• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An ?-Step Modified Augmented Lagrange Multiplier Algorithm for Completing a Toeplitz Matrix

    2019-10-16 01:44:40WENRuiping溫瑞萍LIShuzhen李姝貞
    應(yīng)用數(shù)學(xué) 2019年4期

    WEN Ruiping(溫瑞萍),LI Shuzhen(李姝貞)

    ( Key Laboratory of Engineering & Computing Science,Shanxi Provincial Department of Education /Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China)

    Abstract: Based on the modified augmented Lagrange multiplier (MALM) algorithm for Toeplitz matrix completion (TMC) proposed by WANG et al.(2016),we put forward an accelerated technique to MALM algorithm,which will reduce the extra load coming from data communication.It is drawn that an ?-step modified augmented Lagrange multiplier algorithm.Meanwhile,we demonstrate the convergence theory of the new algorithm.Finally,numerical experiments show that the ?-step modified augmented Lagrange multiplier(?-MALM) algorithm is more effective than the MALM algorithm.

    Key words: Toeplitz matrix;Matrix completion;Augmented Lagrange multiplier;Data communication

    1.Introduction

    Completing an unknown low-rank or approximately low-rank matrix from a sampling of its entries is a challenging problem applied in many fields of information science.For example,machine learning[1?2],control theory[11],image inpainting[4],computer vision[14]etc.Matrix completion (MC) problem first introduced by Cand`es and Recht[6]is from portion of the observed matrix elements to fill a low-rank matrix as precisely as possible,it is a hot spot of researching in recent years.The famous recommendation system of the Netflix[3]is the typical application of matrix completion.Mathematical language is expressed as follows:

    where the matrixM∈Rm×nis the underlying matrix to be reconstructed,? ?{1,2,···,m}×{1,2,···,n} represents the random subset of indices for the known entries to the sampling matrixM,andP?is associated sampling orthogonal projection operator on?.The purpose of the optimization problem is to reduce the rank of matrix obtained by filling missing elements as far as possible.In other words,the model (1.1) optimizes the structure of the matrix.

    Although matrix completion needs solving the global solution of the non-convex objective problem,there are still many effective algorithms which are applicable to some specific matrix.Many researchers have suggested that the most of a low-rank matrix can be accurately completed according to the known entries at specified accuracy.In a low dimensional linear subspace,the meaning of precision is that we can realize the reasonable matrix completion under the hypothesis of the lowest-rank data matrix.

    However,the optimization problem (1.1) is an NP-hard problem,in theory and practice,the computational complexity of the existing algorithms is a double exponential function about the matrix dimension.As a result,the computations are cumbersome and the data take up a large amount of computer memory.Therefore,the solving of the problem (1.1) is usually expensive by the existing algorithms.Hence,using the relation between the rank and the nuclear norm of a matrix,Cand`es and Recht[6]made the equivalent form of the problem(1.1) as follows:

    whereM∈Rm×nis the underlying matrix,denotes thek-th largest singular value of ther-rank matrixA∈Rm×n,namelyσ1≥σ2≥···≥σk≥···≥σr >0.The problem (1.1) is transformed into a convex optimization problem which is easy to solve.

    Academic circles have made abundant research results in solving the optimization problem (1.2) such as the augmented Lagrange multiplier (ALM) algorithm[9],the singular value theresholding(SVT)algorithm as well as its variants[5,8,19],the accelerated proximal gradient(APG)algorithm[15],and the modified augmented Lagrange multiplier(MALM)algorithm[17]etc.On the practical problems,the sampling matrix often has a special structure,for instance,the Toeplitz and Hankel matrices.Many scholars have conducted in-depth research on the special structure,property and application of the Toeplitz and Hankel matrix in recent years[10,12?13,16,18].As we well know,ann×nToeplitz matrix can be expressed as the following form:

    which is determined by 2n?1 entries.

    As for MALM algorithm,the intuitive idea is to switch iteration matrix into Toeplitz structure at each step by an operator.To implement this idea,a heavy data has to be moved at each iterate step.However,there is a cost,sometimes relatively great,associated with the moving of data.The control of memory traffic is crucial to performance in many computers.

    In order to reduce the traffic jam of data,an?-step modified ALM algorithm is proposed in this paper.Compared with the MALM algorithm,the new algorithm saves computation cost and reduces data communication.Two aspects are taken into account,which result in a more practical or economic implementing.The new algorithm not only overcomes the slowness produced by the computing of singular value decomposition in ALM algorithm,but also saves the data congestion caused by the data communication in MALM algorithm.Compared with the CPU of the MALM algorithm,we can see that the CPU of the?-MALM algorithm is reduced to 45%.

    Here are some of the necessary notations and preliminaries.Rm×ndenotes the set ofm×nreal matrix.The nuclear norm of a matrixAis denoted by‖A‖?,the Frobenius norm by‖A‖F(xiàn)is the sum of absolute values of the matrix entries ofA.ATis used to denote the transpose of a matrixA∈Rn×n,rank(A) stands for the rank ofAand tr(A) represents the trace ofA.The standard inner product between two matrices is denoted by〈X,Y〉=tr(XTY).? ?{?n+1,···,n?1}is the indices set of observed diagonals of a Toeplitz matrixM∈Rn×n,ˉ?is the complementary set of?.For a Toeplitz matrixA∈Rn×n,the vector vec(A,l)denotes a vector reshaped from thel-th diagonal ofA,l=?n+1,···,n?1,P?is the orthogonal projector on?,satisfying

    Definition 1.1(Singular value decomposition(SVD)) The singular value decomposition of a matrixA∈Rm×nofr-rank is defined as follows:

    whereU∈Rm×randV∈Rn×rare column orthonormal matrices,σ1≥σ2≥···≥σr >0.

    Definition 1.2(Singular value thresholding operator)[5]For eachτ≥0,the singular value thresholding operatorDτis defined as follows:

    whereA=UΣrVT∈Rm×n,{σi?τ}+=

    Definition 1.3The matrices

    are called the basis of the Toeplitz matrix space.

    It is clear that a Toeplitz matrixT∈Rn×n,shown in (1.3),can be rewritten as a linear combination of these basis matrices,that is,

    Definition 1.4(Toeplitz structure smoothing operator) For any matrixA=(aij)∈Rn×n,the Toeplitz structure mean operatorTis defined as follows:

    The rest of the paper is organized as follows.After we review briefly the ALM,MALM algorithms and the dual approach,an?-step modified ALM algorithm will be proposed in Section 2.Next,the convergence analysis is given in Section 3.Then the numerical results are provided to show the effectiveness of the?-MALM in Section 4.Finally,the paper ends with a conclusion in Section 5.

    2.Relative Algorithms

    Since the matrix completion problem is closely connected to the robust principal component analysis (RPCA) problem,then it can be formulated in the same way as RPCA,an equivalent problem of (1.2) can be considered as follows.In terms of estimating the lowdimensional subspace,the purpose of the mathematical model is to find a low-rank matrixA∈Rm×n(as long as the error matrixEis sufficiently sparse,relative to the rank ofA)to minimize the difference between matrixAandM,generating the following constraint optimization problem model:

    whereEwill compensate for the unknown entries ofM,the unknown entries ofM∈Rm×nare simply set as zeros.AndP?:Rm×n→Rm×nis a linear operator that keeps the entries in?unchanged and sets those outside?(say,in) zeros.Then we introduce the algorithm for solving problem (2.1).

    ⅠThe augmented Lagrange multiplier (ALM) algorithm

    It is famous that partial augmented Lagrangian function of the problem (2.1) is Hence,the augmented Lagrange multiplier (ALM) algorithm[9]is designed as follows.

    Algorithm 2.1Step 0 Give?,sampled matrixD=P?(M),μ0>0,ρ >1.Give also two initial matricesY0=0,E0=0.k:=0;

    Step 1 Compute the SVD of the matrix (D?Ek+μk?1Yk),

    Step 2 Set

    SolveEk+1=arg

    Step 3 If‖D?Ak+1?Ek+1‖F(xiàn)/‖D‖F(xiàn)

    Step 4 SetYk+1=Yk+μk(D?Ak+1?Ek+1).Ifμk‖Ek+1?Ek‖F(xiàn)/‖D‖F(xiàn)

    RemarkIt is reported that the ALM algorithm performs better both in theory and algorithms than the others that with a Q-linear convergence speed globally.It is of much better numerical behavior,and it is also of much higher accuracy.However,the algorithm has a disadvantage of the penalty function:the matrix sequences{Xk} generated by Algorithm 2.1 are not feasible.Hence,the accepted solutions are not feasible.

    ⅡThe dual algorithm

    The dual algorithm proposed in [7]tackles the problem (2.1) via its dual.That is,one first solves the dual problem

    for the optimal Lagrange multiplierY,where

    A steepest ascend algorithm constrained on the surface{Y|J(Y)=1}can be adopted to solve(2.3),where the constrained steepest ascend direction is obtained by projectingMonto the tangent cone of the convex body{Y|J(Y)≤1}.It turns out that the optimal solution to the primal problem (2.1) can be obtained during the process of finding the constrained steepest ascend direction.

    ⅢThe modified augmented Lagrange multiplier (MALM) algorithm

    In this pant,we mention a mean-value technique for TMC problem[17].The problem can be expressed as the following convex programming,

    whereA,M∈Rn×nare both real Toeplitz matrices,? ?{?n+1,···,n?1}.LetD=P?(M).Then the partial augmented Lagrangian function is

    whereY∈Rn×n.

    Algorithm 2.2Step 0 Give?,sampled matrixD,μ0>0,ρ >1.Give also two initial matricesY0=0,E0=0.k:=0;

    Step 1 Compute the SVD of the matrix (D?Ek+) using the Lanczos method

    Step 2 Set

    Step 3 If‖D?Ak+1?Ek+1‖F(xiàn)/‖D‖F(xiàn)

    Step 4 SetYk+1=Yk+μk(D?Ak+1?Ek+1).Ifμk‖Ek+1?Ek‖F(xiàn)/‖D‖F(xiàn)

    RemarkIt is reported that MALM algorithm performs better that of much higher accuracy.Compared with the ALM,APGL,and SVT algorithms,the MALM algorithm is advantageous over the other three algorithms on the time costed by the SVD for smoothing at each iterate.

    As we know,the saving of the SVD time is at the expense of data communication.Sometimes,this is not worth the candle.This motivated us to put up with the following algorithm.

    ⅣThe?-step modified augmented Lagrange multiplier (?-MALM) algorithm

    To reduce the workload of data being moved at each iteration step,we propose a new accelerated algorithm for the TMC problem,which is smoothing once the diagonal elements of the iteration matrix by (1.5) for every?steps.The technique saves computation cost and reduces the data communication.It turns out that the iteration matrices keep a Toeplitz structure,which ensure the fast SVD of Toeplitz matrices can be utilized.

    Algorithm 2.3(?-MALM algorithm)

    Input:?,sampled matrixD,Y0,0=0,E0,0=0;parametersμ0>0,ρ >1,?,?1,?2.Letk:=0,q:=1,q=1,2,···,??1.

    Repeat:

    Step 1??1 iterations.

    1) Compute the SVD of the matrix (D?Ek,q+) using the Lanczos method

    2) Set

    3) If‖D?Xk+1,q+1?Ek+1,q+1‖F(xiàn)/‖D‖F(xiàn)

    4) SetYk+1,q+1=Yk,q+μk,q(D?Xk+1,q+1?Ek+1,q+1),μk+1,q+1=ρμk,q;otherwise,go to Step 1 1);

    Step 2?-th smoothing.

    1) Compute

    UpdateEk+1,?=

    Step 3 If‖D?Ak+1,??Ek+1,?‖F(xiàn)/‖D‖F(xiàn)

    Step 4 SetYk+1,q+1=Yk,q+μk,q(D?Ak+1,q+1?Ek+1,q+1).

    Ifμk,q‖Ek+1,q+1?Ek,q‖F(xiàn)/‖D‖F(xiàn)

    RemarkClearly,this algorithm is an acceleration of the MALM algorithm in [17].When?=1,it becomes the MALM scheme.

    3.Convergence Analysis

    We provided first some lemmas in the following.

    Lemma 3.1[6]LetA∈Rm×nbe an arbitrary matrix andUΣVTbe its SVD.Then the set of subgradients of the nuclear norm ofAis provided by

    ?‖A‖?={UVT+W:W∈Rm×n,UTW=0,WV=0,‖W‖2≤1}.

    Lemma 3.2[9]Ifμkis nondecreasing then each term of the following series is nonnegative and the series is convergent,that is,

    Lemma 3.3[9]The sequences{},{Yk}and{}are all bounded,where=Yk+1+μk?1(D?Ak?Ek?1).

    Lemma 3.4The sequence{Yk,q} generated by Algorithm 2.3 is bounded.

    ProofLetdefined as (1.5).

    First of all,we indicate thatYk,q,Ek,q,k=1,2,···,q=1,2,···,??1 are all Toeplitz matrices.Evidently,Y0,0=0,E0,0=0 are both smoothed into Toeplitz matrices.Suppose that afterYk,q,Ek,qare both Toeplitz matrices,so isEk+1,q+1=Thus,Yk+1,q+1is a Toeplitz matrix also from the Step 4 in Algorithm 2.3.

    And,

    It is clear that by Steps 1-2 in Algorithm 2.3,

    Hence we can obtain thatYk,q+μk,q(D?Ak+1,q+1?Ek,q)∈?‖Ak+1,q+1‖?from Lemmas 3.2 and 3.3.It is known that forAk+1,q+1=UΣVTby Lemma 3.1,

    We have also,

    Therefore,the following inequalities can be obtained:

    and

    It is clear that the sequence{Yk,q} is bounded.

    Theorem 3.1Suppose thatthen the sequence{Ak,q} converges to the solution of (2.5) whenμk,q→∞and

    ProofIt is true that

    since(Yk+1,q+1?Yk,q)=D?Ak+1,q+1?Ek+1,q+1and Lemma 3.4.Let (?,?) be the solution of (2.5).ThenAk+1,q+1,Yk+1,q+1,Ek+1,q+1,k=1,2,···,are all Toeplitz matrices from+=D.We prove first that where=Yk,q+μk,q(D?Ak+1,q+1?Ek,q),is the optimal solution to the dual problem (2.3).

    We obtain the following result through the same analysis,

    Then

    holds true.

    On the other hand,the following is true by Algorithm 2.3:

    Moreover,along the same idea of Theorem 2 in [9],it is obtained thatis the solution of(2.5).

    Theorem 3.2LetX=(xij)∈Rn×n,T(X)=()∈Rn×nbe the Toeplitz matrix derived fromX,introduced in (1.5).Then for all Toeplitz matrixY=(yij)∈Rn×n,

    ProofBy the definition ofT(X),we have=0,i,j=1,2,···,n.SinceYis a Toeplitz matrix,andyl=yij,l=i?j,i,j=1,2,···,n.Then

    Theorem 3.3In Algorithm 2.3,Ak,qis a Toeplitz matrix derived byXk,q.Then

    where?is the solution of (2.5).

    Proof

    4.Numerical Experiments

    In this section,some original numerical results of two algorithms(MALM,?-MALM)are presented for then×nmatrices with different ranks.We conducted numerical experiments on the same and modest workstation.By analyzing and comparing iteration numbers (IT),computing time in second (time(s)),deviation (error 1,error 2) and ratio which are defined in the following,we can see that the?-MALM algorithm proposed by this paper is far more effective than the MALM algorithm.

    In our experiments,M∈Rn×nrepresents the Toeplitz matrix.We select the sampling densityp=m/(2n?1),wheremis the number of the observed diagonal entries ofM,then 0≤m≤2n?1.With regard to the?-MALM algorithm,we set the parametersτ0=1/‖D‖2,δ=1.2172+,?1=10?9,?2=5×10?6and?=3 as a rule of thumb.The parameters of the MALM algorithm take the same as the?-MALM algorithm.

    The experimental results of two algorithms are shown in Tables 4.1-4.4.From the tables,two algorithms can successfully calculate the approximate solution of prescriptive stop condition for all the test matricesM.And our?-MALM algorithm in computing time is far less than that of the MALM algorithm.In particular,compared with the CPU of the MALM algorithm,we can find that the CPU of the?-MALM algorithm is reduced to 45%.The“ratio”in Table 4.5 can show this effectiveness.

    Table 4.1 Comparison between MALM and ?-MALM for p=0.6.

    Table 4.3 Comparison between MALM and ?-MALM for p=0.4.

    Table 4.4 Comparison between MALM and ?-MALM for p=0.3.

    Table 4.5 The values of ratio.

    5.Conclusion

    As is known to all,matrix completion is usually to recover a matrix from a subset of the elements of a matrix by taking advantage of low rank structure matrix interdependencies between the entries.It is well-known but NP-hard in general.In recent years,Toeplitz matrix completion has attracted widespread attention and TMC is one of the most important completion problems.In order to solve such problems,we put forward an?-step modified augmented Lagrange multiplier (?-MALM) algorithm based on the MALM algorithm,and corresponding with the theory of the convergence of the?-MALM algorithm are established.Theoretical analysis and numerical results have shown that the?-MALM algorithm is effective for solving TMC problem.The?-MALM algorithm overcomes the original ALM algorithm both singular value decomposition of tardy,and surmounts the property of the extra load of the MALM algorithm.The reason is that data communication congestion is far more expensive than computing.Compared with the CPU of the MALM algorithm,we can see that the CPU of our?-MALM algorithm is reduced to 45%.Therefore,?-MALM algorithm has better convergence rate for solving TMC problem than the MALM algorithm (tables 4.1-4.5).

    AcknowledgmentsThe authors gratefully acknowledge the anonymous referees and Professor ZZ Bai(academy of mathematics and systems science,Chinese academy of sciences)for their helpful comments and suggestions which greatly improved the original manuscript of this paper.

    欧美区成人在线视频| 国产视频内射| 日韩av在线免费看完整版不卡| 秋霞在线观看毛片| 七月丁香在线播放| av专区在线播放| 校园人妻丝袜中文字幕| 91久久精品电影网| 激情五月婷婷亚洲| 亚洲av中文字字幕乱码综合| 亚洲婷婷狠狠爱综合网| 高清黄色对白视频在线免费看 | 亚洲精品亚洲一区二区| 老女人水多毛片| 大香蕉97超碰在线| 免费久久久久久久精品成人欧美视频 | 夫妻性生交免费视频一级片| 亚洲欧美日韩另类电影网站 | 能在线免费看毛片的网站| 久久99蜜桃精品久久| 国产精品.久久久| 观看免费一级毛片| a 毛片基地| 免费久久久久久久精品成人欧美视频 | 国产黄片视频在线免费观看| 亚洲熟女精品中文字幕| 哪个播放器可以免费观看大片| 国产成人精品福利久久| 在线亚洲精品国产二区图片欧美 | 三级经典国产精品| 国产精品一区二区在线观看99| 国产高清不卡午夜福利| 夜夜爽夜夜爽视频| 亚洲av综合色区一区| 偷拍熟女少妇极品色| 久久久亚洲精品成人影院| 国产精品人妻久久久久久| 成年av动漫网址| 最近手机中文字幕大全| 我的女老师完整版在线观看| 免费观看av网站的网址| 午夜精品国产一区二区电影| 97在线视频观看| 你懂的网址亚洲精品在线观看| 色视频www国产| 一本久久精品| 欧美bdsm另类| 国产伦在线观看视频一区| 成人二区视频| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品专区欧美| 亚洲精品视频女| 欧美+日韩+精品| 欧美 日韩 精品 国产| 精品久久久精品久久久| 精品一区在线观看国产| 国产一区二区在线观看日韩| 国产成人精品福利久久| 黑人猛操日本美女一级片| 国产成人精品久久久久久| 男女无遮挡免费网站观看| 一级毛片我不卡| 中文精品一卡2卡3卡4更新| 亚洲精品乱码久久久久久按摩| 秋霞伦理黄片| 美女视频免费永久观看网站| 简卡轻食公司| 美女福利国产在线 | 久久久久久伊人网av| 大陆偷拍与自拍| 国产69精品久久久久777片| 国产精品久久久久久av不卡| 免费av中文字幕在线| 精品一区二区免费观看| 日本色播在线视频| 精品国产露脸久久av麻豆| av黄色大香蕉| 在线观看人妻少妇| 亚洲av免费高清在线观看| 麻豆成人av视频| 日日啪夜夜撸| 国产成人freesex在线| 精品一品国产午夜福利视频| av线在线观看网站| 欧美精品亚洲一区二区| 91精品伊人久久大香线蕉| 2018国产大陆天天弄谢| 亚洲精品色激情综合| 草草在线视频免费看| 国产精品偷伦视频观看了| 欧美精品一区二区大全| 亚洲av二区三区四区| 日韩视频在线欧美| 熟妇人妻不卡中文字幕| 极品教师在线视频| 亚洲欧美日韩另类电影网站 | 男人和女人高潮做爰伦理| 成人18禁高潮啪啪吃奶动态图 | 国产视频首页在线观看| 97在线视频观看| 麻豆国产97在线/欧美| 午夜福利网站1000一区二区三区| 黄色一级大片看看| 久久亚洲国产成人精品v| 美女脱内裤让男人舔精品视频| 欧美日韩一区二区视频在线观看视频在线| av一本久久久久| 精品人妻偷拍中文字幕| 久久热精品热| 婷婷色av中文字幕| 在现免费观看毛片| 精品久久久精品久久久| 啦啦啦视频在线资源免费观看| 大码成人一级视频| 最黄视频免费看| 久久99精品国语久久久| 欧美高清成人免费视频www| 成人一区二区视频在线观看| 亚洲精华国产精华液的使用体验| 成年女人在线观看亚洲视频| 国产爽快片一区二区三区| 亚洲欧美日韩另类电影网站 | 青春草亚洲视频在线观看| 国产亚洲午夜精品一区二区久久| 搡女人真爽免费视频火全软件| 哪个播放器可以免费观看大片| 亚洲精品日韩在线中文字幕| 你懂的网址亚洲精品在线观看| 久久久久久久久久成人| 亚洲av成人精品一区久久| 香蕉精品网在线| av女优亚洲男人天堂| av又黄又爽大尺度在线免费看| 亚洲国产日韩一区二区| 日韩一区二区视频免费看| 国产大屁股一区二区在线视频| 如何舔出高潮| 男人狂女人下面高潮的视频| 国产视频内射| 国产视频内射| 日韩 亚洲 欧美在线| videossex国产| 91精品伊人久久大香线蕉| 综合色丁香网| 久久人人爽av亚洲精品天堂 | 亚洲精品国产av蜜桃| 久久久色成人| 日韩免费高清中文字幕av| 我要看黄色一级片免费的| 欧美性感艳星| 欧美日韩视频高清一区二区三区二| 色哟哟·www| 一级毛片电影观看| 亚洲精品国产成人久久av| 色视频在线一区二区三区| 一级a做视频免费观看| 一边亲一边摸免费视频| 成人特级av手机在线观看| 免费久久久久久久精品成人欧美视频 | 日本av手机在线免费观看| 一区二区av电影网| 99久久精品热视频| 亚洲综合色惰| 黑人高潮一二区| 国产亚洲91精品色在线| 亚洲av男天堂| 亚洲av.av天堂| 亚洲国产精品专区欧美| 黑人高潮一二区| 久久久精品94久久精品| 色哟哟·www| 日韩成人av中文字幕在线观看| 国产成人a∨麻豆精品| 日本av手机在线免费观看| 久久久久视频综合| 亚洲精品,欧美精品| 精品国产一区二区三区久久久樱花 | 精品亚洲成a人片在线观看 | 欧美精品人与动牲交sv欧美| 亚洲精品aⅴ在线观看| 国产成人精品久久久久久| 男女边摸边吃奶| 欧美亚洲 丝袜 人妻 在线| 黄片wwwwww| 国产精品免费大片| 日韩强制内射视频| 一边亲一边摸免费视频| 国产视频首页在线观看| 在线观看国产h片| 一区二区三区四区激情视频| av国产久精品久网站免费入址| 亚洲国产最新在线播放| 中文乱码字字幕精品一区二区三区| 下体分泌物呈黄色| 人妻系列 视频| 国产一级毛片在线| 久久精品国产亚洲网站| 亚洲精品国产av蜜桃| 国产成人精品一,二区| 亚洲丝袜综合中文字幕| 日韩在线高清观看一区二区三区| 尾随美女入室| 欧美日韩综合久久久久久| 美女脱内裤让男人舔精品视频| 你懂的网址亚洲精品在线观看| 色网站视频免费| 两个人的视频大全免费| 亚洲欧美精品专区久久| 99久久精品热视频| 国产男女内射视频| 日日摸夜夜添夜夜爱| 一本久久精品| 最近的中文字幕免费完整| 国产成人aa在线观看| 亚洲精品日本国产第一区| av女优亚洲男人天堂| 建设人人有责人人尽责人人享有的 | 中国国产av一级| 99久久综合免费| 国产精品嫩草影院av在线观看| 黄色视频在线播放观看不卡| 如何舔出高潮| 观看免费一级毛片| 国产成人freesex在线| 一级毛片黄色毛片免费观看视频| 久久久午夜欧美精品| 99视频精品全部免费 在线| 制服丝袜香蕉在线| 人人妻人人澡人人爽人人夜夜| 免费看不卡的av| 人人妻人人看人人澡| 日韩电影二区| 精品一区二区三卡| 亚洲欧美日韩东京热| 99精国产麻豆久久婷婷| 免费观看在线日韩| 亚洲欧美精品专区久久| 一区二区av电影网| 国产成人精品婷婷| 狂野欧美激情性xxxx在线观看| 人人妻人人添人人爽欧美一区卜 | 99久久精品国产国产毛片| 少妇熟女欧美另类| 精品人妻一区二区三区麻豆| 中国美白少妇内射xxxbb| 熟女电影av网| 国产精品偷伦视频观看了| 亚洲精品乱久久久久久| xxx大片免费视频| 国产亚洲午夜精品一区二区久久| 久久国产亚洲av麻豆专区| 99久国产av精品国产电影| 久热久热在线精品观看| a级一级毛片免费在线观看| 少妇高潮的动态图| 精品人妻偷拍中文字幕| 久久久久久伊人网av| 校园人妻丝袜中文字幕| 日韩欧美精品免费久久| 秋霞在线观看毛片| 纯流量卡能插随身wifi吗| 免费人成在线观看视频色| 国产高清不卡午夜福利| 国产永久视频网站| 九九久久精品国产亚洲av麻豆| 亚洲精品乱久久久久久| 久久久精品94久久精品| 国产精品久久久久成人av| 男人狂女人下面高潮的视频| 亚洲av成人精品一区久久| 看免费成人av毛片| 天天躁夜夜躁狠狠久久av| 久久久久久伊人网av| 久久ye,这里只有精品| 一本久久精品| 在线亚洲精品国产二区图片欧美 | 精品人妻视频免费看| 丰满人妻一区二区三区视频av| 有码 亚洲区| 一本久久精品| 在线亚洲精品国产二区图片欧美 | 18禁裸乳无遮挡动漫免费视频| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久久精品久久久| 亚洲av免费高清在线观看| 亚洲欧美清纯卡通| 97热精品久久久久久| 亚洲欧美精品自产自拍| 少妇的逼水好多| 免费看不卡的av| 久久毛片免费看一区二区三区| 精品少妇黑人巨大在线播放| 国产免费福利视频在线观看| 免费高清在线观看视频在线观看| 国产一区二区在线观看日韩| 99久久中文字幕三级久久日本| 久久人人爽av亚洲精品天堂 | 国产精品国产av在线观看| 欧美日本视频| 亚洲电影在线观看av| 久久国产乱子免费精品| 2018国产大陆天天弄谢| 国产黄片视频在线免费观看| 久久午夜福利片| 亚洲欧美日韩另类电影网站 | 在线观看免费视频网站a站| 在线精品无人区一区二区三 | 深爱激情五月婷婷| 一本一本综合久久| 午夜精品国产一区二区电影| 国产精品国产av在线观看| 国产成人精品福利久久| 黑丝袜美女国产一区| 欧美日韩视频精品一区| 久久人人爽人人爽人人片va| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久精品电影小说 | 熟女人妻精品中文字幕| 国产高清三级在线| 精品酒店卫生间| 欧美日韩精品成人综合77777| 97在线视频观看| 国产在视频线精品| 久久精品国产亚洲av天美| 人妻制服诱惑在线中文字幕| 男人舔奶头视频| 国产精品一及| 99久久综合免费| 欧美成人精品欧美一级黄| 高清视频免费观看一区二区| 成人毛片60女人毛片免费| 中国三级夫妇交换| 精品久久久精品久久久| 免费黄频网站在线观看国产| 女性生殖器流出的白浆| 日韩伦理黄色片| 国产av国产精品国产| 男人狂女人下面高潮的视频| 日韩成人伦理影院| 免费高清在线观看视频在线观看| 精品久久国产蜜桃| 亚洲国产精品成人久久小说| 青春草视频在线免费观看| 免费观看在线日韩| xxx大片免费视频| 亚洲四区av| 夜夜爽夜夜爽视频| 国产高潮美女av| 18禁裸乳无遮挡动漫免费视频| 久久久久网色| av在线app专区| 亚洲经典国产精华液单| 国产精品秋霞免费鲁丝片| 91久久精品国产一区二区成人| 18禁动态无遮挡网站| 免费大片黄手机在线观看| 午夜福利在线在线| 多毛熟女@视频| 少妇人妻精品综合一区二区| 久久久欧美国产精品| 日产精品乱码卡一卡2卡三| 精品久久国产蜜桃| 黄色视频在线播放观看不卡| 一级毛片aaaaaa免费看小| 国产高潮美女av| 男女国产视频网站| 狂野欧美白嫩少妇大欣赏| 日韩电影二区| 亚洲精品视频女| 午夜免费鲁丝| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 日韩av不卡免费在线播放| 国产高清国产精品国产三级 | 欧美最新免费一区二区三区| 精华霜和精华液先用哪个| 国精品久久久久久国模美| 亚洲图色成人| 精品国产露脸久久av麻豆| 日韩制服骚丝袜av| 亚洲综合精品二区| 在线观看一区二区三区激情| 91久久精品电影网| 一级毛片电影观看| 热re99久久精品国产66热6| 国产成人freesex在线| 国产精品无大码| 亚洲aⅴ乱码一区二区在线播放| 蜜桃久久精品国产亚洲av| 肉色欧美久久久久久久蜜桃| 久久久久久伊人网av| 女性被躁到高潮视频| a级一级毛片免费在线观看| 亚洲精品,欧美精品| 天美传媒精品一区二区| 麻豆乱淫一区二区| 99国产精品免费福利视频| 久久精品久久久久久噜噜老黄| 天天躁日日操中文字幕| 精品亚洲成a人片在线观看 | 国产成人a∨麻豆精品| 久久久久久久久久久丰满| 在线看a的网站| 精品久久国产蜜桃| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| 青春草国产在线视频| 一个人看视频在线观看www免费| 成人国产麻豆网| 春色校园在线视频观看| 亚洲第一av免费看| 边亲边吃奶的免费视频| 有码 亚洲区| 久久99热6这里只有精品| 国产精品一区二区三区四区免费观看| 草草在线视频免费看| videossex国产| 免费少妇av软件| 亚洲精品久久久久久婷婷小说| 午夜免费鲁丝| 97在线人人人人妻| 精品熟女少妇av免费看| 狂野欧美激情性xxxx在线观看| 热re99久久精品国产66热6| 国产白丝娇喘喷水9色精品| 国产一区亚洲一区在线观看| 国产淫片久久久久久久久| 久久这里有精品视频免费| 久久99蜜桃精品久久| 99久久综合免费| 免费少妇av软件| 亚洲欧美日韩无卡精品| 亚洲成人手机| 国产欧美日韩精品一区二区| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 成人一区二区视频在线观看| 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久| 亚洲av中文字字幕乱码综合| 日韩精品有码人妻一区| 国内精品宾馆在线| 尾随美女入室| 亚洲怡红院男人天堂| 老司机影院成人| 一个人看视频在线观看www免费| 一区二区av电影网| 中文字幕精品免费在线观看视频 | 少妇精品久久久久久久| 日本-黄色视频高清免费观看| 亚洲自偷自拍三级| 久久精品久久久久久久性| 人体艺术视频欧美日本| av一本久久久久| 高清毛片免费看| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 亚洲三级黄色毛片| 欧美日韩在线观看h| 内地一区二区视频在线| 九草在线视频观看| 国产精品免费大片| 美女视频免费永久观看网站| 联通29元200g的流量卡| 大香蕉久久网| 国产精品三级大全| 亚洲不卡免费看| 这个男人来自地球电影免费观看 | 啦啦啦中文免费视频观看日本| 中文字幕免费在线视频6| 欧美三级亚洲精品| 国产亚洲最大av| 精品亚洲成国产av| 精品人妻视频免费看| 五月天丁香电影| 女人久久www免费人成看片| 一级片'在线观看视频| 99热这里只有精品一区| 亚洲真实伦在线观看| 午夜福利影视在线免费观看| 91精品一卡2卡3卡4卡| 最近最新中文字幕免费大全7| 免费在线观看成人毛片| 全区人妻精品视频| 国产成人a∨麻豆精品| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 亚洲电影在线观看av| 国产爽快片一区二区三区| 色5月婷婷丁香| 国产精品国产三级国产av玫瑰| 国产一级毛片在线| 日韩一本色道免费dvd| 性色avwww在线观看| 久久亚洲国产成人精品v| 自拍欧美九色日韩亚洲蝌蚪91 | 国产黄色视频一区二区在线观看| 亚洲中文av在线| 国产视频首页在线观看| av在线老鸭窝| 免费播放大片免费观看视频在线观看| 日韩一区二区三区影片| 制服丝袜香蕉在线| 六月丁香七月| 久久久欧美国产精品| 国产成人精品婷婷| 久久精品国产鲁丝片午夜精品| 中文欧美无线码| 丝袜脚勾引网站| 亚洲国产高清在线一区二区三| 久久国产亚洲av麻豆专区| 久久亚洲国产成人精品v| 日韩三级伦理在线观看| 在线亚洲精品国产二区图片欧美 | 狂野欧美白嫩少妇大欣赏| 日本免费在线观看一区| 在线观看美女被高潮喷水网站| 国产在线男女| 国产男人的电影天堂91| 午夜精品国产一区二区电影| 国产精品成人在线| 久久久久精品性色| 人人妻人人澡人人爽人人夜夜| 观看美女的网站| 国产精品人妻久久久久久| 2018国产大陆天天弄谢| 又黄又爽又刺激的免费视频.| 日韩三级伦理在线观看| 中文字幕人妻熟人妻熟丝袜美| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 国产欧美亚洲国产| 久久久久人妻精品一区果冻| 国产欧美日韩精品一区二区| 最近最新中文字幕免费大全7| 久久久久久久国产电影| 国产真实伦视频高清在线观看| 黄色视频在线播放观看不卡| 亚洲国产高清在线一区二区三| 18禁在线无遮挡免费观看视频| 看免费成人av毛片| 日韩成人av中文字幕在线观看| 国产精品国产av在线观看| 久久久国产一区二区| 新久久久久国产一级毛片| 日韩制服骚丝袜av| 纯流量卡能插随身wifi吗| 深夜a级毛片| 一级av片app| 在线观看免费日韩欧美大片 | 天天躁夜夜躁狠狠久久av| 亚洲欧美中文字幕日韩二区| av.在线天堂| 免费观看的影片在线观看| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| 成人亚洲精品一区在线观看 | 免费看日本二区| 日本av免费视频播放| 建设人人有责人人尽责人人享有的 | 女人久久www免费人成看片| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 视频中文字幕在线观看| 99re6热这里在线精品视频| 视频中文字幕在线观看| 欧美人与善性xxx| 黄色怎么调成土黄色| 亚洲在久久综合| 在线观看美女被高潮喷水网站| 欧美日本视频| 精品午夜福利在线看| 久久久久久人妻| 婷婷色麻豆天堂久久| 性色avwww在线观看| 国产伦在线观看视频一区| xxx大片免费视频| 特大巨黑吊av在线直播| 国产永久视频网站| 欧美zozozo另类| 91精品一卡2卡3卡4卡| 久久人人爽人人爽人人片va| 欧美一级a爱片免费观看看| 国产精品国产三级国产av玫瑰| 久久精品国产a三级三级三级| 在线观看一区二区三区| 免费黄网站久久成人精品| 99久久精品热视频| 国产 一区 欧美 日韩| 18禁裸乳无遮挡动漫免费视频| 成人综合一区亚洲| 日本猛色少妇xxxxx猛交久久| 午夜免费男女啪啪视频观看| 深爱激情五月婷婷| 人妻制服诱惑在线中文字幕| 嫩草影院入口| 狂野欧美激情性xxxx在线观看| av视频免费观看在线观看| 中国国产av一级| 国产探花极品一区二区| 一二三四中文在线观看免费高清| 不卡视频在线观看欧美| 欧美zozozo另类| av天堂中文字幕网| 亚洲四区av| 男女边摸边吃奶| 青春草国产在线视频| av国产免费在线观看| 老熟女久久久| 大码成人一级视频| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 亚洲性久久影院|