• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Virtual machine placement against the non-proportional resource consumption in cloud computing

    2019-10-16 06:27:18LUOXiangyuXINGangGUIXiaolin

    LUO Xiang-yu,XIN Gang,GUI Xiao-lin

    (1.College of Computer Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China; 2.Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China; 3.AVIC Computing Technique Research Institute,Xi’an 710119,China)

    Abstract:Virtual machine placement is a basic problem in cloud computing.By consolidating several virtual machines onto one single physical machine,cloud computing reduces both resource costs and energy consumption.One of the optimization objectives of virtual machine placement is to use a minimum number of physical machines to accommodate all the virtual machines requested by customers.The challenge lies in that the multi-dimensional resources required by a virtual machine are typically not proportional to that provided by a physical machine.Once a single dimension of resource is exhausted in a physical machine,the rest of all the other dimensions of resources will stay unutilized,leading to a great amount of resource waste.This paper proposes a new virtual machine placement algorithm that mixes multiple kinds of physical machines to tackle the problem of unsufficientresource utilization.Firstly,virtual machines are divided into several subsets.For each subset as a whole,different dimensions of resources requested are approximately proportional to that provided by a kind of physical machine.Secondly,virtual machines in each subset are separately placed onto the corresponding kind of physical machines.Experimental results show that the proposed algorithm coordinates the utilization of different types of resources and achieves power reduction ranging from 13.0% to 57.6%.

    Key words:virtual machine placement;non-proportional resource consumption;cloud computing;power reduction;multidimensional resources

    0 INTRODUCTION

    Nowadays cloud computing is a popular way of offering computation services.It enables customers to enjoy computation services as conveniently as they enjoy electricity and water[1].Customers are typically served by virtual machines.By consolidating several virtual machines onto one single physical machine,the whole cloud computing system achieves both more efficient utilization of resources and lower power consumption.

    A cloud computing system is a large-scale distributed system composed of thousands of or even more physical machines[2].A basic problem is how to place the virtual machines such that the number of the consumed physical machines can be minimized while satisfying multiple resource constraints.

    To accommodate several virtual machines,a physical machine is required to provide available CPU,memory and other resources no less than that requested by the virtual machines.Once a single dimension of resource is exhausted in a physical machine,all the rest of the other dimensions of resources on it will stay unutilized[3].Therefore,an ideal virtual machine placement algorithm should assign each physical machine with several virtual machines that just use up each dimension of resource on it.

    However,the challenge lies in that different dimensions of resources required by a virtual machine are typically not proportional to that provided by a physical machine.Existing studies mainly aim to make the best-effort optimization of resource utilization under the assumption that the candidate physical machines are deterministic and unchangeable.They rarely investigate how to adaptively adjust the candidate physical machines’ configuration according to the virtual machines’ requirements to make further improvements.In the situations that the virtual machines differ significantly with the physical machines in the proportions of the multiple dimensions of resources,the best-effort optimization is usually unsatisfactory.

    Our contributions mainly include the following three aspects.Firstly,we redefine the virtual machine placement problem and divide it into two sub-problems.One is how to adaptively adjust the configuration of the physical machines according to the requirements of the virtual machines.The other is how to map the virtual machines to the candidate physical machines.Secondly,we propose an algorithm,namely CORE(COordinating multiple REsources),to resolve the problem.Finally,extensive experiments have been conducted to evaluate the efficiency of the algorithm.The results show that it can achieve power reduction ranging from 13.0% to 57.6%.

    The paper is organized as follows.Section 1 summarizes the related work.Section 2 explains the motivations of our work.Section 3 redefines the virtual machine placement problem.Section 4 elaborates the CORE algorithm.Section 5 gives the experimental results and Section 6 concludes the whole paper.

    1 RELATED WORK

    The virtual machine placement algorithm greatly affects the performance and the efficiency of clouds and attracts many researchers’ attention[4].

    According to the assumption for the resources,existing virtual machine placement algorithms could be classified into single dimensional resource oriented and multi-dimensional resource oriented algorithms.F.Pan et al.proposed a single resource oriented algorithm that only considers the CPU resource[5].L.Chen et al.proposed a multi-dimensional resource oriented algorithm RIAL that considers CPU,memory and the network resources[6].It assigns different weights to different resources and calculates the resource intensity of each physical machine based on the weights.By this way,the multi-dimensional problem is transformed into a single dimensional one.R.Li et al.proposed a true multidimensional solution which aims to keep balanced usage of each dimensional resource[7].However,the physical machines were assumed to be determined in advance and only best-effort utilization was provided.Besides,the relationships among the resource utilization,the characteristics of virtual machine requirements and the configuration of the physical machines were not investigated.

    According to the assumption for the characteristic of the workload,existing virtual machine placement algorithms can be classified into static and dynamic ones.Static algorithms assume that the workload of each virtual machine is constant.Many approximation algorithms for bin packing can be used for static virtual machine placement[8].Besides,genetic or other intelligent optimization algorithms can also work[9].Dynamic algorithms[10-11]migrate virtual machines from one physical machine to another as the workload changes.

    From the point of view of the optimization objectives,existing virtual machine placement algorithms can be classified into single-objective oriented and multi-objective oriented ones.The optimization objects include minimizing SLA violation,maximizing resource utilization,minimizing energy consumption,etc[12-13].W.Wang et al.proposed a single objective oriented algorithm that aims for energy minimization[14].J.Xu and J.Fortes proposed an algorithm that simultaneously minimizes resource wastage,power consumption and thermal dissipation costs[15].H.Zhao proposed an algorithm that ensures both low power consumption and high performance guarantee[16].

    Besides,the state-of-art research also addresses the virtual machine placement problem in edge cloud systems[17-19].

    However,to the best of our knowledge,existing literatures mainly concentrate on virtual machine placement optimization under the assumption that the candidate physical machines are determined in some artificial way.There is no solution that automatically changes the candidate physical machines according to the virtual machines’ resource requirements.

    2 MOTIVATIONS

    For economic and environmental reasons,cloud computing aims to employ a minimum number of physical machines to accommodate the virtual machines requested by customers,reducing both resource costs and power consumption.For a given set of virtual machines,both the resource costs and the power consumption are affected by not only the virtual machine placement algorithm itself,but also the configuration of the physical machines.

    Suppose that there are 500 virtual machines.For half of them,each one requires 3 cores CPU and 0.5 GB RAM.For the other half,each one requires 1 core CPU and 1.5 GB RAM.Therefore,the total amount of CPU required by the virtual machines equals 1 000 cores,and the total amount of required RAM equals 500 GB.With the physical machines configured with 4 cores CPU and 8 GB RAM,the least number of the powered-on physical machines cannot be smaller than 250 and the utilization efficiency of RAM cannot be greater than 25%,whatever virtual machine placement algorithm is adopted.However,with the physical machines configured with 4 GB RAM and 8 cores CPU,only 125 physical machines need to be powered on and both the two types of resources can be sufficiently utilized.

    For the above scenario,changing the physical machine’s configuration leads to more efficient resource utilization and lower power consumption.However,it is not always practical to do so in reality.Virtual machines are created and removed dynamically,and each of them may have different resource requirements.Hence the optimal physical machine configuration changes frequently.It is not practical to alter the physical machine’s configuration all the time.

    Therefore,we mix several kinds of physical machines to mimic physical machines with arbitrary kind of configuration.We assume that the cloud providers purchase several kinds of physical machines with different resource configurations and the number of each kind of physical machines is large enough.For a given set of virtual machines,the placement algorithm automatically adjusts the number of each kind of physical machines to power on,ensuring that the multiple resources provided by the whole powered-on physical machines always proportional to that requested by the whole virtual machines.For cloud providers,the most important thing is not to purchase but to power on the least number of physical machines,because the budget for power consumption is much higher than the infrastructure costs.

    In a word,for a given set of virtual machines,the efficiency of resource utilization is greatly affected by the physical machines’ configuration.With unsuitable physical machine configuration,resource waste is inevitable,whatever placement algorithm is adopted.We aim to mix several kinds of physical machines to keep the mimic configuration always suitable to the virtual machines,so that the placement results can be improved compared with those obtained with a deterministic configuration.

    3 PROBLEM STATEMENT

    Suppose that there areKkinds of physical machines with different resource configurations.The number of each kind of physical machine is large enough for accommodating an arbitrary set of virtual machines.Theith kind of physical machine is represented with a vectorpicomposed ofCelements with each elementpijcorresponding to the amount of thejth type of resource provided by theith kind of physical machine.There areNvirtual machines to be placed onto the physical machines.Each virtual machine is expressed with a vectorvi′also composed ofCelements,with each elementvi′jrepresenting the amount of thejth type of resource requested by thei′ th virtual machine.Here 1≤i≤K,1≤i′≤N,1≤j≤C,K,NandCare known numbers.

    The virtual machine placement problem is divided into two sub-problems.Firstly,for accommodating a given set of virtual machines,how many each kind of physical machines should be powered on? Secondly,how to map the virtual machines to the powered-on physical machines? The optimization objective is to minimize the total number of the powered-on physical machines while satisfying each virtual machine’s resource requirements.

    4 THE CORE ALGORITHM

    4.1 Basic idea

    Letnidenote the number of the powered-on physical machines with theith kind of configuration andVSidenote the set of the virtual machines mapped to theith kind of physical machines.Hence {VSi|1 ≤i≤K} defines a partitioning on the whole set of the virtual machines.

    Once we obtain a proper partitioning of the virtual machines,through placing the virtual machines in each subsetVSito the ith kind of physical machines,nican be figured out.Therefore,the partitioning of the virtual machines is at the heart of the problem.

    The CORE algorithm works in three steps.Firstly,it partitions the whole virtual machine set intoKsubsets ensuring that each subsetVSiconsumes the multiple resources proportionally to the provisioning of the ith kind of physical machines.Secondly,it separately calculates the mappings between the virtual machines in each subsetVSiand the ith kind of physical machines.Thirdly,it merges the results of the second step,the number of each kind of physical machines to be powered on(i.e.,ni)is obtained,and the mappings between the whole virtual machines and the whole powered-on physical machines are also figured out.

    4.2 Elaboration of the algorithm

    The CORE algorithm is depicted in Algorithm 1.In the algorithm,there are two inputsPSandVS.PSis the set of physical machine types with each elementpirepresenting the configuration of theith type of physical machine,andVSis the set of virtual machines with each elementvi′representing the resource requirements of thevi′th virtual machine.Bothpiandvi′are vectors composed ofCelements.Thejth element ofpidenoted bypijrepresents the amount of thejth type of resource provided by theith kind of a single physical machine,and thejth element ofvi′denoted byvi,jrepresents the amount of thejth type of resource requested by thei′th virtual machine.There are two outputsNSandMS.NSis a set of numbers with each elementnirepresenting the number of the powered-on physical machines with theith kind of configuration.MSis a set of tuples with each element indicating that thei′ th virtual machine is placed on thes(i′) th physical machine with thek(i′) th kind of configuration.Herek(i′) is a integer between 1 andK,ands(i′) is an integer between 1 andnk(i′).Recall thatnk(i′)represents the number of the powered-on physical machines with thek(i′) th kind of configuration.

    Data:Set of physical machine configurations:

    PS={pi|1≤i≤K};

    Set of virtual machine requirements:

    VS={vi′|1≤i′≤N}

    Result:Set of numbers of the powered-on physical machines:

    NS={ni|1≤i≤K};

    Setp of mappings:

    MS={|1≤i′≤N}

    Call the partitioning sub-algorithm withPSandVS

    Store the partitioning results as π={VSi|1≤i≤K}

    i:=1

    Whileiis between 1 andKdo

    end

    Call the merging sub-algorithm with {MSi|1≤i≤K}

    Store the mapping results intoMS

    Algorithm 1:The CORE algorithm

    The main body of the algorithm calls three sub-algorithms as shown in Algorithm 1.The partitioning sub-algorithm is responsible for partitioning the virtual machine setVSintoKsubsets,the placement sub-algorithm is responsible for placing the virtual machines in a subsetVSito theith kind of physical machines,and the merging sub-algorithm is responsible for combining the placement results to obtain the number of the powered-on physical machine for each kind of configuration,and the mappings between the whole virtual machines and the whole powered-on physical machines.In the algorithm description,π represents the partition onVSand π={VSi|1 ≤i≤K}.MSirepresents the mapping of the virtual machines in subsetVSiand theith kind of physical machines.

    4.2.1 The partitioning sub-algorithm

    As discussed in the subsection 4.1,the partitioning of the virtual machines is at the heart of the problem.For the virtual machines as a whole,the multiple resources requested may be not proportional to any kind of the existing physical machines.With proper partitioning,the multiple resources requested by each virtual machine subset could be proportional to a certain kind of physical machines.

    LetRijdenote the amount of thejth type of resource requested by the virtual machines of the subsetVSi.VSisatisfies proportional resource consumption means that for eachjbetween 1 andC,Rij/pijis almost the same.We defineθto measure the degree of proportionality,withθ=min{Rij/pij|1≤j≤C}/max{Rij/pij|1≤j≤C}.θis a number between 0 and 1.A largerθmeans a higher degree of proportionality.It should be noted that max{Rij/pij|1≤j≤C} is a lower bound of the number of the ith kind of physical machines to power on.

    The partitioning sub-algorithm aims to guarantee that each virtual machine subsetVSisatisfies proportional resource consumption,and the lower bound of the whole powered-on physical machines,i.e.,∑1≤i≤K(max{Rij/pij|1≤j≤C}),is minimized.The partitioning sub-algorithm adopts a greedy strategy described in Algorithm 2.For each virtual machine,the algorithm assigns it to the subset that makes the least increase of ∑1≤i≤K(max{Rij/pij|1≤j≤C}).

    4.2.2 The placement sub-algorithm

    The placement sub-algorithm is responsible for placing the virtual machines in a subsetVSito the ith kind of physical machines.Although other placement strategies also work,we adopt the FirstFit strategy for simplicity.Since the partitioning sub-algorithm ensures that the multiple resources requested by the virtual machine subsetVSiare approximately proportional to that provided by the ith kind of physical machines,even if the FirstFit strategy is qualified to generate ideal placement results.Experimental results also validate the conjecture,as exposed in Section 5.The placement sub-algorithm is described in Algorithm 3.In the description, means that thekth virtual machine inVSiis placed onto thes(k)th physical machine with theith kind of configuration satisfying 1≤k≤|VSi| and 1≤s(k)≤ni.

    Data:Set of physical machine configurations:

    PS={pi|1≤i≤K};

    Set of virtual machine requirements:

    VS={vi′|1≤i′≤N}

    Result:A partitioning ofVS:π={VSi|1≤i≤K}.

    Initialization:VSi:=φ,1≤i≤K;

    Rij:=0,1≤i≤K,1≤j≤C.

    i′:=1Whileiis betweenIanNdo

    end

    Algorithm 2:The partitioning sub-algorithm

    4.2.3 The merging sub-algorithm

    The merging sub-algorithm merges the results of the placement sub-algorithm for each virtual machine subset and is described in Algorithm 4.In the description, means that thei′ th virtual machine is placed onto thes(i′) th physical machine with thet(i′) th kind of configuration,satisfying 1≤i′≤N,1≤t(i′)≤Kand 1≤s(i′)≤nt(i′).

    5 EXPERIMENTAL RESULTS

    5.1 Experimental setup

    In order to evaluate the performance of the CORE algorithm,we conducted simulation studies with CloudSim[20]running on a 2.5 GHz Intel Xeon PC with 6 GB of RAM.

    Data:Virtual machine subsctVSi:

    Physical machine configurationpi

    Result:Number of powered-on physical machinesni

    Set of mappings:

    MSi={|1≤k≤|VSi|}

    ni:=0

    PSi:=φ

    k:=1

    Whileiis betweenIan |VSi|do

    end

    Algorithm 3:The placement sub-algorithm

    We design a synthetic virtual machine generator which can produce a requested number of tuples with each one representing the resource requirements of a virtual machine.The tuple consists of two members:the amount of CPU measured in cores and the amount of RAM measured in GB.The two members are respectively drawn fromIU(a1,b1)andIU(a2,b2).IU(a,b) returns an integer from the range[a,b]uniformly.

    Data:{MSi|1≤i≤K};

    Result:Set of mappings:

    MS={|1≤i≤N}.

    MS:=φ

    i:=0;

    Whileiis betweenIan |MSi|do

    end

    Algorithm 4:The merging sub-algorithm

    We assume that there are three kinds of physical machines that share equivalent energy consumption ratew.The first one is configured with 8 cores of CPU and 128 GB of RAM,the second one is configured with 16 cores of CPU and 64 GB of RAM,and the third one is configured with 32 cores of CPU and 32 GB of RAM.The first configuration is most suitable to data-intensive applications,the third one is most suitable to computation-intensive applications,and the second one is in the middle.For convenience,we list them is TABLE I.

    Table Ⅰ Configurations of physical machines

    5.2 Impacts of physical machine configurations

    For the same set of virtual machines,different physical machine configurations lead to different resource utilization and power consumption.

    We use the synthetic virtual machine generator to obtain 1 000 virtual machines’ resource requirements.The parameters are set as follows:a1=1,b1=7,a2=1 andb2=31.In the experiment,the total amount of CPU requirementR1equals 3 962 cores and the total amount of RAM requirementR2equals 16 190 GB.

    For the physical machines with theith kind of configuration,the lower bound of the number of the consumed physical machines is calculated as:nmin(i)= max{R1/pi1,R2/pi2},and the degree of proportionality is calculated as:θ(i)= min{R1/pi1,R2/pi2}/max{R1/pi1,R2/pi2}.We list the results in TABLE Ⅱ.

    Table Ⅱ Proportionality analysis with three configurations

    The table shows thatR1/p21is near toR2/p22,θ(2)is the biggest one among the three andnmin(2)is the smallest one among the three.Therefore,the given set of virtual machines approximately satisfies the proportional resource consumption when the physical machines with the 2nd configuration are adopted.

    For each configuration,we employ the FirstFit algorithm to place the virtual machines onto the physical machines.The resource utilization efficiency and the power consumption is listed in TABLE Ⅲ.

    Table Ⅲ Efficiency comparison with different configurations

    The results indicate that,the 2nd configuration can lead to high utilization of the two types of resources as well as low power consumption.Moreover,the number of the consumed physical machines(.i.e.,266)is very near tonmin(i.e.,253).Therefore,as long as the configuration of the physical machines is suitable to the virtual machines,even if the First Fit algorithm can generate near-optimal placement results.More complex placement algorithms are not very necessary.

    The results also indicate that,with unsuitable configuration,at least one type of resource generates a great amount of waste.Meanwhile,there is little room for further optimization by improving placement strategy,since the number of physical machines consumed already approaches the lower bound nmin.With the 1st configuration,the number of the consumed physical machines equals 507 whilenminequals 496.With the 3rd configuration,the number of the consumed physical machines equals 530 whilenminequals 506.Whatever virtual machine placement algorithm is adopted,the reduction of the number of the consumed physical machines cannot be greater than 4.5%.

    In summary,compared to the placement strategy,the configuration of the physical machine really matters.The most important thing is to make the configuration always suitable to the virtual machines.Once the configuration is determined,there is little room for further optimization whatever placement strategy is adopted.Meanwhile,the requirements of the virtual machines are dynamic,and any single kind of physical machine configuration can not always meet the virtual machines’ requirements.Therefore,the CORE algorithm adaptively adjusts the number of each kind of physical machines powered on to make the different kinds of physical machines as a whole always suitable to the requirements of the virtual machines.

    5.3 Evaluation of CORE’s performance

    In the experiment,we use the synthetic virtual machine generator to obtain 1 000 virtual machines’ resource requirements.The parameters are set as follows:a1=1,b1=7,a2=1 andb2=19.In the experiment,the total amount of CPU requirement equals 4 046 cores,and the total amount of RAM requirement equals 9 887 GB.

    We adopt the First Fit algorithm to place the virtual machines onto the physical machines with each kind of configuration respectively and adopt the CORE algorithm to place them onto the three kinds of physical machines as well.Besides,we calculate the optimal value of the power consumption and the resource utilization for the three configurations.The results are shown in TABLE Ⅳ.

    The results show that,through properly mixing the three kinds of physical machines,the CORE algorithm reduces the power consumption and improves the resource utilization efficiency.The power consumption reduction ranges from 13.0% to 57.6%.

    Table Ⅳ Comparison results

    For further analysis,we calculate the degree of proportionalityθ.We haveθ(1)=0.15,θ(2)=0.61 andθ(3)=0.41 respectively with the three different configurations.It means that the second configuration fits the requirements of the virtual machines best,while the first configuration is the worst.Therefore,the situation where only the physical machines with the first configuration are adopted leads to the maximum power consumption,and the CORE reduces the power consumption with the highest ratio(i.e.,57.6%).

    6 CONCLUSION

    The efficiency of virtual machine placement is affected by not only the placement strategy itself but also the configuration of the physical machines.The improper configuration leads to a waste of both resource costs and energy consumption.This paper proposes the idea of mixing several kinds of physical machines to mimic a new kind of configuration that properly fits the resource requirements of the virtual machines.Furthermore,we devise the algorithm CORE to realize the idea.It divides the virtual machines into several subsets,with each subset satisfying proportional resource consumption to a certain kind of physical machines.Experimental studies show that the algorithm achieves 13.0% to 57.6% energy reduction compared with those adopt any single kind of physical machines.

    91av网站免费观看| 成在线人永久免费视频| 久久亚洲精品不卡| 午夜a级毛片| 精品国产一区二区三区四区第35| 人人妻,人人澡人人爽秒播| 女人高潮潮喷娇喘18禁视频| 亚洲伊人色综图| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产欧美日韩av| 国产又爽黄色视频| 国产精品综合久久久久久久免费 | 国产黄色免费在线视频| 色综合欧美亚洲国产小说| 91在线观看av| 亚洲自拍偷在线| 久久久精品欧美日韩精品| 国产熟女午夜一区二区三区| 久久午夜综合久久蜜桃| 国产亚洲av高清不卡| av在线播放免费不卡| 性色av乱码一区二区三区2| 99久久精品国产亚洲精品| 麻豆一二三区av精品| 亚洲国产欧美日韩在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩av久久| 亚洲国产精品sss在线观看 | 在线av久久热| 日本wwww免费看| 人人妻人人澡人人看| 欧美日韩一级在线毛片| 大型av网站在线播放| 丝袜美腿诱惑在线| 久久亚洲真实| 真人一进一出gif抽搐免费| 极品人妻少妇av视频| www国产在线视频色| 国产高清videossex| xxxhd国产人妻xxx| 丝袜美足系列| 曰老女人黄片| 亚洲一区二区三区色噜噜 | 中文字幕人妻丝袜制服| 国产精品久久视频播放| 国产成人一区二区三区免费视频网站| av国产精品久久久久影院| 国产一区二区三区视频了| 88av欧美| 视频区图区小说| 国产1区2区3区精品| 国产三级在线视频| 日本 av在线| 久久99一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产精品一区二区精品视频观看| 亚洲精品一二三| 丝袜人妻中文字幕| 91老司机精品| 国产一区二区三区视频了| 91精品三级在线观看| 成年人黄色毛片网站| xxx96com| 在线观看www视频免费| 欧美在线黄色| 一二三四社区在线视频社区8| 久久精品91无色码中文字幕| 色婷婷av一区二区三区视频| 欧美久久黑人一区二区| 一二三四在线观看免费中文在| 午夜精品国产一区二区电影| 精品一区二区三卡| 久热这里只有精品99| 欧美激情极品国产一区二区三区| 久久中文字幕一级| 午夜免费激情av| 国产成人av教育| 午夜免费鲁丝| 午夜91福利影院| 国产视频一区二区在线看| 亚洲精品在线观看二区| 午夜免费观看网址| av有码第一页| av网站免费在线观看视频| 国产一区二区三区在线臀色熟女 | 亚洲色图综合在线观看| 欧美性长视频在线观看| 亚洲在线自拍视频| 亚洲午夜精品一区,二区,三区| 少妇 在线观看| 巨乳人妻的诱惑在线观看| 日日干狠狠操夜夜爽| 精品午夜福利视频在线观看一区| 亚洲五月色婷婷综合| 欧美老熟妇乱子伦牲交| 麻豆国产av国片精品| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 午夜亚洲福利在线播放| 法律面前人人平等表现在哪些方面| 色老头精品视频在线观看| 精品一区二区三卡| 亚洲精品国产精品久久久不卡| av天堂在线播放| 久久天躁狠狠躁夜夜2o2o| 国产免费现黄频在线看| 天堂中文最新版在线下载| 日本免费a在线| 搡老乐熟女国产| 99热国产这里只有精品6| 日韩高清综合在线| 亚洲免费av在线视频| 久久热在线av| xxxhd国产人妻xxx| svipshipincom国产片| 午夜福利影视在线免费观看| 国产精品1区2区在线观看.| 国产成人免费无遮挡视频| 国产区一区二久久| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区免费欧美| 国产亚洲精品综合一区在线观看 | 久久久国产成人免费| 在线av久久热| 国产成人免费无遮挡视频| 老司机在亚洲福利影院| 老汉色∧v一级毛片| 欧美+亚洲+日韩+国产| 亚洲专区国产一区二区| 欧美日本亚洲视频在线播放| 美女大奶头视频| 啦啦啦 在线观看视频| 欧美色视频一区免费| 亚洲精品久久午夜乱码| 9热在线视频观看99| 国产一区在线观看成人免费| 亚洲性夜色夜夜综合| 国产极品粉嫩免费观看在线| 欧洲精品卡2卡3卡4卡5卡区| 50天的宝宝边吃奶边哭怎么回事| 国产熟女xx| 丝袜在线中文字幕| 亚洲熟妇熟女久久| tocl精华| 久久久久久久久免费视频了| 日韩国内少妇激情av| 成人av一区二区三区在线看| 日本黄色日本黄色录像| 国内毛片毛片毛片毛片毛片| 黄色视频,在线免费观看| 久久精品国产综合久久久| 亚洲精品国产区一区二| 一a级毛片在线观看| videosex国产| 国产成人影院久久av| aaaaa片日本免费| 热re99久久国产66热| 久久人人97超碰香蕉20202| 久久香蕉国产精品| 成人手机av| 国产高清videossex| 亚洲成人免费电影在线观看| 欧美在线黄色| 99精国产麻豆久久婷婷| 久久精品91无色码中文字幕| 可以免费在线观看a视频的电影网站| 91九色精品人成在线观看| 人人妻,人人澡人人爽秒播| 亚洲性夜色夜夜综合| 亚洲成人精品中文字幕电影 | 搡老岳熟女国产| 色在线成人网| 免费av毛片视频| 免费观看人在逋| 女警被强在线播放| www.精华液| 亚洲自偷自拍图片 自拍| 伊人久久大香线蕉亚洲五| 午夜福利,免费看| 国产精品久久视频播放| 成人三级做爰电影| 好看av亚洲va欧美ⅴa在| 欧美一区二区精品小视频在线| 国产91精品成人一区二区三区| 国产精品av久久久久免费| 欧美乱妇无乱码| 男女高潮啪啪啪动态图| 咕卡用的链子| 热re99久久精品国产66热6| av欧美777| 五月开心婷婷网| 在线观看免费午夜福利视频| 欧美中文综合在线视频| 亚洲欧美一区二区三区久久| 国产精品1区2区在线观看.| 成人国产一区最新在线观看| 亚洲片人在线观看| 香蕉丝袜av| 人人妻人人澡人人看| 国产区一区二久久| 午夜福利,免费看| 中文字幕另类日韩欧美亚洲嫩草| 欧美色视频一区免费| 国产激情久久老熟女| 成人精品一区二区免费| 大型黄色视频在线免费观看| 久久精品国产清高在天天线| 欧美在线一区亚洲| 亚洲人成电影免费在线| 黄色丝袜av网址大全| 国产精品久久久久成人av| av在线播放免费不卡| 亚洲成人国产一区在线观看| 99国产精品一区二区蜜桃av| 97超级碰碰碰精品色视频在线观看| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费 | 真人一进一出gif抽搐免费| 午夜免费成人在线视频| 美女高潮到喷水免费观看| 欧美成狂野欧美在线观看| 国产成人欧美在线观看| 精品久久久精品久久久| 丝袜在线中文字幕| 宅男免费午夜| 色精品久久人妻99蜜桃| aaaaa片日本免费| 丁香六月欧美| 亚洲全国av大片| 国产91精品成人一区二区三区| 超色免费av| 欧美中文日本在线观看视频| 99国产精品一区二区三区| 国产成人系列免费观看| 性色av乱码一区二区三区2| 国产成人一区二区三区免费视频网站| 日日夜夜操网爽| 少妇粗大呻吟视频| 黄色视频不卡| 免费在线观看黄色视频的| 精品高清国产在线一区| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品粉嫩美女一区| 性少妇av在线| 亚洲va日本ⅴa欧美va伊人久久| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 亚洲五月婷婷丁香| 国产精品99久久99久久久不卡| 90打野战视频偷拍视频| 精品国内亚洲2022精品成人| 精品国产美女av久久久久小说| 国产97色在线日韩免费| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 久久午夜综合久久蜜桃| 男人舔女人下体高潮全视频| 久久久国产成人精品二区 | 在线观看午夜福利视频| 国产精品国产高清国产av| 五月开心婷婷网| 国产高清videossex| 波多野结衣av一区二区av| 男人操女人黄网站| 动漫黄色视频在线观看| 这个男人来自地球电影免费观看| 欧美 亚洲 国产 日韩一| 在线天堂中文资源库| 国产精品永久免费网站| avwww免费| 日本vs欧美在线观看视频| 超碰97精品在线观看| 一个人观看的视频www高清免费观看 | 性少妇av在线| 久久人人97超碰香蕉20202| 国产黄色免费在线视频| 水蜜桃什么品种好| 久久人妻福利社区极品人妻图片| 亚洲国产欧美网| 日韩欧美三级三区| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 精品一区二区三区四区五区乱码| 三上悠亚av全集在线观看| 婷婷精品国产亚洲av在线| 日韩人妻精品一区2区三区| 美国免费a级毛片| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 日韩欧美一区二区三区在线观看| 精品欧美一区二区三区在线| 色在线成人网| 国产区一区二久久| av中文乱码字幕在线| 国产熟女午夜一区二区三区| 999精品在线视频| 国产精品久久视频播放| 九色亚洲精品在线播放| 免费搜索国产男女视频| 国产精品国产高清国产av| 亚洲九九香蕉| 搡老熟女国产l中国老女人| 国产黄a三级三级三级人| 国内久久婷婷六月综合欲色啪| 天天躁狠狠躁夜夜躁狠狠躁| 国产区一区二久久| 久久人人精品亚洲av| 操出白浆在线播放| 一进一出抽搐gif免费好疼 | 少妇粗大呻吟视频| 欧美色视频一区免费| 国产视频一区二区在线看| 亚洲一码二码三码区别大吗| 免费日韩欧美在线观看| 成在线人永久免费视频| 真人做人爱边吃奶动态| 美女高潮到喷水免费观看| 夜夜躁狠狠躁天天躁| 少妇被粗大的猛进出69影院| 日本三级黄在线观看| 日本欧美视频一区| 这个男人来自地球电影免费观看| 久久 成人 亚洲| 18禁国产床啪视频网站| 亚洲一区高清亚洲精品| 麻豆成人av在线观看| 免费搜索国产男女视频| 国产精品1区2区在线观看.| 亚洲国产精品一区二区三区在线| 国产精品乱码一区二三区的特点 | 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线观看二区| 两人在一起打扑克的视频| 亚洲国产欧美日韩在线播放| 久9热在线精品视频| 丰满饥渴人妻一区二区三| 亚洲国产精品一区二区三区在线| 色老头精品视频在线观看| 性色av乱码一区二区三区2| 香蕉久久夜色| 黄频高清免费视频| 女性被躁到高潮视频| 免费观看人在逋| 午夜福利影视在线免费观看| 久久久精品欧美日韩精品| 国产成人免费无遮挡视频| 成年人免费黄色播放视频| 亚洲在线自拍视频| 天堂√8在线中文| 91老司机精品| 十八禁网站免费在线| 9色porny在线观看| 久久精品影院6| 精品国产乱子伦一区二区三区| 午夜免费观看网址| 久久人人爽av亚洲精品天堂| 日韩欧美三级三区| 日韩大尺度精品在线看网址 | 亚洲色图 男人天堂 中文字幕| 亚洲中文字幕日韩| 成人黄色视频免费在线看| 亚洲精品国产区一区二| 99精品久久久久人妻精品| 麻豆久久精品国产亚洲av | 最好的美女福利视频网| 国产精品亚洲av一区麻豆| 最好的美女福利视频网| 可以免费在线观看a视频的电影网站| 国产亚洲精品第一综合不卡| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片 | 中文字幕高清在线视频| 亚洲狠狠婷婷综合久久图片| 搡老熟女国产l中国老女人| 叶爱在线成人免费视频播放| 久久精品亚洲熟妇少妇任你| 精品福利永久在线观看| 亚洲五月色婷婷综合| 丝袜人妻中文字幕| 身体一侧抽搐| 国产极品粉嫩免费观看在线| 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 亚洲成人精品中文字幕电影 | 999久久久国产精品视频| 久99久视频精品免费| 久久人人97超碰香蕉20202| 国产精品秋霞免费鲁丝片| 99国产极品粉嫩在线观看| av片东京热男人的天堂| 美女大奶头视频| 成人三级做爰电影| 国产精品久久久人人做人人爽| 国产av一区在线观看免费| 国产欧美日韩一区二区三| 国产高清国产精品国产三级| 99精品欧美一区二区三区四区| 黄色a级毛片大全视频| 国产一区二区三区综合在线观看| 亚洲国产欧美网| 久久中文字幕一级| 欧美不卡视频在线免费观看 | 国产欧美日韩一区二区三区在线| 很黄的视频免费| 亚洲少妇的诱惑av| 成熟少妇高潮喷水视频| 在线永久观看黄色视频| 91大片在线观看| 亚洲久久久国产精品| 看免费av毛片| 亚洲人成77777在线视频| 搡老熟女国产l中国老女人| 性色av乱码一区二区三区2| 色老头精品视频在线观看| a级毛片在线看网站| 亚洲人成网站在线播放欧美日韩| 亚洲一卡2卡3卡4卡5卡精品中文| av中文乱码字幕在线| 成年女人毛片免费观看观看9| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久| 日韩欧美三级三区| 一级毛片高清免费大全| 国产亚洲精品久久久久5区| 亚洲一区二区三区不卡视频| 人成视频在线观看免费观看| 夜夜看夜夜爽夜夜摸 | 一二三四在线观看免费中文在| www.www免费av| 色哟哟哟哟哟哟| 国产国语露脸激情在线看| 新久久久久国产一级毛片| 中出人妻视频一区二区| 亚洲视频免费观看视频| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 岛国在线观看网站| 大香蕉久久成人网| 国产99白浆流出| 女警被强在线播放| 国产成人系列免费观看| 正在播放国产对白刺激| 久久久水蜜桃国产精品网| 精品国内亚洲2022精品成人| 叶爱在线成人免费视频播放| 午夜激情av网站| 国产色视频综合| 好男人电影高清在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲专区字幕在线| 亚洲五月天丁香| 久久精品91蜜桃| 18禁黄网站禁片午夜丰满| 久久国产乱子伦精品免费另类| 校园春色视频在线观看| 欧美黑人欧美精品刺激| netflix在线观看网站| 一夜夜www| 亚洲欧美日韩另类电影网站| 中文字幕人妻熟女乱码| 波多野结衣av一区二区av| svipshipincom国产片| 欧美黑人欧美精品刺激| netflix在线观看网站| 国产成人精品久久二区二区91| 一边摸一边做爽爽视频免费| 三级毛片av免费| 在线视频色国产色| 国产aⅴ精品一区二区三区波| 久久久水蜜桃国产精品网| 欧美乱码精品一区二区三区| 亚洲五月天丁香| 每晚都被弄得嗷嗷叫到高潮| 色婷婷av一区二区三区视频| 精品人妻在线不人妻| 50天的宝宝边吃奶边哭怎么回事| 99国产综合亚洲精品| 9热在线视频观看99| 成人手机av| 波多野结衣高清无吗| 高清av免费在线| 国产av一区二区精品久久| 黄片播放在线免费| 大陆偷拍与自拍| 国产精品98久久久久久宅男小说| 在线观看日韩欧美| 巨乳人妻的诱惑在线观看| 久久人妻av系列| 视频区欧美日本亚洲| 欧美激情久久久久久爽电影 | 亚洲精品久久午夜乱码| 免费观看人在逋| 一边摸一边做爽爽视频免费| 精品无人区乱码1区二区| 美女午夜性视频免费| 9色porny在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区精品视频观看| 在线观看免费午夜福利视频| 久久狼人影院| 亚洲 欧美一区二区三区| 免费观看人在逋| 亚洲熟女毛片儿| 精品久久久久久电影网| 两个人免费观看高清视频| 日日爽夜夜爽网站| 99国产精品一区二区蜜桃av| 国产成人欧美| 亚洲第一欧美日韩一区二区三区| 亚洲av美国av| 久久精品亚洲精品国产色婷小说| 男人的好看免费观看在线视频 | 国产激情久久老熟女| 男女床上黄色一级片免费看| 国产精品久久久久成人av| 桃红色精品国产亚洲av| 91成人精品电影| av天堂久久9| 露出奶头的视频| 国产精品99久久99久久久不卡| 欧美日韩福利视频一区二区| avwww免费| 一级毛片精品| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡 | 老司机在亚洲福利影院| 久99久视频精品免费| av在线播放免费不卡| 99精品在免费线老司机午夜| 久久99一区二区三区| 亚洲国产欧美日韩在线播放| 成熟少妇高潮喷水视频| 国产黄a三级三级三级人| 亚洲一区中文字幕在线| 精品熟女少妇八av免费久了| av在线播放免费不卡| 可以在线观看毛片的网站| 51午夜福利影视在线观看| 999久久久精品免费观看国产| 在线av久久热| 男女床上黄色一级片免费看| 欧美国产精品va在线观看不卡| 如日韩欧美国产精品一区二区三区| 精品久久久久久,| 91老司机精品| 亚洲av熟女| 午夜精品国产一区二区电影| 多毛熟女@视频| 露出奶头的视频| 亚洲人成网站在线播放欧美日韩| 亚洲免费av在线视频| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成+人综合+亚洲专区| 成人手机av| 日本欧美视频一区| 丁香六月欧美| 久久精品91无色码中文字幕| 亚洲熟女毛片儿| 免费在线观看黄色视频的| 午夜影院日韩av| 国产成人啪精品午夜网站| 亚洲久久久国产精品| 高清黄色对白视频在线免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 天堂俺去俺来也www色官网| 黄色片一级片一级黄色片| 国产精品影院久久| 欧美丝袜亚洲另类 | 久久国产精品人妻蜜桃| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频| 一个人观看的视频www高清免费观看 | 欧美黄色片欧美黄色片| 男男h啪啪无遮挡| 久久久久久久精品吃奶| 侵犯人妻中文字幕一二三四区| 亚洲色图 男人天堂 中文字幕| 午夜免费成人在线视频| 日韩欧美在线二视频| www.999成人在线观看| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 久久精品91蜜桃| 99久久国产精品久久久| 在线观看一区二区三区激情| 国产精品 欧美亚洲| 欧美日本中文国产一区发布| 成人永久免费在线观看视频| 一级,二级,三级黄色视频| 一进一出抽搐gif免费好疼 | 精品一区二区三卡| 久久热在线av| 精品久久久久久久毛片微露脸| 亚洲av五月六月丁香网| 麻豆国产av国片精品| 国产精品综合久久久久久久免费 | 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品一区二区www| 啦啦啦免费观看视频1| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 99国产综合亚洲精品| 国产精品国产高清国产av| 国产av又大| 在线视频色国产色| 91老司机精品| 香蕉丝袜av| 黑人巨大精品欧美一区二区mp4| 日韩有码中文字幕|