申江紅,高 麗,張明麗
(延安大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,陜西 延安 716000)
Euler函數(shù)是數(shù)論中的一個(gè)重要的函數(shù),Euler函數(shù)方程的可解性也是數(shù)論方向的重要研究領(lǐng)域之一[1],近期文獻(xiàn)[2-10]討論了k的不同取值下二元?dú)W拉方程φ(mn)=k(φ(m)+φ(n))的可解性的問題;文獻(xiàn)[11-13]分別討論了當(dāng)k=3,4,5時(shí),三元?dú)W拉方程φ(abc)=k(φ(a)+φ(b)+φ(c))的全部正整數(shù)解;對(duì)于文獻(xiàn)[14],張四保討論了方程φ(xy)=k1φ(x)+k2φ(y)的可解性.本文基于楊張媛[15]討論的三元變系數(shù)歐拉方程φ(abc)=φ(a)+2φ(b)+3φ(c)的全部正整數(shù)解,討論了一個(gè)包含勾股數(shù)及完全數(shù)的三元變系數(shù)Euler函數(shù)方程的可解性,并證明了下例方程有39組正整數(shù)解
φ(abc)=3φ(a)+4φ(b)+5φ(c)-14.
(1)
顯然,若(m,n)=1,則有φ(mn)=φ(m)+φ(n).
引理3[8]當(dāng)n≥2時(shí),有φ(n) 引理4 在Euler函數(shù)方程φ(abc)=k+lφ(c)中,若φ(ab)≥k+l+1,則該方程無正整數(shù)解. 因此φ(abc)=k+lφ(c)不成立. 定理Euler函數(shù)方程(1)有且僅有39組正整數(shù)解.具體如下: (a,b,c)=(9,1,12),(7,1,17),(9,1,17),(7,1,32),(7,1,34),(7,2,17),(7,1,40,)(9,1,32),(9,1,34),(9,2,17),(7,1,48),(9,1,40),(16,1,4),(20,1,4),(16,1,6),(24,1,4),(30,1,4),(20,1,6),(20,2,3),(19,1,5),(27,1,5),(19,1,8),(19,1,10),(19,2,5),(38,1,5),(27,1,8),(19,1,12),(27,2,5),(27,1,10),(34,1,5),(13,4,3),(13,3,4).(5,3,3),(8,3,3),(10,3,3),(5,6,3),(5,3,6),(5,8,3),(8,5,3). 證明對(duì)于歐拉函數(shù)方程φ(abc)=3φ(a)+4φ(b)+5φ(c)-6, 由引理3,所以 φ(abc)=3φ(a)+4φ(b)+5φ(c)-6≥φ(a)φ(b)φ(c), (2) 即φ(abc)=3φ(a)+4φ(b)-6≥(φ(a)φ(b)-5)φ(c)≥φ(a)φ(b)-5, 故有 (φ(a)-4)(φ(b)-3)≤11. (3) 下面根據(jù)φ(a)、φ(b)的不同的取值分7種情況進(jìn)行討論. 情形1 當(dāng)(φ(a)-4)(φ(b)-3)<0時(shí),則有φ(a)≥6,φ(b)=1,2或者φ(a)=1,2,φ(b)≥4. 1) 當(dāng)φ(a)≥6,φ(b)=1時(shí),此時(shí)φ(abc)=3φ(a)+5φ(c)-2≥φ(a)φ(b),即 (φ(a)-5)(φ(c)-3)≤13. (4) ①當(dāng)φ(a)=6,φ(b)=1時(shí),帶入(4)式得φ(c)≤16,即φ(c)=1,2,4,6,8,10,12,14,16. 當(dāng)φ(c)=1時(shí),φ(abc)=21為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=26(不存在),此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=36,abc=37,57,63,74,76,108,114,126. 由于a=7,9,14,18;b=1,2;c=5,8,10,12,此時(shí)(1)式有解(a,b,c)=(9,1,12). 當(dāng)φ(c)=6時(shí),φ(abc)=46,abc=47,94. 由于a=7,9,14,18;b=1,2;c=7,9,14,18,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=8時(shí),φ(abc)=56,abc=87,116,174. 由于a=7,9,14,18;b=1,2;c=15,16,20,24,30,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=10時(shí),φ(abc)=66,abc=67,134. 由于a=7,9,14,18;b=1,2;c=11,22,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=12時(shí),φ(abc)=76(不存在),此時(shí)(1)式無解. 當(dāng)φ(c)=14(不存在),此時(shí)(1)式無解. 當(dāng)φ(c)=16時(shí),φ(abc)=96, abc=97,119,153,194,195,208,224,238,260,280,288,306,312,336,360,390,420, 由于a=7,9,14,18;b=1,2;c=17,32,34,40,48,60,經(jīng)檢驗(yàn)此時(shí)(1)式有解: (a,b,c)=(7,1,17),(9,1,17),(7,1,32),(7,1,34),(7,2,17),(7,1,40,)(9,1,32),(9,1,34),(9,2,17),(7,1,48),(9,1,40). ②當(dāng)φ(a)=8,φ(b)=1時(shí),帶入(4)式得φ(c)≤6,即φ(c)=1,2,4,6. 當(dāng)φ(c)=1時(shí),φ(abc)=27為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=32,abc=51,64,68,80,96,102,120, 由于a=15,16,20,24,30;b=1,2;c=3,4,6,此時(shí)(1)式有解(a,b,c)=(16,1,4), (20,1,4),(16,1,6),(24,1,4),(30,1,4),(20,1,6),(20,2,3). 當(dāng)φ(c)=4時(shí),φ(abc)=42,abc=43,49,86,98, 由于a=15,16,20,24,30;b=1,2;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=6時(shí),φ(abc)=52,abc=53, 由于a=15,16,20,24,30;b=1,2;c=7,9,14,18,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ③當(dāng)φ(a)=10,φ(b)=1時(shí),帶入(4)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=33為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=38(不存在),此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=48,abc=104,105,112,130,140,144,156,168,180,210, 由于a=11,22;b=1,2;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ④當(dāng)φ(a)=12,φ(b)=1時(shí),帶入(4)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=39為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=44,abc=69,92,138, 由于a=13,21,26,28,36,42;b=1,2;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=54,abc=81,106,162, 由于a=13,21,26,28,36,42;b=1,2;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ⑤當(dāng)φ(a)=14(不存在),φ(b)=1時(shí),此時(shí)(1)式無解. ⑥當(dāng)φ(a)=16,φ(b)=1時(shí),帶入(4)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=61為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=56,abc=87,116,174, 由于a=17,32,34,40,48,60;b=1,2;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=66,abc=67,134, 由于a=17,32,34,40,48,60;b=1,2;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ⑦當(dāng)φ(a)=18,φ(b)=1時(shí),帶入(4)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=57為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=62(不存在),此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=72, abc=73,91,95,111,117,135,146,148,152,182,190,216,222,228,234,252,270, 由于a=19,27,38,54;b=1,2;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式有解:(a,b,c)=(19,1,5),(27,1,5),(19,1,8),(19,1,10),(19,2,5),(38,1,5),(27,1,8),(19,1,12),(27,2,5),(27,1,10),(34,1,5). ⑧當(dāng)φ(a)≥20,φ(b)=1時(shí),帶入(4)式得φ(c)≤2,即φ(c)=1,2. 當(dāng)φ(c)=1時(shí),φ(abc)=3φ(a)+3為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=3φ(a)+8≥2φ(a),即:φ(a)≥-8與前提φ(a)≥20矛盾,時(shí)(1)式無解. 2) 當(dāng)φ(a)≥6,φ(b)=2時(shí),此時(shí)φ(abc)=3φ(a)+5φ(c)+2≥φ(a)φ(b),即 (φ(a)-5)(φ(c)-3)≤17. (5) ①當(dāng)φ(a)=6,φ(b)=2時(shí),帶入(5)式得φ(c)≤20,即 φ(c)=1,2,4,6,8,10,12,14,16,10,20. 當(dāng)φ(c)=1時(shí),φ(abc)=25為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=30,abc=31,62. 由于此時(shí)a=7,9,14,18;b=3,4,6;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=40,abc=41,55,75,82,88,100,110,132,150. 由于a=7,9,14,18;b=3,4,6;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=6時(shí),φ(abc)=50(不存在),此時(shí)(1)式無解. 當(dāng)φ(c)=8時(shí),φ(abc)=60,abc=61,77,93,99,122,124,154,186,198, 由于a=7,9,14,18;b=3,4,6;c=15,16,20,24,30,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=10時(shí),φ(abc)=70,abc=71,142. 由于a=7,9,14,18;b=3,4,6;c=11,22,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=12時(shí),φ(abc)=80,abc=123,164,165,176,200,220,246,264,300,330, 由于a=7,9,14,18;b=3,4,6;c=13,21,26,28,36,42,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=14(不存在),此時(shí)(1)式無解. 當(dāng)φ(c)=16時(shí),φ(abc)=100,abc=101,125,202,250, 由于a=7,9,14,18;b=3,4,6;c=17,32,34,40,48,60,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=18時(shí),φ(abc)=110,abc=121,242, 由于a=7,9,14,18;b=3,4,6;c=19,27,38,54,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=20時(shí),φ(abc)=120, abc=143,155,175,183,225,231,244,248,286,308,310,350,366,372,396,450,462, 由于a=7,9,14,18;b=3,4,6;c=25,33,44,50,66,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ②當(dāng)φ(a)=8,φ(b)=2時(shí),帶入(5)式得φ(c)≤8,即φ(c)=1,2,4,6,8. 當(dāng)φ(c)=1時(shí),φ(abc)=31為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=36,abc=37,57,63,74,76,108,114,126. 由于a=15,16,20,24,30;b=3,4,6;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=46,abc=47,94. 由于a=15,16,20,24,30;b=3,4,6;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=6時(shí),φ(abc)=56,abc=87,116,174. 由于a=15,16,20,24,30;b=3,4,6;c=7,9,14,18,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=8時(shí),φ(abc)=66,abc=67,134., 由于a=15,16,20,24,30;b=3,4,6;c=15,16,20,34,30,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ③當(dāng)φ(a)=10,φ(b)=2時(shí),帶入(5)式得φ(c)≤6,即φ(c)=1,2,4,6. 當(dāng)φ(c)=1時(shí),φ(abc)=37為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=42,abc=43,49,86,98. 由于a=11,22;b=3,4,6;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=52,abc=53. 由于a=11,22;b=3,4,6;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ④當(dāng)φ(a)=12,φ(b)=2時(shí),帶入(5)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=43為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=48,abc=104,105,112,130,140,144,156,168,180,210. 由于a=13,21,26,28,36,42;b=3,4,6;c=3,4,6,此時(shí)(1)式有解: (a,b,c)=(13,4,3),(13,3,4). 當(dāng)φ(c)=4時(shí),φ(abc)=58,abc=59,118, 由于a=13,21,26,28,36,42;b=3,4,6;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ⑤當(dāng)φ(a)=14(不存在),φ(b)=2時(shí),此時(shí)(1)式無解. ⑥當(dāng)φ(a)=16,φ(b)=2時(shí),帶入(5)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=55為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=60,abc=61,77,93,99,122,124,154,186,198. 由于a=17,32,34,40,48,60;b=3,4,6;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=70,abc=71,142. 由于a=17,32,34,40,48,60;b=3,4,6;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ⑦當(dāng)φ(a)=18,φ(b)=2時(shí),帶入(5)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=61為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=66,abc=67,134. 由于a=19,27,38,54;b=3,4,6;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=76(不存在),此時(shí)(1)式無解. ⑧當(dāng)φ(a)=20,φ(b)=2時(shí),帶入(5)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=67為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=72, abc=73,91,95,111,117,135,146,148,152,182,190,216,222,228,234,252,270, 由于a=25,33,44,50,66;b=3,4,6;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=82,abc=83,166, 由于a=25,33,44,50,66;b=3,4,6;c=5,8,10,12經(jīng)檢驗(yàn)此時(shí)(1)式無解. ⑨當(dāng)φ(a)=22,φ(b)=2時(shí),帶入(5)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=73為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=78,abc=78,158, 由于a=23,46;b=3,4,6;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=88,abc=89,115,178,184,230,276, 由于a=23,46;b=3,4,6;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. ⑩當(dāng)φ(a)≥24,φ(b)=2時(shí),帶入(5)式得φ(c)≤2,即φ(c)=1,2.. 當(dāng)φ(c)=1時(shí),φ(abc)=3φ(a)+7為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=3φ(a)+12≥4φ(a),即:φ(a)≤12與前提φ(a)≥24矛盾,此時(shí)(1)式無解. 3) 當(dāng)φ(a)=1,φ(b)≥4時(shí),φ(abc)=4φ(b)+5φ(c)-3即φ(abc)為奇數(shù),此時(shí)(1)式無解. 4)當(dāng)φ(a)=2,φ(b)≥4時(shí),此時(shí)φ(abc)=3φ(a)+5φ(c)-6≥2φ(a)φ(b) (6) ①當(dāng)φ(a)=2,φ(b)=4時(shí),帶入(6)式得φ(c)≤4,即φ(c)=1,2,4. 當(dāng)φ(c)=1時(shí),φ(abc)=21為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=26(不存在),驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(c)=4時(shí),φ(abc)=36,abc=37,57,63,74,76,108,114,126. 由于a=3,4,6;b=5,8,10,12;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 2現(xiàn)令φ(b)=2n(n=3,4,5...),有8n+5φ(c)≥4φ(c),即:φ(c)≤2,得φ(c)=1,2. 此時(shí):當(dāng)φ(c)=1時(shí),φ(abc)=4φ(b)+5為奇數(shù),此時(shí)(1)式不成立. 當(dāng)φ(c)=2時(shí),φ(abc)=4φ(b)+10≥4φ(b),即φ(b)取任意值不等式都成,與前提φ(b)≥6矛盾,故此處對(duì)φ(b)≥8的情況不再討論. 情形2 當(dāng)(φ(a)-4)(φ(b)-3)=0時(shí),則有φ(a)任意取值,φ(b)=3(不存在)或者φ(a)=4,φ(b)任意取值. 1) 當(dāng)φ(a)=4,φ(b)任意取值,有φ(abc)=4φ(b)+5φ(c)+6≥4φ(b)φ(c). ①當(dāng)φ(c)=1時(shí),φ(abc)=4φ(b)+11為奇數(shù),此時(shí)(1)式無解. ②當(dāng)φ(c)=2時(shí),φ(abc)=4φ(b)+16≥8φ(b),即:φ(b)≤4,得φ(b)=1,2,4, 當(dāng)φ(b)=1時(shí),φ(abc)=20,abc=25,33,44,50,66. 由于a=5,8,,10,12;b=1,2;c=3,4,6,此時(shí)(1)式無解. 當(dāng)φ(b)=2時(shí),φ(abc)=24,abc=35,39,45,52,56,70,72,78,84,90. 由于a=5,8,10,12;b=3,4,6;c=3,4,6,此時(shí)(1)式有解: (a,b,c)=(5,3,3),(8,3,3),(10,3,3),(5,6,3),(5,3,6). 當(dāng)φ(b)=4時(shí),φ(abc)=32,abc=51,64,68,80,96,102,120. 由于a=5,8,10,12;b=5,8,10,12;c=3,4,6,經(jīng)檢驗(yàn)此時(shí)(1)式有解:(a,b,c)=(5,8,3),(8,5,3). ③當(dāng)φ(c)=4時(shí),φ(abc)=4φ(b)+26≥16φ(b),得φ(b)=1,2. 當(dāng)φ(b)=1時(shí),φ(abc)=30,即abc=31,62. 由于a=5,8,10,12;b=1,2;c=5,8,10,12,經(jīng)檢驗(yàn)此時(shí)(1)式無解. 當(dāng)φ(b)=2時(shí),φ(abc)=34(不存在),此時(shí)(1)式無解. ④當(dāng)φ(c)≥6時(shí),φ(abc)=4φ(b)+36≥24φ(b),得φ(b)≤1,即φ(b)=1. 當(dāng)φ(b)=1時(shí),φ(abc)=5φ(c)+10≥4φ(c),得φ(c)≥-10與φ(c)≥6矛盾,此時(shí)(1)式無解,往后不再討論. 情形3 當(dāng)(φ(a)-4)(φ(b)-3)=1時(shí),則有φ(a)=5(不存在),φ(b)=4,此時(shí)(1)式無解. 情形4 當(dāng)(φ(a)-4)(φ(b)-3)=2時(shí),對(duì)2 得所有因子進(jìn)行討論: 1) 當(dāng)φ(a)-4=1,φ(b)-3=2,得:φ(a)=5(不存在),φ(b)=5(不存在),此時(shí)(1)式無解. 2) 當(dāng)φ(a)-4=2,φ(b)-3=1,得:φ(a)=6,φ(b)=4. 此時(shí)φ(abc)=28+5φ(c)≥24φ(c),得φ(c)=1.則φ(abc)=33(不存在),此時(shí)(1)式無解. 情形5 當(dāng)(φ(a)-4)(φ(b)-3)=4時(shí),對(duì)4得所有因子進(jìn)行討論,得 1) 當(dāng)φ(a)-4=1,φ(b)-3=4,得:φ(a)=5(不存在),φ(b)=7(不存在),此時(shí)(1)式無解. 2) 當(dāng)φ(a)-4=2,φ(b)-3=2,得:φ(a)=6,φ(b)=5(不存在),此時(shí)(1)式無解. 3) 當(dāng)φ(a)-4=4,φ(b)-3=1,得:φ(a)=8,φ(b)=4, 此時(shí)φ(abc)=34+5φ(c)≥32φ(c),得φ(c)=1.則φ(abc)=39(不存在),此時(shí)(1) 式無解. 情形6 當(dāng)(φ(a)-4)(φ(b)-3)=6時(shí),對(duì)6得所有因子進(jìn)行討論,得 1) 當(dāng)φ(a)-4=1,φ(b)-3=6,得:φ(a)=5(不存在),φ(b)=7(不存在),此時(shí)(1)式無解. 2) 當(dāng)φ(a)-4=2,φ(b)-3=3,得:φ(a)=6,φ(b)=6, 此時(shí)φ(abc)=36+5φ(c)≥36φ(c),得φ(c)=1.則φ(abc)=41(不存在),此時(shí)(1)式無解. 3) 當(dāng)φ(a)-4=3,φ(b)-3=2,得:φ(a)=7(不存在),φ(b)=5(不存在),此時(shí)(1)式無解. 4) 當(dāng)φ(a)-4=6,φ(b)-3=1,得:φ(a)=10,φ(b)=4, 此時(shí)φ(abc)=40+5φ(c)≥40φ(c),得φ(c)=1.則φ(abc)=45(不存在),此時(shí)(1)式無解. 情形7 當(dāng)(φ(a)-4)(φ(b)-3)=8時(shí),對(duì)8得所有因子進(jìn)行討論,得 1) 當(dāng)φ(a)-4=1,φ(b)-3=8,得:φ(a)=5(不存在),φ(b)=11(不存在),此時(shí)(1)式無解. 2) 當(dāng)φ(a)-4=2,φ(b)-3=4,得:φ(a)=6,φ(b)=7(不存在),此時(shí)(1)式無解. 3) 當(dāng)φ(a)-4=4,φ(b)-3=2,得:φ(a)=8,φ(b)=5(不存在),此時(shí)(1)式無解. 4) 當(dāng)φ(a)-4=8,φ(b)-3=1,得:φ(a)=12,φ(b)=4, 此時(shí)φ(abc)=46+5φ(c)≥48φ(c),得φ(c)=1.則φ(abc)=51(不存在),此時(shí)(1)式無解. 情形8 當(dāng)(φ(a)-4)(φ(b)-3)=10時(shí),對(duì)10得所有因子進(jìn)行討論,得 1) 當(dāng)φ(a)-4=1,φ(b)-3=10,得:φ(a)=5(不存在),φ(b)=13(不存在),此時(shí)(1)式無解. 2) 當(dāng)φ(a)-4=2,φ(b)-3=5,得:φ(a)=6,φ(b)=8, 此時(shí)φ(abc)=44+5φ(c)≥48φ(c),得φ(c)=1,則φ(abc)=49(不存在),此時(shí)(1)式無解. 3) 當(dāng)φ(a)-4=5,φ(b)-3=2,得:φ(a)=9(不存在),φ(b)=5(不存在),此時(shí)(1)式無解. 4) 當(dāng)φ(a)-4=10,φ(b)-3=1,得:φ(a)=14(不存在),φ(b)=4,此時(shí)(1)式無解. Euler函數(shù)φ(n)是數(shù)論中的一類極其重要的函數(shù),有關(guān)此類方程的解的研究也是數(shù)論方向的活躍課題之一.本文給出了一個(gè)含勾股數(shù)及完全數(shù)的三元變系數(shù)Euler函數(shù)方程φ(abc)=3φ(a)+4φ(b)+5φ(c)-6的所有解.2 定理及其證明
3 結(jié)論