states remain bounded and their transients are well behaved.

    In this case,the state vector of the designed adaptive tracking system is composed of both the tracking errorer(t) of the resultant closed-loop system and the estimateb(t) of the plant gainb.For convenience of both analysis and simulation,the true value of the plant gainb,unknown to the designer,is assumed to be

    or

    The other assumption for simplification of calculations is that the time derivativeof the tracking errorer(t) is available to the parameter estimator,otherwise,the two filters will be introduced like what was done in [9-10].To preserve the realism of the feedback control problem,we also assume that the signalis not available to the feedback control itself.

    Using (2.1),(2.3)-(2.5),(3.1) ander(t)=y(t)?r(t),we can write the nonlinear statespace equations as

    In the above (3.5),the true value is given by (3.2).If the true value isb=?1 given by(3.3),then the estimate formula (3.5) ofbshould be replaced by

    It is easily observed thater(t)≡0 is an equilibrium manifold of (3.4) and (3.5) or is also the one of (3.4) and (3.6),and that the equilibria inside the segmentsb(t)∈[0,2]orb(t)∈[?2,0]are stable,while those outside segments are unstable.Possibly there exist two kinds of tendency of trajectories for the unstable cases:tend to an equilibrium or depart from all the equilibria.

    It is clear from(3.5)thatb(0)=1 impliesb(t)=1 for allt0.Henceb(t)≡1(?t0)is an invariant manifold of the differential equations(3.4)and(3.5),and its equilibrium solution under the initial condition ofb(0)=?1 is

    It is also clear from (3.6) thatb(0)=?1 impliesb(t)=?1 for allt0.Henceb(t)≡?1(?t0) is also an invariant manifold of the differential equations (3.4) and (3.6),and its equilibrium solution of (3.4) and (3.6) under the initial condition ofb(0)=?1 is

    These mean that ift=0,the estimateb(0) is correct,i.e.it equals the true valueb=1 orb=?1,then b(t) will continue to be correct for allt0.

    The two invariant manifold pairs{er(t)≡0,b(t)≡1} and{er(t)≡0,b(t)≡?1} of the two designed adaptive tracking systems divide respectively the corresponding phase-plane into four invariant quadrants.Further insight into the shape of the phase trajectories within each quadrant is provided by the fact thatb(t) defined by (3.5) or (3.6),respectively,is all of constantsign,i.e.

    or

    Thus,we know respectively from(3.9)and(3.10)thatb(t)is monotonically decreasing forb(0)>1,orb(0)>?1,and monotonically increasing forb(0)<1,orb(0)

    wheret1is given in (2.13).Ifer(0)≠0,we find the solution of (3.11) as

    where

    If abs(b(0))∈(0,2),then abs(b(t))∈(0,2),?t0.It infers from (3.13) thatf(t1,t) ≤0,?tt1Hence the explicit solutioner(t) of (3.11) is of boundedness property,and furthermore

    This implies that under the condition of|b(t)|∈(0,2),?t0,|b(t)|is strictly decreasing and so it is of limit zero,i.e.limt→∞er(t)=0.Therefore the differential equations (3.4),(3.5)and (3.4),(3.6) are all asymptotically stable.

    If|b(0)|=2,then both=0 and=0.This shows that they are critical points of the above-mentioned differential equations.Furthermore,bother(t) andb(t) are bounded.Also,the boundedness property ofy(t) is deduced from Assumption H about reference signalr(t) ander(t)=y(t)?r(t).

    Remark 3.1For the above-mentioned adaptive tracking system,we require|b(0)|∈[0,2]to ensure the boundedness properties and the convergency of{er(t),y(t),b(t);?t0}.This is a sufficient condition but not necessary.In fact,simulation examples in next section show that the designed adaptive tracking systems are asymptotically stable and the controlled states are bounded even if|b(0)|>2.Also there exists a finite timeT0 such that

    Meanwhile,we also have

    In particular,if the true value is given by (3.2) or (3.3),andb(0) is selected asb(0)=?4 orb(0)=4,for the above three parameter estimate algorithms,then they can makeb(t) pass through zero without destroying the stability of the designed adaptive tracking systems.Also,two simulation examples in next section show that Assumption H about the time derivative ˙r(t) of the reference signalr(t)( i.e.it is piecewise continuous and bounded) is needless too.

    4.Simulations of Adaptive Tracking Systems

    In Section 3,boundedness properties and convergency of the controlled states for the resultant adaptive tracking systems have been analyzed,which are mainly involved with limit property.Two simulation examples in this section are given to show the performance of the resultant adaptive tracking systems on the finite time zone.

    Example 4.1Simulation of adaptive tracking control for the plant (2.1) under the assumption (3.2) and two groups of suitable initial values.

    First,we use the control law (3.1) with the update law (2.5) for the adaptive tracking simulation of the plant (2.1).In this example,tracked target of adaptive tracking control is the sinusoidal signal

    Select the UG-estimating gainsλ1=180 andλ2=192 for two different groups of initial value{y1(0)=e1r(0)=0.06,b1(0)=4} and{y2(0)=e2r(0)=?0.06,b2(0)=?4}.Here we proceed to simulate,namely find digital solutions of the nonlinear differential equations (3.4)and (3.5) with some initial conditions chosen above.The simulation results are given in Fig.4.1-4.4.

    In Fig.4.1,the outputs arey1(t) andy2(t) for the corresponding{λ1,y1(0),e1r(0),b1(0)}and{λ2,y2(0),e2r(0),b2(0)},respectively,wherey1(t)?0.4 andy2(t)+0.4 denote the curvesy1(t)andy2(t)downwards and upwards to move 0.4 unit altitude respectively.u1(t)andu2(t)in Fig.4.2 denote the control quantities,respectively,corresponding to the two groups of the initial values.In Fig.4.3,the adaptive tracking errorseir(t)(i=1,2) also correspond to the two groups of the initial values,respectively.In Fig.4.4,b1(t) andb2(t) are the curves of the estimate values of the plant gain,respectively,corresponding to the two groups of the initial values.In simulation,we set a fixed sampling period ?t=0.004 seconds for the sampledcontrol system and the movement time 80 seconds for trajectories,but only 16 seconds picture is drawn in Fig.4.4 because the parameter estimators are convergent so fast.

    Fig.4.1 Outputs yi(t)(i=1,2) tracking r(t)=sin(0.01πt) defined in (4.1)

    Fig.4.2 Control quantities ui(t)(i=1,2)versus time t

    Fig.4.3 Adaptive tracking errors eir(t)(i=1,2) versus time t

    Fig.4.4 UG-estimates bi(t)(i=,1,2) of the plant gain b versus time t

    Example 4.2Simulation of adaptive tracking control for the plant (2.1) under the assumption (3.3) and two groups of suitable initial values.

    The adaptive tracking reference signalr(t)=sin(0,01πt) in Example 4.1 is replaced to the following rectangular wave:

    The functionr(t) is piecewise smooth and its derivative is the sum of four pairs of positive and negative impulse functions,i.e.,

    In this case,the equation (3.4) is unchanged and the equation (3.5) is replaced by the equation (3.6).We still use the control law (3.1) with the update law (2.5) for the adaptive tracking simulation of the plant(2.1).Two the UG-estimating gainsλi(i=1,2)and different group of initial values are selected the same as Example 4.1.The simulation results are given in Fig.4.5-4.8.

    Fig.4.5 Outputs yi(t)(i=1,2) tracking r(t) defined in (4.2)

    Fig.4.6 Control quantities ui(t)(i=1,2)versus time t

    Fig.4.7 Adaptive tracking errors eir(t)(i=1,2) versus time t

    Fig.4.8 UG-estimates bi(t)(i=1,2) of the plant gain b versus time t

    We also use the control law(2.11)with the update estimate(2.1)or(2.7)for the adaptive tracking simulations of the plant(2.1).The simulation results are similar to the corresponding results of the UG-based adaptive tracking simulation.Therefore we omitted their simulation pictures.It should be noted when the simulation is going on with the LS estimate algorithm,and initial valuep(0)should be selected much larger than the values of two parameter estimate gainsλ1andλ2.Otherwise,the excitation signal could be too weak hard to guarantee the convergence rate of the parameter estimateb(t).

    5.Conclusions

    Under the conditions of unknown both sign and value of the plant gain,although the sign of the initial estimates of the plant gainbi(0)(i=1,2) are probably incorrect,the three parameter estimate algorithms respectively combining the modified certainty equivalence control law are all able to drive that the estimatorsb(t) pass through zero and quickly converge to the true value ofb.Thus,the controlled states of the designed adaptive tracking system are bounded,and the tracking errorser(t)→0(t→∞).At the same time,their transients are well behaved.

    For the higher order plant (1.1) with the unknown control direction,we can generalize the modified certainty-equivalence control strategy (2.11) to the plant (1.1),and attempt to place all the closed-loop poles ats=?1.Under this case,b(t) in the control strategy (2.11)is replaced byKp(t).We can still use three estimate algorithms UG,NG and LS to estimateKpand all the unknown parameters of bothA(s) andB(s) in (1.1).The indirect adaptive control problem with unknown control direction can be solved as long as we select properly the estimate gainλfor UG and NG,in particular,select carefully the initial valuep(0) of the estimate gain for LS.

    猜你喜歡
    榮耀
    榮耀
    一位鄉(xiāng)下母親的榮耀
    榮耀
    老兵不死,榮耀永存
    第五屆“讀友杯”榮耀揭榜
    母親的榮耀
    第五屆“讀友杯”榮耀揭榜
    第五屆“讀友杯”榮耀揭榜
    榮耀Play 4 Pro LOGO
    第五屆“讀友杯”榮耀揭榜
    国产人妻一区二区三区在| 欧美xxxx性猛交bbbb| 26uuu在线亚洲综合色| 亚洲人成网站在线观看播放| 妹子高潮喷水视频| 91在线精品国自产拍蜜月| 国产爱豆传媒在线观看| videos熟女内射| 中文字幕精品免费在线观看视频 | 三级经典国产精品| 少妇精品久久久久久久| 国产免费视频播放在线视频| 亚洲av福利一区| 日韩成人伦理影院| 国产成人a区在线观看| 成人无遮挡网站| 国产 一区精品| 十八禁网站网址无遮挡 | 免费av中文字幕在线| 制服丝袜香蕉在线| 久久精品国产a三级三级三级| 深爱激情五月婷婷| 一级毛片 在线播放| 亚洲成人av在线免费| 亚洲精品456在线播放app| 久久ye,这里只有精品| 免费播放大片免费观看视频在线观看| 亚洲av二区三区四区| 久热久热在线精品观看| 免费观看的影片在线观看| 免费观看的影片在线观看| 2018国产大陆天天弄谢| 亚洲成人av在线免费| 涩涩av久久男人的天堂| 特大巨黑吊av在线直播| 国产高清国产精品国产三级 | 日本一二三区视频观看| 在线观看一区二区三区| 精品国产露脸久久av麻豆| 国产毛片在线视频| 99热全是精品| 丰满迷人的少妇在线观看| 国产成人免费观看mmmm| 老司机影院毛片| 蜜桃久久精品国产亚洲av| 嫩草影院入口| 91久久精品国产一区二区三区| 边亲边吃奶的免费视频| 国产成人a区在线观看| 干丝袜人妻中文字幕| 一区二区三区免费毛片| 日韩精品有码人妻一区| 伦理电影大哥的女人| 国产伦理片在线播放av一区| 建设人人有责人人尽责人人享有的 | 欧美日韩视频精品一区| 在线看a的网站| 国产精品麻豆人妻色哟哟久久| 夜夜骑夜夜射夜夜干| 超碰av人人做人人爽久久| 亚洲美女黄色视频免费看| 亚洲精华国产精华液的使用体验| 欧美高清性xxxxhd video| 精品人妻熟女av久视频| 国产精品免费大片| 亚洲av中文av极速乱| 三级国产精品欧美在线观看| 亚洲人成网站高清观看| 大香蕉97超碰在线| 久久人人爽av亚洲精品天堂 | 蜜桃亚洲精品一区二区三区| 久久国内精品自在自线图片| 97超视频在线观看视频| 交换朋友夫妻互换小说| 国产精品一区二区在线观看99| 中文字幕免费在线视频6| 欧美成人一区二区免费高清观看| 亚洲av电影在线观看一区二区三区| 国产 一区精品| 免费大片黄手机在线观看| 亚洲av成人精品一区久久| 中文字幕免费在线视频6| 国产免费视频播放在线视频| 亚洲av男天堂| xxx大片免费视频| 成人毛片60女人毛片免费| 另类亚洲欧美激情| 少妇的逼水好多| 国产中年淑女户外野战色| 天美传媒精品一区二区| 成人影院久久| 成人黄色视频免费在线看| 色哟哟·www| 日本vs欧美在线观看视频 | 成人免费观看视频高清| 国产成人一区二区在线| 日日啪夜夜爽| 99久国产av精品国产电影| 国模一区二区三区四区视频| 日韩av免费高清视频| 亚洲精品,欧美精品| 黄片无遮挡物在线观看| 性高湖久久久久久久久免费观看| 又爽又黄a免费视频| 亚洲精品456在线播放app| 亚洲av免费高清在线观看| 精品久久国产蜜桃| 亚洲怡红院男人天堂| 国产一区二区三区av在线| 少妇高潮的动态图| 免费少妇av软件| 又黄又爽又刺激的免费视频.| 亚洲人成网站高清观看| 人妻制服诱惑在线中文字幕| 高清午夜精品一区二区三区| 伦精品一区二区三区| 国产探花极品一区二区| 中文字幕免费在线视频6| 国产淫片久久久久久久久| 中文乱码字字幕精品一区二区三区| 成人特级av手机在线观看| 免费播放大片免费观看视频在线观看| 欧美日韩精品成人综合77777| 人人妻人人澡人人爽人人夜夜| 一级毛片aaaaaa免费看小| 日韩一区二区视频免费看| 天堂俺去俺来也www色官网| 97热精品久久久久久| 天天躁日日操中文字幕| xxx大片免费视频| 五月伊人婷婷丁香| 精品久久久久久久久亚洲| 欧美区成人在线视频| 尾随美女入室| 人人妻人人爽人人添夜夜欢视频 | 一级二级三级毛片免费看| 校园人妻丝袜中文字幕| 十分钟在线观看高清视频www | 国产一区二区三区综合在线观看 | 精品一区二区三卡| 麻豆精品久久久久久蜜桃| av不卡在线播放| 夜夜骑夜夜射夜夜干| 舔av片在线| 男女国产视频网站| 日日撸夜夜添| 亚洲av国产av综合av卡| 纵有疾风起免费观看全集完整版| 女人久久www免费人成看片| 精品一区二区三卡| 国产高清三级在线| 亚洲精品456在线播放app| 99久国产av精品国产电影| 熟女人妻精品中文字幕| 国产成人免费无遮挡视频| 麻豆国产97在线/欧美| 国产精品女同一区二区软件| 成人国产av品久久久| 夜夜骑夜夜射夜夜干| 免费大片18禁| 国产男人的电影天堂91| 亚州av有码| 日本午夜av视频| 久久热精品热| 国产真实伦视频高清在线观看| 插逼视频在线观看| 色网站视频免费| 免费看光身美女| 国产伦精品一区二区三区四那| 日日摸夜夜添夜夜添av毛片| videos熟女内射| 女的被弄到高潮叫床怎么办| 日日啪夜夜爽| 超碰97精品在线观看| 国产午夜精品久久久久久一区二区三区| 中文天堂在线官网| 看十八女毛片水多多多| 日韩成人伦理影院| 久久鲁丝午夜福利片| a级一级毛片免费在线观看| 国产欧美日韩精品一区二区| 精品亚洲成a人片在线观看 | 日韩av在线免费看完整版不卡| 国产男女超爽视频在线观看| 国产高潮美女av| 网址你懂的国产日韩在线| 欧美老熟妇乱子伦牲交| 成人高潮视频无遮挡免费网站| 99久久精品一区二区三区| 欧美高清成人免费视频www| tube8黄色片| 狠狠精品人妻久久久久久综合| 另类亚洲欧美激情| 亚洲电影在线观看av| 国产成人一区二区在线| 国产黄片美女视频| 亚洲无线观看免费| 人体艺术视频欧美日本| 国产成人freesex在线| 欧美日本视频| 女人久久www免费人成看片| 久久亚洲国产成人精品v| 亚洲在久久综合| 国产午夜精品一二区理论片| 人妻 亚洲 视频| 国产伦理片在线播放av一区| 亚洲丝袜综合中文字幕| 99国产精品免费福利视频| 久久精品熟女亚洲av麻豆精品| 久久国产精品男人的天堂亚洲 | 午夜免费男女啪啪视频观看| 免费少妇av软件| 联通29元200g的流量卡| 日韩视频在线欧美| 丝袜喷水一区| 精品少妇黑人巨大在线播放| a级一级毛片免费在线观看| 色5月婷婷丁香| 午夜免费男女啪啪视频观看| 免费人成在线观看视频色| 久久久久久久久久久免费av| 国产成人一区二区在线| 99精国产麻豆久久婷婷| 大香蕉久久网| 欧美激情极品国产一区二区三区 | 另类亚洲欧美激情| 日韩在线高清观看一区二区三区| av视频免费观看在线观看| 亚洲成人av在线免费| 国产黄片美女视频| 亚洲av国产av综合av卡| 国产永久视频网站| 国产精品福利在线免费观看| 国产亚洲5aaaaa淫片| 亚洲精品乱码久久久久久按摩| 亚洲国产精品专区欧美| 国产精品av视频在线免费观看| 一边亲一边摸免费视频| 国产成人精品婷婷| 日韩av免费高清视频| 国产视频首页在线观看| 夫妻午夜视频| 大香蕉97超碰在线| 99久久精品国产国产毛片| 国产无遮挡羞羞视频在线观看| 亚洲欧美日韩另类电影网站 | 国产免费又黄又爽又色| 在线观看一区二区三区激情| 亚洲久久久国产精品| 国产探花极品一区二区| 在线观看av片永久免费下载| 国内少妇人妻偷人精品xxx网站| 国产亚洲5aaaaa淫片| av在线观看视频网站免费| 国产极品天堂在线| 最近最新中文字幕免费大全7| 七月丁香在线播放| 亚洲欧美日韩卡通动漫| 免费观看性生交大片5| 天天躁日日操中文字幕| 精品久久久精品久久久| 婷婷色综合www| 成人二区视频| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放| 伊人久久精品亚洲午夜| 新久久久久国产一级毛片| 久久久久久久久久久丰满| 久久久久久久亚洲中文字幕| 亚洲人成网站在线观看播放| 国产av一区二区精品久久 | 亚洲av日韩在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产成人91sexporn| 欧美一区二区亚洲| 久久青草综合色| 一级毛片我不卡| 中文乱码字字幕精品一区二区三区| 丝袜脚勾引网站| 伊人久久国产一区二区| tube8黄色片| 黄色日韩在线| 三级国产精品欧美在线观看| av免费在线看不卡| 日韩中文字幕视频在线看片 | 新久久久久国产一级毛片| 国产黄片美女视频| 你懂的网址亚洲精品在线观看| 久久久久久伊人网av| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久av不卡| 直男gayav资源| 国产黄片美女视频| 国产熟女欧美一区二区| 国产永久视频网站| 精品久久久久久电影网| 国产男人的电影天堂91| 欧美xxxx黑人xx丫x性爽| 亚洲四区av| 国产亚洲av片在线观看秒播厂| 成人综合一区亚洲| 三级国产精品欧美在线观看| 亚洲精品久久久久久婷婷小说| 免费av中文字幕在线| 天美传媒精品一区二区| 亚洲精品中文字幕在线视频 | 色视频在线一区二区三区| 一区二区三区免费毛片| 97精品久久久久久久久久精品| 欧美 日韩 精品 国产| 国产大屁股一区二区在线视频| 不卡视频在线观看欧美| 人体艺术视频欧美日本| 在线观看一区二区三区| 大码成人一级视频| 日本欧美国产在线视频| 99热这里只有是精品在线观看| 另类亚洲欧美激情| 看十八女毛片水多多多| 少妇丰满av| 一级片'在线观看视频| 在线 av 中文字幕| 一级av片app| 久久鲁丝午夜福利片| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡动漫免费视频| 成人特级av手机在线观看| 亚洲人与动物交配视频| 晚上一个人看的免费电影| www.av在线官网国产| 1000部很黄的大片| 自拍欧美九色日韩亚洲蝌蚪91 | 18禁在线无遮挡免费观看视频| 在线免费十八禁| 国产在线男女| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| 国产精品欧美亚洲77777| 亚洲欧美中文字幕日韩二区| 欧美 日韩 精品 国产| 亚洲欧美日韩东京热| 午夜福利在线观看免费完整高清在| 久久久久久伊人网av| 亚洲国产精品一区三区| 97精品久久久久久久久久精品| 九九爱精品视频在线观看| 亚洲最大成人中文| 22中文网久久字幕| 大码成人一级视频| 亚洲,一卡二卡三卡| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av天美| 亚洲国产日韩一区二区| 亚洲av欧美aⅴ国产| xxx大片免费视频| 啦啦啦视频在线资源免费观看| 青春草国产在线视频| 中文在线观看免费www的网站| 三级经典国产精品| 蜜臀久久99精品久久宅男| 精品午夜福利在线看| 91精品国产国语对白视频| 国产乱来视频区| 免费少妇av软件| 在线精品无人区一区二区三 | 国产欧美另类精品又又久久亚洲欧美| 亚洲国产av新网站| 青青草视频在线视频观看| 乱系列少妇在线播放| av在线app专区| 看十八女毛片水多多多| 只有这里有精品99| 久久国产亚洲av麻豆专区| 麻豆乱淫一区二区| 色综合色国产| 国产精品国产三级专区第一集| 国产高清国产精品国产三级 | 成人免费观看视频高清| 国产黄片美女视频| 男人舔奶头视频| 欧美精品国产亚洲| 丰满少妇做爰视频| 国产深夜福利视频在线观看| 人妻一区二区av| 哪个播放器可以免费观看大片| 多毛熟女@视频| 99热这里只有精品一区| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲av片在线观看秒播厂| 一个人看的www免费观看视频| 亚洲美女黄色视频免费看| 女人十人毛片免费观看3o分钟| 国产精品国产三级国产专区5o| 国产精品一区二区三区四区免费观看| 亚洲一区二区三区欧美精品| 综合色丁香网| 亚洲精品成人av观看孕妇| 亚洲丝袜综合中文字幕| 成年美女黄网站色视频大全免费 | 99热这里只有是精品在线观看| kizo精华| 久久久亚洲精品成人影院| 国产综合精华液| 午夜激情福利司机影院| www.av在线官网国产| 国产精品无大码| 日本欧美国产在线视频| 人妻一区二区av| 成人黄色视频免费在线看| 免费大片18禁| 三级国产精品片| 在现免费观看毛片| 久久久久久人妻| 亚洲成色77777| 久久久久精品久久久久真实原创| 亚洲欧美清纯卡通| 精品亚洲成a人片在线观看 | 99九九线精品视频在线观看视频| 少妇 在线观看| 18+在线观看网站| 成人毛片a级毛片在线播放| 麻豆国产97在线/欧美| 国产片特级美女逼逼视频| 亚洲欧美日韩东京热| 深夜a级毛片| 啦啦啦视频在线资源免费观看| 久久久久久久大尺度免费视频| 看免费成人av毛片| 免费播放大片免费观看视频在线观看| 久久99热这里只频精品6学生| 免费黄频网站在线观看国产| 国产av码专区亚洲av| 精品一区在线观看国产| 久久久久国产精品人妻一区二区| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 男女国产视频网站| 水蜜桃什么品种好| 赤兔流量卡办理| 少妇人妻久久综合中文| av国产久精品久网站免费入址| 免费少妇av软件| 国产乱人视频| 搡老乐熟女国产| 涩涩av久久男人的天堂| 肉色欧美久久久久久久蜜桃| 丰满乱子伦码专区| 成年免费大片在线观看| 久久精品国产亚洲av涩爱| 国内揄拍国产精品人妻在线| 嫩草影院入口| 欧美日本视频| 日本色播在线视频| 久久 成人 亚洲| 乱码一卡2卡4卡精品| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 国产精品久久久久久久久免| 99视频精品全部免费 在线| 日日撸夜夜添| 国产片特级美女逼逼视频| 国产精品不卡视频一区二区| 中文欧美无线码| 久久久久精品性色| 欧美老熟妇乱子伦牲交| 精品久久久久久久久亚洲| 一区二区三区乱码不卡18| 欧美97在线视频| 亚洲欧洲国产日韩| 精品久久久精品久久久| 大又大粗又爽又黄少妇毛片口| 日本与韩国留学比较| 亚洲欧美日韩卡通动漫| 欧美老熟妇乱子伦牲交| 观看av在线不卡| 精品久久久精品久久久| a级一级毛片免费在线观看| 久久99蜜桃精品久久| 老司机影院成人| 国产又色又爽无遮挡免| 黄片wwwwww| 黄色视频在线播放观看不卡| 国产伦理片在线播放av一区| 各种免费的搞黄视频| 51国产日韩欧美| 精品国产一区二区三区久久久樱花 | 日韩成人av中文字幕在线观看| 国产精品国产av在线观看| 国产亚洲欧美精品永久| 亚洲美女搞黄在线观看| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 亚洲国产毛片av蜜桃av| 2022亚洲国产成人精品| 国产成人a∨麻豆精品| 免费人妻精品一区二区三区视频| 91久久精品国产一区二区成人| 男女无遮挡免费网站观看| 国产精品无大码| 狂野欧美白嫩少妇大欣赏| 精品酒店卫生间| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 国产亚洲5aaaaa淫片| 精品久久久久久久末码| 99re6热这里在线精品视频| 九九久久精品国产亚洲av麻豆| 水蜜桃什么品种好| h日本视频在线播放| 一级a做视频免费观看| 国产色爽女视频免费观看| 国产黄频视频在线观看| 午夜福利影视在线免费观看| 亚洲成色77777| a级毛片免费高清观看在线播放| 在线亚洲精品国产二区图片欧美 | 黄色视频在线播放观看不卡| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 亚洲国产毛片av蜜桃av| 国产精品成人在线| 2021少妇久久久久久久久久久| 岛国毛片在线播放| 国产精品三级大全| 国产深夜福利视频在线观看| 蜜臀久久99精品久久宅男| 亚洲国产最新在线播放| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 久久精品国产亚洲av天美| 亚洲精品日韩av片在线观看| 老司机影院成人| 女人久久www免费人成看片| 国精品久久久久久国模美| 日韩国内少妇激情av| 欧美日韩视频高清一区二区三区二| 美女中出高潮动态图| 在线观看一区二区三区| 在线免费观看不下载黄p国产| 国产乱人视频| 一级毛片我不卡| 国产一区二区三区综合在线观看 | 亚洲精品乱久久久久久| 国产v大片淫在线免费观看| 自拍偷自拍亚洲精品老妇| 男人和女人高潮做爰伦理| 国产白丝娇喘喷水9色精品| 国产高清有码在线观看视频| 久热这里只有精品99| 我的女老师完整版在线观看| 久久久久久久久久久丰满| 欧美日韩在线观看h| 乱系列少妇在线播放| 边亲边吃奶的免费视频| 欧美日韩国产mv在线观看视频 | 久久ye,这里只有精品| 在线观看一区二区三区激情| 日韩精品有码人妻一区| 如何舔出高潮| 亚洲真实伦在线观看| 麻豆成人午夜福利视频| 制服丝袜香蕉在线| 最后的刺客免费高清国语| 久久鲁丝午夜福利片| 一级二级三级毛片免费看| 人妻 亚洲 视频| 国产一区亚洲一区在线观看| 国产久久久一区二区三区| 亚洲av成人精品一二三区| 热re99久久精品国产66热6| 精品人妻偷拍中文字幕| 国产成人aa在线观看| 亚洲欧美精品自产自拍| av国产久精品久网站免费入址| 大陆偷拍与自拍| 一二三四中文在线观看免费高清| 色5月婷婷丁香| 嫩草影院新地址| 日韩成人伦理影院| 97在线视频观看| 97超碰精品成人国产| 免费久久久久久久精品成人欧美视频 | 国产黄频视频在线观看| 国产黄色视频一区二区在线观看| 日本黄大片高清| 日本欧美国产在线视频| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 免费观看av网站的网址| 成人无遮挡网站| 黄色日韩在线| 欧美日韩国产mv在线观看视频 | 久久久久人妻精品一区果冻| 国产又色又爽无遮挡免| av一本久久久久| 午夜视频国产福利| 色哟哟·www| 国产毛片在线视频| 久久久久人妻精品一区果冻| 亚洲人成网站在线观看播放| 久久影院123| 日韩成人伦理影院| 中国国产av一级| 日韩成人伦理影院| 免费观看性生交大片5| 内射极品少妇av片p| 色视频在线一区二区三区| 成人免费观看视频高清| 久久韩国三级中文字幕| 女性生殖器流出的白浆| 高清不卡的av网站| 人人妻人人澡人人爽人人夜夜| av卡一久久| 欧美日韩综合久久久久久|