葛廷,黃雪,謝讓金
柑橘的克隆、定位與表達分析
葛廷,黃雪,謝讓金
(西南大學柑桔研究所/中國農業(yè)科學院柑桔研究所,重慶 400712)
【】多聚半乳糖醛酸酶是一類參與細胞壁降解的水解酶,在植物生長發(fā)育和器官脫落過程中發(fā)揮著重要作用。本研究克隆柑橘及其啟動子(CitPG34-P)并進行表達分析,為深入研究柑橘在幼果脫落過程的生物功能奠定基礎。以‘塔羅科’血橙(L. Osbeck)為材料,克隆及其啟動子,利用ProtParam、Cello、CLUSTALX、MEGA5.2、PlantCARE等軟件對其蛋白特性及啟動子順式作用元件進行分析預測;利用實時熒光定量PCR(qRT-PCR)分析在不同組織以及柑橘幼果脫落過程中的表達水平。采用同源重組的方法構建pCAMBIA1302--融合蛋白表達載體和啟動子表達載體(CitPG34-P::),分別用于亞細胞定位和啟動子活性分析。從‘塔羅科’血橙幼果離層中克隆獲得,其ORF為1 194 bp,編碼397個氨基酸,預測蛋白分子量為41.47 kD,理論等電點為5.19,其不穩(wěn)定系數為30.23,表明CitPG34屬于穩(wěn)定蛋白;通過在線軟件TMHMM分析發(fā)現:CitPG34為跨膜蛋白,具有一個跨膜結構,位于第7—29位氨基酸之間。在CitPG34二級結構中,α-螺旋結構約占15.37%,擴展鏈約占29.72%,無規(guī)則卷曲約占54.91%,與其三級結構預測基本一致。NJ樹分析顯示CitPG34與西洋梨PcPG3(BAF42034)親緣關系最近,表明CitPG34可能與果實脫落和軟化相關。qRT-PCR分析表明,在花中表達量最高,在根、葉、離層A、離層C中表達量較低,在幼果中幾乎不表達。1-氨基環(huán)丙烷羧酸(ACC)處理果梗后能顯著提高離層A中的表達水平,相反IAA抑制其轉錄。此外,在柑橘幼果正常脫落過程中,表達明顯升高。亞細胞定位發(fā)現,CitPG34主要位于細胞壁??寺~@取起始密碼子(ATG)前2 075 bp啟動子序列(CitPG34-P),PlantCare預測發(fā)現,在CitPG34-P序列上存在多種順式調控元件,如核心啟動元件TATA-box、增強子元件CAAT-box以及脫落酸響應元件ABRE等。將CitPG34-P::轉入煙草,通過GUS組織化學染色發(fā)現,該啟動子受乙烯誘導,主要在葉脈和毛狀體中表達。的ORF長度為1 194 bp,可編碼397個氨基酸,其蛋白主要位于細胞壁;該基因具有明顯的組織特異性,在花中表達最高;表達量與柑橘幼果脫落顯著相關。上述結果表明,在柑橘幼果脫落和花發(fā)育過程中可能發(fā)揮著重要的生物功能。
柑橘;多聚半乳糖醛酸酶;基因表達;亞細胞定位;啟動子;幼果脫落
【研究意義】柑橘(Citrus)是全球重要的經濟作物之一,但大量異常落花落果,嚴重影響了柑橘產量,降低了果農的收入[1-2]。植物多聚半乳糖醛酸酶(polygalacturonases,PGs)作為細胞壁水解酶之一,通過降解離層細胞中間層果膠,從而促進植物器官脫落[3]。本研究基于柑橘全基因組,克隆獲得了柑橘及其啟動子序列,采用基因表達、亞細胞定位和遺傳轉化等方法對其進行分析,研究結果為進一步闡明CitPG34生物功能奠定了前期基礎,同時也為深入解析柑橘幼果脫落機制提供參考。【前人研究進展】植物器官脫落發(fā)生在離層區(qū)(AZ),脫落過程中需要大量細胞壁水解酶參與,包括多聚半乳糖醛酸酶、β-1, 4-葡聚糖酶、纖維素酶、半纖維素酶以及擴展蛋白等[4]。其中,關于PGs的研究最為廣泛,該酶含有4個典型的保守結構域,即結構域Ⅰ(NTD)、結構域Ⅱ(DD)、結構域Ⅲ(GHG)和結構域Ⅳ(RIK);結構域Ⅰ和結構域Ⅱ中的天冬氨酸(D)以及結構域Ⅲ中的組氨酸(H)參與了蛋白酶的催化功能[5]。PGs通過催化裂解果膠分子中的α-(1→4)-D-半乳糖苷鍵,導致細胞壁結構改變,從而參與果實成熟軟化[6-7]、莢果開裂[8]、花粉發(fā)育[9]等植物生長發(fā)育過程。目前,關于參與果實脫落的研究主要集中在擬南芥[8]、蘋果[10]、棕櫚[11]和番茄[12]等植物上。Jiang等[12]利用同源片段,通過VIGS技術,誘導番茄基因沉默,結果導致番茄葉片明顯延遲脫落。相反,超表達蘋果,造成轉基因植株葉片中的果膠降低,使未成熟葉片異常脫落并導致成熟葉片形態(tài)及其氣孔發(fā)育異常[10]。乙烯處理導致棕櫚樹果實大量脫落,隨后通過表達分析從14個中鑒定出一個成員即參與了脫落過程[11]。在荔枝中也有類似報道,從荔枝幼果離層中克隆獲得,研究發(fā)現該受乙烯誘導,卻被2, 4-二氯苯氧乙酸(2, 4-dichlorophenoxyacetic acid,2, 4-D)抑制,環(huán)剝摘葉后發(fā)現的表達水平與幼果脫落成正相關[13]。RIOV等[3]和RASCIO等[14]研究發(fā)現柑橘葉片和桃果實的脫落與PGs的活性變化有關,TAYLOR等[15]在接骨木葉片脫落過程中發(fā)現PGs活性的增強與其基因表達水平一致。KALAITZIS等[16]在番茄葉和花中克隆了、、,表達分析發(fā)現、、只在葉和花脫落區(qū)中表達,表明這些成員可能與脫落相關。上述結果表明,PGs在植物器官脫落過程中發(fā)揮著重要作用?!颈狙芯壳腥朦c】目前,關于PGs參與器官脫落的研究主要集中在擬南芥、番茄、水稻等模式植物中。在柑橘中,關于參與脫落的研究僅有少量報道[17-19],特別是其在柑橘幼果脫落過程中發(fā)揮的生物功能還有待進一步解析?!緮M解決的關鍵問題】克隆獲得及其啟動子,通過生物信息學、基因表達、亞細胞定位和GUS化學組織染色等手段,了解及其蛋白質的基本特性,初步明確在柑橘幼果脫落過程中的生物功能,及其對脫落誘導因子的響應機制。
試驗于2018年1月至2019年1月在中國農業(yè)科學院柑桔研究所進行。
1.1.1 植物材料 選取10年生‘塔羅科’血橙(L. Osbeck)為試材,其砧木為枳橙((L.) Osb.(L.) Raf.);煙草W38(),均由筆者實驗室保存。
1.1.2 試驗主要試劑 植物RNA提取試劑盒(RNA prep pure Kit)、植物基因組DNA提取試劑盒(Plant Genomic DNA Kit)、質粒提取試劑盒購自天根生化科技有限公司。高保真酶(PrimeSTAR Max Premix)、反轉錄試劑盒(Prime ScriptTM RT Reagent Kit)、膠回收試劑盒(MiniBEST Agarose Gel DNA Extraction Kit)、Marker、pMD19-T Vector、I、d III和I購自寶生物工程(大連)有限公司。qRT-PCR染料(iTaqTMUniversal SYBR? Green Supermix)購于伯樂生命醫(yī)學產品有限公司。植物PBI121表達載體和農桿菌EHA105菌株由筆者實驗室保存,大腸桿菌DH5α和農桿菌GV3101購于全式金生物技術有限公司。
花后一周,選取長勢一致的有葉單果,從離層A下部4 cm處剪取,隨后立即帶回實驗室。去除葉片和子房,用清水(對照)、2 mmol·L-1IAA,2 mmol·L-1ACC分別處理果梗后,在0、6、12、18和24 h收集離層A(ACC處理的果梗在18 h時已完全脫落,因此在24 h時未能收集離層A)。液氮速凍,-80℃保存。
采集‘塔羅科’血橙的根(砧木)、葉、幼果(花后1周)、花、離層A及離層C用于研究的組織特異性(圖1),液氮速凍,-80℃保存。
A:根(砧木);B:葉;C:幼果 A: Root (Rootstock); B: Leaves; C: Fruitlet
參照RNA prep pure Kit試劑盒說明書提取樣品總RNA,隨后,在1.0%瓊脂糖凝膠上電泳檢測其質量??俁NA濃度由Denovix超微量紫外可見分光光度計DS-11(DS-11 Series Spectrophotometer/ Fluorometer)檢測。根據Prime ScriptTM RT Reagent Kit試劑盒說明書,反轉錄合成第一條cDNA鏈,并置于-20℃冰箱中保存,用于檢測目的基因的相對表達量。
本試驗所用引物由Primer5.0設計,英濰捷基生物技術有限公司(上海)合成。引物信息見表1。
利用cDNA為擴增模板獲得,反應體系為50 μL:cDNA 2 μL、上下游引物(OE-CitPG34-F/R)各1 μL、高保真酶25 μL、ddH2O 21 μL。反應程序為:94℃ 5 min;94℃ 30 s,56℃ 30 s,72℃ 1 min 30 s,38個循環(huán);72℃ 5 min。產物經1.0%瓊脂凝膠電泳檢測,回收純化。將回收產物與pMD19-T Vector連接,轉化大腸桿菌感受態(tài)DH5α,涂板,挑取單克隆進行菌液PCR檢測,將陽性克隆送英濰捷基生物技術有限公司測序驗證。采用Editseq軟件將測序正確的序列進行拼接,得到基因ORF全長。
表1 本試驗所用引物
采用EXPASY(https://web.expasy.org/protparam/)分析CitPG34的理化性質。利用TMHMM(http://www. cbs.dtu.dk/services/TMHMM/)預測CitPG34蛋白跨膜結構。CitPG34蛋白的二級結構和三級結構分別由HNN(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl? page=/NPSA/npsa_hnn.html)和Phyre2(http://www.sbg. bio.ic.ac.uk/phyre2/html/page.cgi?id=index)預測;利用CELLO(http://cello.life.nctu.edu.tw)預測CitPG34蛋白的亞細胞定位。應用ClustalX軟件對CitPG34蛋白進行多重序列比對?;卩徑臃ǎ∟J),利用MEGA5.2軟件構建PGs的系統進化樹(Bootstrap=1 000)。采用PlantCARE(http://bioinforma tics.psb.ugent.be/ webtools/plantcare/html/)對CitPG34啟動子元件進行預測分析。
利用Plant Genomic DNA Kit的試劑盒說明書提取柑橘葉片DNA,其質量和濃度分別用1.0%瓊脂糖凝膠電泳和Denovix超微量紫外可見分光光度計DS-11檢測。隨后以該DNA為模板,克隆啟動子序列(CitPG34-P),反應體系為50 μL:cDNA 2 μL、上下游引物(P-CitPG34-F/R)各1 μL、高保真酶25 μL、ddH2O 21 μL。反應程序為:94℃ 5 min;94℃ 30 s,56℃ 30 s,72℃ 2min 10 s,38個循環(huán);72℃ 5 min。經1.0%瓊脂凝膠電泳檢測,回收純化,產物置于-20℃保存。
以柑橘為內參基因,利用qPCR分析在柑橘不同組織中以及吲哚乙酸(IAA)和1-氨基環(huán)丙烷羧酸(ACC)處理下的表達水平。反應體系為10 μL:5 μL iTaqTMUniversal SYBR? Green Supermix、ddH2O 3 μL、引物各0.5 μL、cDNA 1 μL。反應程序為:95℃ 2 min;95℃ 15 s,53℃ 5 s,72℃ 15 s,共39個循環(huán)。每個處理3次重復。基因相對表達量采用2-??Ct法計算,用SPSS19.0對數據進行顯著性分析,最后用Excel繪制圖表。
以cDNA為模板,用Sub-CitPG34-F/R引物(表1)克隆獲得去除終止子的全長,通過I單酶切pCAMBIA1302-表達載體,采用同源重組技術將其與去除終止子的連接,轉化大腸桿菌感受態(tài)DH5α,經測序驗證,得到載體命名為pCAMBIA1302--。將質粒pCAMBIA1302-和pCAMBIA1302-(對照)分別轉化農桿菌GV3101,涂板,挑取單克隆利用引物Sub-CitPG34-F/R及pCAMBIA1302-F/R進行菌液檢測。活化菌液,并用含有1 mol?L-1MES、2.5 mol?L-1MgCl2、100 mmol?L-1乙酰丁香酮的重懸液重懸,調整菌液OD600為0.75,分別將菌液注射到洋蔥內表皮,暗培養(yǎng)3 d,用清水和0.3 g?mL-1蔗糖處理內表皮細胞并制作裝片,置于倒置熒光顯微鏡下觀測、拍照。
用dIII和I酶切去除植物表達載體PBI121的35S啟動子序列,隨后用infusion重組技術將上述經PCR擴增回收后得到的CitPG34-P片段連接在PBI121表達載體上,連接產物轉化大腸桿菌感受態(tài)DH5α,涂板,挑取單克隆進行菌液PCR檢測,將陽性克隆送英濰捷基生物技術有限公司測序驗證。測序正確的表達載體命名為CitPG34-P::。將載體CitPG34-P::提取質粒,利用凍融法轉化農桿菌EHA105菌株,涂板,挑取單克隆,經PCR鑒定為陽性后保存菌種。
首先將含有CitPG34-P::載體的農桿菌活化,直至菌液OD600值在0.8—1.0,離心收集菌液,去掉上清液并加入重懸液MS。將煙草葉片切成大小約為1 cm2的方塊,置于重懸液中7—10 min,期間搖晃2—3次,隨后取出,用無菌濾紙吸干葉片殘余菌液。將侵染后的煙草葉片置于MS共培養(yǎng)基中暗培養(yǎng)2 d,之后轉到篩選培養(yǎng)基上繼續(xù)培養(yǎng),直到愈傷組織長出幼芽。切取幼芽插入生根培養(yǎng)基,約20 d后,將生根幼苗轉移至營養(yǎng)土中繼續(xù)培養(yǎng)4—5周。利用Plant Genomic DNA Kit的試劑盒說明書提取煙草葉片DNA,并用1.0%瓊脂糖凝膠電泳檢測轉基因植株。
利用打孔器,將轉基因煙草葉片切成半徑為0.25 cm的小圓片,置于濾紙上;用0和5 mmol?L-1乙烯利溶液處理,然后放入組培瓶中封閉;在25℃條件下處理72 h,取出圓片置入GUS溶液中避光染色;用75%酒精漂洗脫色后,光學顯微鏡觀察。
以OE-CitPG34-F/R為引物進行PCR擴增檢測,獲得了序列全長,其ORF長度為1 194 bp(圖2-A),可編碼397個氨基酸。生物信息學分析發(fā)現,CitPG34屬于穩(wěn)定蛋白,其相對分子量為41.47 kD,理論等電點為5.19,脂肪系數為88.78,不穩(wěn)定系數為30.23;此外,在該蛋白7—29氨基酸之間存在跨膜結構。在CitPG34蛋白的二級結構中,α-螺旋結構約占15.37%,擴展鏈約占29.72%,無規(guī)則卷曲約占54.91%,其三級結構中α-螺旋結構占9%,β-鏈約占55%,TM螺旋占4%,其他結構約占8%。圖3顯示,CitPG34與其他植物PGs類似,含有典型的4個保守結構域,即SPNTDG(Ⅰ)、GDDC(Ⅱ)、CGPGHGISIGSLG(Ⅲ)、RIK(Ⅳ)。聚類分析顯示,所有PG可劃分為3個分支(A、B、C),其中CitPG34與西洋梨PcPG3親緣關系最近(圖4)。
M:DL2000分子標記。A:柑橘CitPG34;B:柑橘CitPG34的啟動子
AtPG1:擬南芥,NP191310;AtPG2:擬南芥,NP850359;AdPG:獼猴桃,L12019;BrnPG:歐洲油菜,NP001302495;CmPG1:甜瓜,AF062465;CmPG2:甜瓜,AF062466;CpPG4:番木瓜,GQ479796;DkPG3:柿,EU816199;LcPG:荔枝,AFW04075;GmPG6:大豆Glycine max,ABD62085;MaPG3:小果野蕉,AY603339;NtPG1:煙草,AHG12641;MdPG:蘋果,L27743;PaPG:杏,ADT82706;PcPG:西洋梨,CAH18935;PcPG1:西洋梨,AB084461;PcPG3:西洋梨,BAF42034;PdPG1:歐洲李,DQ375247;PpPG:碧桃,EF568784;PpPG1:碧桃,BAH56488;PpPG2:碧桃,CAA54448;TAPG1:番茄,NM001246866;TAPG2:番茄,U70480;TAPG4:番茄,U70481;VvPG1:葡萄,AY043233;VvPG2:葡萄,EU078975;ZmPG:玉米,P26216
I:SPNTDG結構域;II:GDDC結構域;III:CGPGHG結構域;IV:RIK結構域
I: SPNTDG domain, II: GDDC domain, III: CGPGHG domain, IV: RIK domain
圖3 CitPG34與其他物種PG蛋白的氨基酸系列比對
Fig. 3 Amino acid sequence alignment of CitPG34 with other PG proteins
圖4 植物PGs蛋白系統進化樹
在柑橘不同組織中的表達存在顯著差異,即在花中表達量最高,其次為根,在離層A和C中表達量較低,在葉和幼果中幾乎不表達(圖5)。上述結果表明,在柑橘花發(fā)育過程中發(fā)揮著重要作用。
在幼果第一次脫落過程中,在離層A中的表達水平顯著上升,在24 h達到最高水平;而在ACC處理后,其表達水平在12 h就受到明顯誘導,在18 h達到最高水平,表明受到了ACC誘導調控;相反,IAA處理后的離層A中的表達水平始終保持在較低水平,說明該基因的轉錄受到了IAA的抑制(圖6)。上述結果表明,明顯與柑橘幼果脫落相關。
CELLO軟件預測表明CitPG34屬于胞外蛋白。為了進一步驗證該分析結果,本試驗利用洋蔥表皮細胞對CitPG34進行了亞細胞定位。結果發(fā)現,在轉入空白載體pCAMBIA1302-的洋蔥表皮細胞中,其細胞核、細胞質膜及細胞壁中均出現綠色熒光,而轉入pCAMBIA1302--的表皮細胞中,綠色熒光主要在細胞壁上(圖7)。該結果與CELLO軟件預測一致,表明CitPG34屬于胞外蛋白,主要位于細胞壁上。
以‘塔羅科’血橙DNA為模板,克隆獲得起始密碼(ATG)前2 075 bp的啟動子片段(CitPG34- P)。Plant CARE分析結果顯示,CitPG34-P序列除包含啟動子核心元件TATA-box和增強子保守元件CAAT-box外,同時還存在光響應元件、激素響應元件、逆境響應元件等,如Box4、ATCT-motif、ABRE、TGACG-motif、MBS、ARE和Box-W1等(表2)。
不同小寫字母表示差異顯著(P<0.05)。下同 Different lowercase letters indicate significant difference (P<0.05). The same as below
圖6 在柑橘幼果脫落過程中CitPG34的表達水平
通過農桿菌介導法,將CitPG34-P::表達載體導入煙草,獲得CitPG34-P::轉基因植株。GUS組織化學染色表明,在正常條件下,未能檢測到轉基因植株葉片中的GUS酶活力;然而,在乙烯利處理后,GUS酶活力顯著增強,其中葉脈和毛狀體上最為明顯(圖8)。
在植物細胞壁水解酶家族中,PGs由多基因編碼,成員之間具有功能特異性,參與植物生長發(fā)育的多個過程,如器官脫落、果實成熟軟化、種子萌發(fā)、花粉粒成熟、木質部細胞發(fā)育及花藥或莢果開裂等[20-24]。目前,已有大量PG基因在不同物種中被鑒定,如蘋果[25]、桃[26]、番茄[27]、擬南芥[28]、水稻[29]、大豆[30]、楊樹[31]、番木瓜[32]、葡萄[33]等,但柑橘中相關基因的克隆和功能分析還鮮有報道。本研究成功克隆獲得了全長,經多重蛋白序列比對顯示,CitPG34含有PGs基因家族典型的保守結構域,即SPNTDG(Ⅰ)、GDDC(Ⅱ)、CGPGHGISIGSLG(Ⅲ)、RIK(Ⅳ)。聚類分析發(fā)現,來自不同物種的29個PGs形成3個分支(A、B和C),這與HADFIELD和BENNETT[34]的結果一致,分支A中的PGs成員主要參與器官脫落和果實軟化[35-36];分支B中PGs主要涉及果實軟化以及莢果開裂[21,26];而分支C主要由參與花粉發(fā)育的PGs組成[37]。在本研究中,CitPG34位于分支A中,與PcPG3關系最近,推測該基因可能與柑橘果實軟化或脫落相關。亞細胞定位表明CitPG34位于細胞壁,屬于胞外蛋白,這與油菜[37]、甘藍[9]和擬南芥[38]等的報道一致。
A、B、C、D:表皮細胞未發(fā)生質壁分離;E、F、G、H:表皮細胞發(fā)生質壁分離;比例尺=100 μm
圖8 CitPG34-P::gus轉基因植株的GUS組織化學染色
在植物體內,在不同組織中的表達水平差異明顯,具有一定的組織特異性。例如,在擬南芥中,在花中表達量最高,其次是葉和根,在莖中表達量較低[39];主要在花中表達,在莢果、莖、葉中次之,根最低[38];同樣,和在莢果中表達較高,其次是花芽和根,在葉中幾乎不表達[28]。LYU等[9]發(fā)現,甘藍在花序表達量最高,根次之,在莖、葉和莢果中表達量幾乎不表達。與上述結果類似,在柑橘花、根、葉、果等組織中均有表達,其中花中表達量最高,其次是根、離層A和C,在葉和果中表達量最低,由此推測在柑橘的花發(fā)育過程中具有重要作用。
表2 CitPG34啟動子序列主要順式作用元件
研究表明乙烯可以促進柑橘幼果脫落,而吲哚-3-乙酸(Indole-3-acetic acid,IAA)則相反[18,40-41]。VAN DOORN和STEAD[42]認為IAA之所以能抑制器官脫落,是因為IAA降低了離層細胞對乙烯的敏感性。MEIR等[43]利用基因芯片技術研究了番茄花脫落的分子機制,結果顯示IAA處理能明顯降低、以及在花的離層中的表達。2-萘乙酸(Naphthaleneacetic acid,NAA)通過抑制蘋果離層的表達,從而明顯降低了成熟果實脫落,表明與果實脫落有關[44]。ZHU等[45]也在蘋果上得到類似結果,即通過對蘋果幼果噴施NAA后,造成幼果落果率顯著增加,轉錄組分析進一步表明,參與了幼果脫落。XIE等[18]通過轉錄組分析發(fā)現7個PGs成員與柑橘幼果脫落相關,(orange1.1t02532)為其中成員之一。在本研究中,在離層A中的表達水平明顯受ACC誘導,卻被IAA抑制,在幼果第一次脫落過程中顯著上升,與柑橘幼果脫落呈現明顯相關。
啟動子作為基因結構的重要組成部分,能夠調控基因表達的起始時間、空間和表達水平。因此,通過克隆并分析基因啟動子序列,可以闡述基因的表達水平及其調控的分子機制。本研究中克隆獲得了起始密碼(ATG)前2 075 bp的啟動子片段(CitPG34-P)。順式作用元件分析結果表明,CitPG34-P含有對光、干旱脅迫、厭氧脅迫、真菌誘導和激素(脫落酸、茉莉酸、赤霉素)應答元件,說明外界環(huán)境的變化可能會誘導基因的轉錄活性發(fā)生相應的變化。HONG等[36]將番茄、以及啟動子連接報告基因并轉入番茄中,通過GUS染色分析發(fā)現,、以及啟動子對GUS活力的調控特征基本與相應基因的表達模式相一致。本研究中,啟動子的轉基因煙草葉片經乙烯利誘導處理后,在葉脈和毛狀體中的活性較強,暗示受乙烯誘導,可能與葉脈和毛狀體的生長發(fā)育有關。
從‘塔羅科’血橙中克隆得到及其啟動子序列,其蛋白具有SPNTDG(Ⅰ)、GDDC(Ⅱ)、CGPGHGISIGSLG(Ⅲ)、RIK(Ⅳ)4個特征保守結構域。亞細胞定位分析顯示CitPG34主要位于細胞壁。在花中表達最高,根次之,在其他組織中表達極低或不表達;另外,其表達量受IAA抑制,被ACC誘導,說明該基因與柑橘幼果脫落相關。GUS組織化學染色結果表明,受乙烯誘導,主要在葉脈和毛狀體中表達。
[1] 劉志良. 柑橘過量落花落果的原因及防止對策. 中國農技推廣, 2013, 29(9): 28-30.
LIU Z L. Reasons for excessive flowering and fruit dropping of citrus and preventive measures., 2013, 29(9): 28-30. (in Chinese)
[2] 潘小婷, 張靜, 葛廷, 馬巖巖, 鄧烈, 何紹蘭, 易時來, 鄭永強, 呂強, 謝讓金. 柑橘CitCEP基因家族的鑒定及對逆境和激素的響應. 中國農業(yè)科學, 2018, 51(16): 3147-3158.
PAN X T, ZHANG J, GE T, MA Y Y, DENG L, HE S L, YI S L, ZHENG Y Q, Lü Q, XIE R J. Identification of citrus CitCEP genes and their transcriptional response to stress and hormone treatments., 2018, 51(16): 3147-3158. (in Chinese)
[3] RIOV J. A polygalacturonase from citrus leaf explants: role in abscission., 1974, 53(2): 312-316.
[4] NAKANO T, ITO Y. Molecular mechanisms controlling plant organ abscission., 2013, 30(3): 209-216.
[5] CARMEN RODRíGUEZ-GACIO M D C, NICOLáS C, MATILLA A J. Cloning and analysis of a cDNA encoding an endo-polygalacturonase expressed during the desiccation period of the silique-valves of turnip-tops (L. cv. Rapa)., 2004, 161(2): 219-227.
[6] QUESADA M, BLANCO-PORTALES R, POSé S, GARCíA-GAGO J A, JIMéNEZ-BERMúDEZ S, MUN?OZ-SERRANO A, CABALLERO J L, PLIEGO-ALFARO F, MERCADO J A, MU?OZ-BLANCO J. Antisense down-regulation of thegene reveals an unexpected central role for polygalacturonase in strawberry fruit softening., 2009, 150(2): 1022-1032.
[7] POSE S, PANIAGUA C, CIFUENTES M, BLANCO-PORTALES R, QUWSADA M A, MERCADO J A. Insights into the effects of polygalacturonasegene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits., 2013, 64(12): 3803-3815.
[8] GONZáLEZ-CARRANZA Z H, ELLIOTT K A, ROBERTS J A. Expression of polygalacturonases and evidence to support their role during cell separation processes in., 2007, 58(13): 3719-3730.
[9] LYU M L, LIANG Y, YU Y J, MA Z M, SONG L M, YUE X Y, CAO J S. Identification and expression analysis of, a novel polygalacturonase gene involved in pollen development of., 2015, 28(2): 121-132.
[10] ATKINSON R G, SCHRODER R, HALLETT I C, COHEN D, MACRAE E A. Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion., 2002, 129(1): 122-133.
[11] ROONGSATTHAM P, MORCILLO F, JANTASURIYARAT C, PIZOT M, MOUSSU S, JAYAWEERA D, COLLIN M, GONZáLEZ- CARRANZA Z H, AMBLARD P, TREGEAR J W, TRAGOONRUNG S, VERDEIL J, TRANBARGER T J. Temporal and spatial expression of polygalacturonase gene family members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm., 2012, 12(1): 150.
[12] JIANG C Z, LU F, IMSABAI W, MEIR S, REID M S. Silencing polygalacturonase expression inhibits tomato petiole abscission., 2008, 59(4): 973.
[13] PENG G, WU J Y, LU W J, LI J G. A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission., 2013, 150: 244-250.
[14] RASCIO N, CASADORO G, RAMINA A, MASIA A. Structural and biochemical aspects of peach fruit abscission (L. Batsch)., 1985, 164(1): 1-11.
[15] TAYLOR J E, WEBB S T J, COUPE S A, TUCKER G A, ROBERTS J A. Changes in polygalacturonase activity and solubility of polyuronides during ethylene-stimulated leaf abscission in., 1993, 44(1): 93-98.
[16] KALAITZIS P, TUCKER S M L. Three different polygalacturonases are expressed in tomato leaf and flower abscission, each with a different temporal expression pattern., 1997, 113(4): 1303-1308.
[17] CHENG C Z, ZHANG L Y, YANG X L, ZHONG G Y. Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene., 2015, 290(5): 1991-2006.
[18] MERELO P, AGUSTíJ, ARBONA V, COSTA M L, ESTORNELL L H, GóMEZ-CADENAS A, COIMBRA S, GóMEZ M D, PéREZ-AMADOR M A, DOMINGO C, TALóN M, TADEO F R. Cell wall remodeling in abscission zone cells during ethylene- promoted fruit abscission in citrus., 2017, 8: 126.
[19] XIE R J, GE T, ZHANG J, PAN X T, MA Y Y, YI S L, ZHENG Y Q. The molecular events of IAA inhibiting citrus fruitlet abscission revealed by digital gene expression profiling., 2018,130: 192-204.
[20] GONZáLEZ-CARRANZA Z H, WHITELAW C A, SWARUP R, ROBERTS J A. Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and., 2002, 128(2): 534-543.
[21] MARKOVIC O, JANECEK S. Pectin degrading glycoside hydrolases of family 28: sequence structural features, specificities and evolution., 2001, 14(9): 615-631.
[22] SITRIT Y, HADFIELD K A, BENNETT A B, BRADFORD K J, DOWNIE A B. Expression of a polygalacturonase associated with tomato seed germination., 1999, 121(2): 419-428.
[23] SANDER L, CHILD R, ULVSKOV P, ALBRECHTSEN M, BORKHARDT B. Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape () and: evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth., 2001, 46(4): 469-479.
[24] ROBERTS J A, ELLIOTT K A, GONZáLEZ-CARRANZA Z H. Abscission, dehiscence, and other cell separation processes., 2001, 53(1): 131-158.
[25] CHEN H F, SHAO H X, FAN S, MA J J, ZHANG D, HAN M Y. Identification and phylogenetic analysis of thegene family in apple., 2016, 2(5): 241-252.
[26] MING Q, YIKE Z, YAN X Y, HAN M Y. identification and expression analysis of polygalacturonase family members during peach fruit softening., 2016, 17(11): 1933.
[27] KE X B, WANG H S, LI Y, ZHU B, ZANG Y X, HE Y, CAO J S, ZHU Z J, YU Y J. Genome-wide identification and analysis of polygalacturonase genes in., 2018, 19(8): 2290.
[28] OGAWA M, KAY P, SWAIN W S M.,, andare polygalacturonases required for cell separation during reproductive development in., 2009, 21(1): 216-233.
[29] KIM J, SHIU S H, THOMA S, LI W H, PATTERSON S E. Patterns of expansion and expression divergence in the plant polygalacturonase gene family., 2006, 7(9): R87.
[30] WANG F F, SUN X, SHI X Y, ZHAI H, TIAN C G, KONG F J, LIU B H, YUAN X H. A global analysis of the polygalacturonase gene family in soybean ()., 2016, 11(9): e0163012.
[31] YANG Z L, LIU H J, WANG X R, ZENG Q Y. Molecular evolution and expression divergence of the populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants., 2013, 197(4): 1353-1365.
[32] FABI J P, BROETTO S G, DA SILVA S L G L, ZHONG S L, LAJOLO F M, DO NASCIMENTO J R O. Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening., 2014, 9(8): e105685.
[33] DEYTIEUX-BELLEAU C, AMéLIE V, BERNARD D, GENY L. Pectin methylesterase and polygalacturonase in the developing grape skin., 2008, 46(7): 638-646.
[34] HADFIELD K A, BENNETT A B. Polygalacturonases: many genes in search of a function., 1998, 117(2): 337-343.
[35] BONGHI C, RASCIO N, RAMINA A, CASADORO G. Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach., 1992, 20: 839-848.
[36] HONG S B, SEXTON R, TUCKER M L. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma., 2000, 123(3): 869-881.
[37] LYU M L, YU Y J, JIANG J J, SONG L M, LIANG Y, MA Z M, XIONG X P, CAO J S.andare duplicated polygalacturonase genes with divergent expression patterns and functions in pollen development and pollen tube formation in., 2015, 10(7): e0131173.
[38] RUI Y, XIAO C W, YI J, KANDEMIR B, WANG J Z, PURI V M, ANDERSON C T.functions in seedling development, rosette growth, and stomatal dynamics in., 2017, 29(10): 2413.
[39] XIAO C, SOMERVILLE C, ANDERSON C T.functions in cell elongation and flower development in., 2014, 26(3): 1018-1035.
[40] KüHN N, SERRANO A, ABELLO C, ARCE A,ESPINOZA C, GOUTHU S,DELUC L,JOHNSON P A. Regulation of polar auxin transport in grapevine fruitlets (L.) and the proposed role of auxin homeostasis during fruit abscission., 2016, 16(1): 234.
[41] YUAN R C, WU Z C, KOSTENYUK I A, BURNS J K. G- protein-coupled alpha2A-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase., 2005, 56(417): 1867.
[42] VAN DOORN W G, STEAD A D. Abscission of flowers and floral parts., 1997, 48(4): 821-837.
[43] MEIR S, PHILOSOPH-HADAS S, SUNDARESAN S, SELVARAJ K S, BURD S, OPHIR R, KOCHANEK B, REID M S, JIANG C Z, LERS A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion., 2011, 154(4): 1929-1956.
[44] LI J G, YUAN R C. NAA and ethylene regulate expression of genes related to ethylene biosynthesis, perception, and cell wall degradation during fruit abscission and ripening in ‘Delicious’ apples., 2008, 27(3): 283-295.
[45] ZHU H, DARDICK C D, BEERS E P, CALLANHAN A M, XIA R, YUAN R C. Transcriptomics of shading-induced and NAA-induced abscission in apple () reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk., 2011, 11(1): 138-138.
Cloning, Subcellular Localization and Expression Analysis ofCitrus
GE Ting, HUANG Xue, XIE RangJin
(Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712)
【】Polygalacturonases (PGs) play important roles in plant growth and development as well as organ abscission by degrading pectin in cell wall.In this study, a citrus PG gene (i.e.,) and its promoter (CitPG34-P) were cloned and expression analyzed based on our previous data, which would provide a basis for further elucidating the function of【】The full length ofgene and its promoter was cloned from ‘Tarcocco’ blood orange (L. Osbeck). The protein characteristics and-acting elements on promoter were analyzed by ProtParam, Cello, CLUSTALX, MEGA5.2, and PlantCARE, etc. The gene expression level was detected by real-time Quantitative PCR (qRT-PCR). The PCAMBIA1302--fusion protein expression vector for subcellular localization and CitPG34-P expression vector (CitPG34-P::) for promoter activity analysis were constructed by homologous recombination, respectively.【】The ORF ofwas 1 194 bp in length, encoding 397 amino acids. The predicted molecular weight of CitPG34 was 41.47 kD, the theoretical pI was 5.19, and the instability coefficient was 30.23, indicating that CitPG34 belonged to stable protein.TMHMM analysis showed that CitPG34 was a transmembrane protein, the transmembrane domain locating between the amino acid residue 7 and 29. In the secondary structure of CitPG34, the alpha-helix structure, extended chain and random coil account for 15.37%, 29.72% and 54.91%, respectively, which were nearly consistent with its tertiary structure. NJ tree analysis showed that CitPG34 was close to PcPG3 (BAF42034), a pear PG, indicating that it might be related to fruit abscission and softening. qPCR analysis showed thatdominantly expressed in flowers, followed by roots, leaves, abscission zone A (AZ A) and C (AZ C), and almost undetected in fruits. In AZ A, the expression level of CitPG34 was significantly up-regulated by ACC, whereas inhibited by IAA, showing the role in citrus fruitlet abscission. Subcellular localization revealed that CitPG34 was mainly located in cell wall. A 2 075 bp promoter sequence ofwas cloned, which contained several cis-regulatory elements, including TATA-box, enhancer CAAT-box and ABRE, etc. GUS histochemical staining revealed that the GUS activity in vein and trichomes was remarkably up-regulated by ethylene. 【】The ORF length ofgene was 1 194 bp, encoding 397 amino acids. CitPG34 was mainly located in cell wall. qPCR analysis showed thatdominantly expressed in flowers and was significantly associated with citrus fruitlet abscission. Taken together, these results indicated thatplayed important roles in citrus fruitlet abscission and flower development.
citrus;Polygalacturonases; gene expression; subcellular localization; promoter; fruitlet abscission
10.3864/j.issn.0578-1752.2019.19.011
2019-05-05;
2019-07-12
重慶市基礎研究與前沿探索項目(cstc2018jcyjAX0564)
葛廷,E-mail:m13364018674@163.com。
謝讓金,E-mail:xierangjin@cric.cn
(責任編輯 趙伶俐)