• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Behavior recognition algorithm based on the improved R3D and LSTM network fusion①

    2022-01-09 02:08:18WuJinAnYiyuanDaiWeiZhaoBo
    High Technology Letters 2021年4期

    Wu Jin(吳 進(jìn)),An Yiyuan,Dai Wei,Zhao Bo

    (School of Electronic and Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,P.R.China)

    Abstract

    Key words:behavior recognition,three-dimensional residual convolutional neural network(R3D),long short-term memory(LSTM),dropout,batch normalization(BN)

    0 Introduction

    Due to the increasingly high status of video human behavior recognition in the field of artificial intelligence,people’s demand for behavior recognition intelligent system is growing.Therefore,video based behavior recognition is widely used in human-computer interaction,social public security,intelligent security and other fields[1].Currently,the traditional algorithms for human behavior recognition include histogram of optical flow (HOF)[2], dense trajectory(DT)[3],motion history image(MHI)[4]algorithm.Scale invariant feature transform(SIFT)[5],spacetime volume(STV)[6]and dense trajectories(DT)[7]proposed by other scholars are classified after feature extraction.

    In recent years,with the increase in the number of videos,the computer performance has improved rapidly,which has brought great help to the development of deep learning,and solved the problems of less data sets and slow computing performance.After Krizhevsky et al.[8]won the champion in Imagenet Challenge Image Classification,a large number of scholars began to imitate the convolutional neural networks(CNN)model,and a large number of excellent network models such as AlexNet[9],VGGNet[10],GoogLeNet[11]were proposed.

    In order to enable CNN to achieve end-to-end training,Ref.[12] proposed a long-term recurrent neural network(LRCN)in 2015.This model has obvious advantages in recognition,optimization and other tasks.However,because the number of layers of CNN is too small,it can not fully extract useful feature information.Ref.[13]proposed a 3D-CNN,which can simultaneously extract spatiotemporal features,but 2DCNN is still used in the last few layers of the network.Ref.[14]proposed a C3D network.Experimental results show that the C3D network can extract spatiotemporal feature information better than 2D-CNN.However,as the number of network layers becomes deeper,problems such as network degradation will occur.Ref.[15]proposed a ResNet network,which overcomes the above problems caused by increasing the network depth.

    In order to improve the performance of the network,this paper introduces the three-dimensional residual convolutional neural network(R3D),which can not only extract the temporal and spatial features,but also deepen the width of the network.On this basis,R3D network changes the size of the pool layer window,and adds Softplus activation function,batch normalization(BN)layer,dropout layer,convolutional layer and maxpool layer.Later,in order to further extract advanced timing features,the long short-term memory(LSTM)[16]network was introduced into R3D network.Finally,the R3D+LSTM network achieves 91%recognition rate on UCF-101[17]dataset.

    1 R3D+LSTM network

    1.1 R3D network

    The structure of the residual network is to emulate the VGGNet,using a small convolution kernel instead of a large convolution kernel,reducing the amount of parameters.Moreover,through residual connection,the network layers are stacked to 152 layers,which has achieved good results in Imagenet competition.The residual module is shown in Fig.1.

    Fig.1 Residual module

    The objective functionH(X)=F(X)+X,F(X)is fitted to 0,that is,H(X)=X,which is transformed into the fitting of the network toX,realizing the identity mapping ofX,solving the problem of network degradation.Since the derivative ofXis 1,the derivative value of the function is made greater than 1 in the backpropagation,which avoids the disappearance of the network gradient and makes the weight of the network updated.Because the number of layers of the traditional deep ResNet network is too deep,there are problems such as excessive parameter amount and redundant parameters,which causes the training speed of the network to slow down[18].Moreover,the ResNet network uses 2D convolution layer,which can only extract the spatial features of each image frame,so that the extracted features are not enough.In view of the above problems,this paper adopts R3D network,as shown in Fig.2.

    Fig.2 Structure diagram of R3D network

    Since the operations and parameters of the 5 identity modulesⅠare the same,one identity moduleⅠis used to represent the 5 identity modulesⅠin the R3D network structure.Four identity modulesⅡand 4 identity modulesⅢare also represented in this way.The identity module uses 3×3×3 convolution kernel,and the convolution module uses 3×3×3 and 1×1×1 convolution kernel.The above convolutional layers all use Softplus to replace the ReLU activation function,because the value of the ReLU function in the negative interval is 0,so that some neurons cannot be activated,and therefore,the corresponding weight parameters cannot be updated.

    1.2 LSTM network structure

    As an improved version of recurrent neural network(RNN)[19],LSTM has a very good effect on processing video,which has time-dimensional feature.It perfectly solves the problem of long-term dependence of RNN.The key of LSTM is the state of each cell,as shown in Fig.3.

    Among them,liis an element in the input sequence{l1,l2,l3,…,ln-1,ln},and the sequence length isn.LSTM,like RNN,needs to calculate the current hidden stateht,the hidden layer state can extract the feature of the sequence data,and then convert them to output.Usehtto represent the hidden layer state ofliat different times.The hidden layer state is related to the previous historical information.

    In the human behavior recognition task of video class,each category of video is converted into hundreds of frames.In this paper,the number of consecutive frames input each time is a sequence ofnvideo frames,and the output is the corresponding video category.

    Fig.3 LSTM neuron connection method

    Therefore,the last hidden layer statehnis selected as the high-level feature of the entire video frame.The specific calculation formula of time sequence of LSTM network is shown in Eq.(1).

    Among them,the bias value is represented byb,and the weight value is represented byWandU.

    1.3 R3D+LSTM network structure

    Ref.[8]used the CNN+LSTM method to design the network model to further improve the network classification effect,but with the increase in the number of network layers,gradient dispersion will occur,so this paper proposes the R3D+LSTM network.The network convergence architecture diagram is shown in Fig.4.

    Fig.4 Structure diagram of R3D+LSTM network

    Firstly,R3D network compresses and extracts time domain features.Global average pooling(GAP)network layer further compresses model parameters to avoid over fitting of network and speed up training speed,but it can not process time domain features well.Secondly,the depth of R3D+LSTM network is not enough,which leads to a small improvement in recognition rate.Thirdly,the maxpool layer will lose a lot of useful sequence information after downsampling.Therefore,in view of these three problems,the R3D network is modified as follows.

    (1)Since the GAPnetwork is affected by the size of the feature map,the network can not be further deepened,and larger features will lead to smaller receptive field of convolution layer.Therefore,on the basis of the R3D network,convolutional layer and maxpool layer are added to deepen the depth of the network,improve the generalization ability of the network,enlarge the receptive field of convolution layer,and extract features.

    (2)Rewrite all the sampling windows of the maxpool layer of the R3D network from(2×2×2)to(1×2×2)to maintain the features extracted by the shallow network and keep the time-domain sequence features intact.It avoids the loss of useful feature information when the pooling layer is down sampling.

    In the dimension of input data,the feature map is expanded into one dimension,and all information features are directly input into LSTM network for feature screening,which can retain important features.

    1.4 Overall network structure design

    R3D+LSTM network uses identity module,convolution module,BN,Dropout and LSTM algorithm.The network has 34 convolutional layers,of which the identity module has 26 convolutional layers and the convolutional module has 6 layers.The following details the network layer structure.

    Identity module I uses two 3D convolution layers to extract features,which are conv3d _2,conv3d_3,as shown in Fig.5.Each convolution layer contains 128 convolution cores with a size of 3×3×3.After that,BN layer and softplus layer are added after the convolution layer.The BN layer only normalizes the input data in batches,and the softplus function only performs nonlinear processing.Therefore,the size of the output feature graph is 16×128×128.The final output result is addition of the outputs of two convolution layers and the input of identity module I to obtain.None×16×128×128×128,which also reflects the meaning of R3D network residual module.

    Fig.5 Structure diagram of identity module I

    The convolution module I structure contains 3 convolution layers,which are conv3d_12,conv3d_13 and conv3d_14.The size of the conv3d_12 and conv3d_13 convolution kernels is the same as that of the identity module I,and the number of convolution core is twice that of identification module I,so more image features can be obtained.The difference between convolution module I and identity module I is that the input data has to be processed by conv3d_14 convolution operation.If adding by add,the premise is that the input feature map size and the number of channels are the same.Since the stride size of conv3d_12 is 2,the size of the output feature map becomes 1/2 of the original size,which is 8×64×64.At the same time,the stride size of conv3d_13 is 1,so the feature map size remains unchanged.While the conv3d_14 convolution kernel size is 1×1×1,and the stride size is 2,which reduces the amount of parameter calculation,as shown in Fig.6.

    Each convolution module is connected with the maxpool layer to remove the lower value of the activation function response in the local neighborhood,which can reduce the dimension.

    Because the GAPnetwork is affected by the size of the characteristic graph,the network can not be further deepened,so GAPlayer is removed and a layer of convolution layer and maxpool layer are added to deepen the network depth.Then,in order to further improve the network performance,LSTM network is introduced into R3D network,as shown in Fig.7.

    Fig.6 Structure diagram of convolution module I

    Fig.7 Converged network structure diagram

    2 Experiment and analysis

    2.1 Experimental environment

    The experimental environment of R3D+LSTM network is listed in Table 1.

    2.2 UCF-101 dataset

    The dataset used in this paper is UCF-101.This dataset contains 13 320 human behavior videos(each video is 5-10 s long),including 101 categories,as shown in Fig.8.

    Table 1 Experimental environment

    Fig.8 All categories of UCF101 dataset

    2.3 Experimental data preprocessing

    Since it is not advisable to input video directly into the network,it is necessary to convert the video into a sequence of picture frames,which can speed up the training of the network.First,13 320 videos in the UCF-101 dataset are converted,and then the naming of each converted image sequence is determined by the sequence in the video.After that,because the total number of images is too much,if all the images are input into the network at one time,the network calculation will be too large.Therefore,this paper uses the sequence with length of 16 as the input data,selects the sequence with the length ofR,and then randomly generatesLbetween(0,R-16),which is used as the starting frame,and then the ending frame is selected in(L,L+16).This not only prevents data from being missed,but also avoids repeating training of the same data.

    2.4 Analysis of experimental results

    In order to improve the training speed of the network,this paper uses an initial learning rate of 0.001.When each cycle is 24 000 times,the learning rate is reduced to 1/2 of the original,cycle 10 times,a total of 240 000 times.The hyper-parameters of the network are shown in Table 2.

    Table 2 SE-R3D network hyper-parameters

    There are 400 epochs in the network,and each epoch iterates600 times.At the 250th epoch,the convergence speed of the network begins to slow down.At the 300th epoch,the network has basically converged.At this time,the number of iterations is 180 000.Finally,R3D+LSTM network achieves 91%accuracy,as shown in Fig.9.

    The typical category accuracy rate of R3D+LSTM network on UCF-101 dataset is shown in Fig.10.The algorithm achieves more than 90% on Cleanandjerk and Cliffdiving,more than 80% on Skydiving and Throwdiscus,while the recognition rate in the category of Blowdryhair is low,60%.Therefore,it can be found that the accuracy of single action is usually higher than that of a complex action.

    The accuracy of R3D+LSTM network is compared with other networks on UCF-101 dataset,as shown in Table 3.

    Table 3 Comparison of accuracy

    Fig.9 R3D+LSTM training process

    Fig.10 Test accuracy curve

    It can be seen from Table 3 that the Two-Stream-I3D model has achieved a 98%recognition rate on the UCF-101 dataset.Although the accuracy of the network designed in this paper is not as high as Two-Stream-I3D.However,compared with the popular C3D and C3D+IDT networks in the past two years,R3D+LSTM has a greater improvement in the recognition rate,and at the same time,the recognition rate is 1%higher than that of the DMC-Net network.Secondly,the recognition rate of R3D+LSTM network is much better than that of the LRCN network,which shows that the combination of the three-dimensional residual network and the LSTM network is feasible in the field of behavior recognition.

    3 Conclusions

    Automatic recognition of behavior in video is a long-term goal of computer vision and artificial intelligence.In order to improve the network performance,this paper designs R3D+LSTM network.First,the R3D network is modified,the ReLU activation function with Softplus is replaced,and a convolutional layer and maxpool layer is added to increase the depth of the network.Then,the pooling window of all maxpool layers is changed to(1,2,2)to maintain the features extracted by the shallow network,and BN layer and Dropout layer are added to improve the convergence speed of the network and effectively restrain over fitting.Later,in order to extract the high-level temporal features,LSTM network is introduced.Finally,the R3D+LSTM network achieves 91%recognition rate on the UCF-101 dataset.

    Although the R3D+LSTM network designed in this paper has achieved good performance in recognition rate,compared with some perfect algorithms in this field,there is still room for improvement.The future work and prospects are as follows.

    (1)Optimization of the model.The designed network model can be further optimized to obtain a higher recognition rate,and more datasets will be used to test the performance of the model.

    (2)The datasets used are preprocessed,but in actual scene,the behavior will become more complex and the resolution of the video will be reduced.Therefore,further research needs to be done to identify the human behavior categories accurately and efficiently.

    亚洲七黄色美女视频| 亚洲成a人片在线一区二区| svipshipincom国产片| 亚洲av片天天在线观看| 久久人人97超碰香蕉20202| 88av欧美| 久久久久九九精品影院| 9色porny在线观看| 欧美国产精品va在线观看不卡| 黄色 视频免费看| 久热这里只有精品99| 午夜福利在线免费观看网站| av片东京热男人的天堂| 看片在线看免费视频| 丰满饥渴人妻一区二区三| 午夜a级毛片| а√天堂www在线а√下载| 亚洲欧美激情综合另类| 国产亚洲精品一区二区www| 999久久久国产精品视频| 国产成年人精品一区二区 | 麻豆一二三区av精品| 亚洲中文日韩欧美视频| 色综合婷婷激情| 久久久久久久久中文| 超碰成人久久| 黄色成人免费大全| 夜夜看夜夜爽夜夜摸 | 日本黄色日本黄色录像| 久久精品国产亚洲av高清一级| 国产精品 国内视频| 久久性视频一级片| 超色免费av| 在线观看免费日韩欧美大片| 午夜精品在线福利| 欧美日韩福利视频一区二区| 久久久国产一区二区| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 亚洲久久久国产精品| a在线观看视频网站| www.熟女人妻精品国产| 久久久久久免费高清国产稀缺| 国产免费av片在线观看野外av| 69av精品久久久久久| 老司机午夜福利在线观看视频| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 亚洲狠狠婷婷综合久久图片| 久久久久久亚洲精品国产蜜桃av| 韩国av一区二区三区四区| 91字幕亚洲| 国产亚洲欧美在线一区二区| 亚洲成a人片在线一区二区| 欧美乱码精品一区二区三区| 国产精品久久久av美女十八| 国产亚洲精品久久久久5区| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 久久婷婷成人综合色麻豆| 巨乳人妻的诱惑在线观看| 国产高清激情床上av| 久久精品国产亚洲av香蕉五月| 19禁男女啪啪无遮挡网站| 免费女性裸体啪啪无遮挡网站| 这个男人来自地球电影免费观看| 在线观看日韩欧美| www国产在线视频色| 丰满迷人的少妇在线观看| 黑人操中国人逼视频| 亚洲五月色婷婷综合| 久久人人97超碰香蕉20202| 一a级毛片在线观看| 十八禁网站免费在线| 丝袜美腿诱惑在线| 大香蕉久久成人网| 免费在线观看黄色视频的| 女人精品久久久久毛片| 国产日韩一区二区三区精品不卡| 亚洲国产欧美网| 亚洲三区欧美一区| 色在线成人网| 欧美黄色片欧美黄色片| 久久久久久久午夜电影 | 淫妇啪啪啪对白视频| 亚洲av片天天在线观看| 亚洲av五月六月丁香网| 久热爱精品视频在线9| 日韩中文字幕欧美一区二区| 神马国产精品三级电影在线观看 | 欧美激情高清一区二区三区| 国产成人影院久久av| 欧美日韩瑟瑟在线播放| 女性被躁到高潮视频| 国产一区二区三区视频了| 亚洲国产精品sss在线观看 | 欧美色视频一区免费| 久久草成人影院| 日韩大尺度精品在线看网址 | 精品一区二区三区视频在线观看免费 | 欧美日韩瑟瑟在线播放| 精品电影一区二区在线| 久久精品aⅴ一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 中文字幕另类日韩欧美亚洲嫩草| 两性夫妻黄色片| 中出人妻视频一区二区| 伦理电影免费视频| 在线观看舔阴道视频| 亚洲人成网站在线播放欧美日韩| 精品久久久久久,| 欧美日本中文国产一区发布| cao死你这个sao货| 午夜老司机福利片| 男女高潮啪啪啪动态图| 亚洲专区字幕在线| 老熟妇仑乱视频hdxx| 在线永久观看黄色视频| 少妇裸体淫交视频免费看高清 | 日本wwww免费看| 国产精品一区二区在线不卡| 老司机深夜福利视频在线观看| 在线观看www视频免费| 久久国产精品男人的天堂亚洲| 黄色视频不卡| 这个男人来自地球电影免费观看| 国产单亲对白刺激| 国产1区2区3区精品| 久久国产精品影院| 国产野战对白在线观看| 中文字幕人妻丝袜一区二区| 国产成人精品无人区| 久久这里只有精品19| 我的亚洲天堂| 欧美日韩精品网址| 国产三级在线视频| 老汉色av国产亚洲站长工具| 免费搜索国产男女视频| 免费在线观看亚洲国产| 看免费av毛片| 动漫黄色视频在线观看| 日本 av在线| 日本免费a在线| 日韩 亚洲 欧美在线| 国产综合懂色| 欧美激情久久久久久爽电影| 91午夜精品亚洲一区二区三区 | 噜噜噜噜噜久久久久久91| 亚洲欧美清纯卡通| 日本三级黄在线观看| 91狼人影院| 精品人妻偷拍中文字幕| 国产91精品成人一区二区三区| 搡老妇女老女人老熟妇| 亚洲人成伊人成综合网2020| 精品一区二区三区av网在线观看| 激情在线观看视频在线高清| 国产男靠女视频免费网站| 久久久久久大精品| 青草久久国产| 亚洲不卡免费看| 熟妇人妻久久中文字幕3abv| 日本免费一区二区三区高清不卡| 波多野结衣高清作品| 最近最新免费中文字幕在线| 久久草成人影院| 在线观看舔阴道视频| 色哟哟哟哟哟哟| 一进一出好大好爽视频| 国产精品久久久久久人妻精品电影| 欧美xxxx性猛交bbbb| 久久久久久久亚洲中文字幕 | 国产精品久久视频播放| 亚洲精品456在线播放app | 亚洲经典国产精华液单 | 国产精品久久久久久久久免 | 亚洲精品成人久久久久久| 亚洲狠狠婷婷综合久久图片| 精品熟女少妇八av免费久了| 久久人妻av系列| 婷婷精品国产亚洲av| 亚洲精品在线观看二区| 亚洲av美国av| 一个人观看的视频www高清免费观看| 夜夜夜夜夜久久久久| 国产激情偷乱视频一区二区| 一区二区三区激情视频| 婷婷六月久久综合丁香| 69人妻影院| 男人狂女人下面高潮的视频| netflix在线观看网站| 在线观看av片永久免费下载| 免费高清视频大片| 国产精品嫩草影院av在线观看 | 国产69精品久久久久777片| 免费av观看视频| 91字幕亚洲| 国产三级黄色录像| 成人av在线播放网站| 啦啦啦韩国在线观看视频| 成年女人看的毛片在线观看| 国产私拍福利视频在线观看| 免费高清视频大片| 毛片一级片免费看久久久久 | 好男人在线观看高清免费视频| 十八禁国产超污无遮挡网站| 欧美最新免费一区二区三区 | 亚洲最大成人手机在线| 观看免费一级毛片| 女同久久另类99精品国产91| 男女做爰动态图高潮gif福利片| 亚洲aⅴ乱码一区二区在线播放| 成年女人毛片免费观看观看9| 亚洲,欧美,日韩| 精品久久久久久,| 一级毛片久久久久久久久女| 国产69精品久久久久777片| 搡老熟女国产l中国老女人| 精品人妻1区二区| 国产精品自产拍在线观看55亚洲| 三级毛片av免费| 18+在线观看网站| 在线观看av片永久免费下载| 免费高清视频大片| 最近在线观看免费完整版| 久久久精品大字幕| av在线蜜桃| 色哟哟·www| 成人av在线播放网站| 99久久精品一区二区三区| 国产爱豆传媒在线观看| 国产成人福利小说| 三级毛片av免费| 亚洲成av人片在线播放无| av在线观看视频网站免费| 一级毛片久久久久久久久女| 麻豆av噜噜一区二区三区| 脱女人内裤的视频| 亚洲av成人不卡在线观看播放网| 五月玫瑰六月丁香| 男人的好看免费观看在线视频| 淫妇啪啪啪对白视频| 久久热精品热| 在线观看美女被高潮喷水网站 | 啦啦啦韩国在线观看视频| 午夜福利高清视频| 天堂√8在线中文| 简卡轻食公司| 亚洲中文日韩欧美视频| av中文乱码字幕在线| 深爱激情五月婷婷| 又爽又黄无遮挡网站| 国产精品乱码一区二三区的特点| 亚洲精品成人久久久久久| 91久久精品国产一区二区成人| 别揉我奶头 嗯啊视频| 欧美区成人在线视频| 色吧在线观看| 麻豆国产av国片精品| 亚洲av中文字字幕乱码综合| 日韩精品青青久久久久久| 最近视频中文字幕2019在线8| 精品无人区乱码1区二区| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 欧美在线一区亚洲| 久久伊人香网站| 在线观看66精品国产| 我的女老师完整版在线观看| 麻豆国产av国片精品| 欧美高清成人免费视频www| 日韩欧美国产一区二区入口| 欧美日韩中文字幕国产精品一区二区三区| 1024手机看黄色片| 9191精品国产免费久久| 搡老岳熟女国产| 天天躁日日操中文字幕| 日本在线视频免费播放| 网址你懂的国产日韩在线| 欧美bdsm另类| 岛国在线免费视频观看| 日韩欧美在线二视频| 夜夜看夜夜爽夜夜摸| 成年女人永久免费观看视频| 久久精品国产99精品国产亚洲性色| 伦理电影大哥的女人| 久久久久久久久大av| 久久久国产成人免费| 成人精品一区二区免费| 国产真实伦视频高清在线观看 | 中国美女看黄片| 高潮久久久久久久久久久不卡| 精品人妻偷拍中文字幕| 少妇裸体淫交视频免费看高清| 校园春色视频在线观看| 女同久久另类99精品国产91| АⅤ资源中文在线天堂| 亚洲成a人片在线一区二区| 欧美激情久久久久久爽电影| 久久精品国产清高在天天线| 成年人黄色毛片网站| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 一区二区三区免费毛片| 免费在线观看日本一区| 老熟妇仑乱视频hdxx| 国产精品女同一区二区软件 | 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看| 久久久久久国产a免费观看| 成年免费大片在线观看| 欧美激情国产日韩精品一区| 一区福利在线观看| 午夜精品在线福利| 91狼人影院| 亚洲av.av天堂| 精品无人区乱码1区二区| 99久久九九国产精品国产免费| 丰满人妻一区二区三区视频av| 成人性生交大片免费视频hd| 欧美绝顶高潮抽搐喷水| 国产av在哪里看| 最近最新免费中文字幕在线| 国产欧美日韩精品一区二区| 丁香欧美五月| a在线观看视频网站| 看黄色毛片网站| 日本 av在线| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区不卡视频| www.色视频.com| 国产成人aa在线观看| 成人国产综合亚洲| 日本精品一区二区三区蜜桃| 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 国产精品一区二区免费欧美| 动漫黄色视频在线观看| 听说在线观看完整版免费高清| 日韩欧美在线二视频| 国产高潮美女av| 国产精品女同一区二区软件 | 成人一区二区视频在线观看| 色在线成人网| 欧美xxxx黑人xx丫x性爽| 波多野结衣巨乳人妻| 精品国产三级普通话版| 久99久视频精品免费| 久久久久国产精品人妻aⅴ院| 免费电影在线观看免费观看| 一级作爱视频免费观看| 老女人水多毛片| 女同久久另类99精品国产91| 国产高清视频在线观看网站| 97热精品久久久久久| 亚洲中文日韩欧美视频| 婷婷六月久久综合丁香| bbb黄色大片| 亚洲经典国产精华液单 | 国产av在哪里看| 在线观看免费视频日本深夜| 综合色av麻豆| 精品人妻一区二区三区麻豆 | 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 国产精品av视频在线免费观看| 国产淫片久久久久久久久 | 色综合亚洲欧美另类图片| 久久午夜亚洲精品久久| 久久久久国产精品人妻aⅴ院| 国产黄a三级三级三级人| 99热这里只有精品一区| 中文字幕av成人在线电影| 中国美女看黄片| 欧美日韩国产亚洲二区| 亚洲自偷自拍三级| 午夜福利成人在线免费观看| 亚洲成人久久性| 亚洲av熟女| 国产伦精品一区二区三区四那| 亚洲美女黄片视频| 男插女下体视频免费在线播放| 国产伦一二天堂av在线观看| 一二三四社区在线视频社区8| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 欧美激情在线99| 在线国产一区二区在线| 国产精品,欧美在线| 99热6这里只有精品| 精品一区二区三区视频在线观看免费| 免费观看人在逋| 脱女人内裤的视频| 久久99热这里只有精品18| 亚洲成a人片在线一区二区| 国产极品精品免费视频能看的| 精品免费久久久久久久清纯| a级一级毛片免费在线观看| 免费av毛片视频| 欧美日韩综合久久久久久 | 国产一区二区亚洲精品在线观看| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| 噜噜噜噜噜久久久久久91| 久久人妻av系列| 午夜福利欧美成人| 最近在线观看免费完整版| 丁香六月欧美| 国内揄拍国产精品人妻在线| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 夜夜爽天天搞| 欧美激情国产日韩精品一区| 天堂√8在线中文| 国产精品永久免费网站| 日韩欧美精品v在线| 简卡轻食公司| 亚洲中文字幕日韩| а√天堂www在线а√下载| 小蜜桃在线观看免费完整版高清| www日本黄色视频网| 久久久久性生活片| 亚洲成人久久性| 最后的刺客免费高清国语| 欧美日韩瑟瑟在线播放| 亚洲av电影在线进入| 中文字幕久久专区| 久久这里只有精品中国| 欧美xxxx性猛交bbbb| 国产极品精品免费视频能看的| 毛片一级片免费看久久久久 | 看免费av毛片| 国产精品一及| 蜜桃久久精品国产亚洲av| 亚洲乱码一区二区免费版| 熟女人妻精品中文字幕| 一区二区三区激情视频| 久久久国产成人精品二区| 88av欧美| 老司机福利观看| 国产免费一级a男人的天堂| 欧美xxxx黑人xx丫x性爽| 国产精品乱码一区二三区的特点| 琪琪午夜伦伦电影理论片6080| av在线老鸭窝| 国产主播在线观看一区二区| 成年免费大片在线观看| 欧美一区二区精品小视频在线| 日韩高清综合在线| 国产黄片美女视频| 嫩草影院精品99| 欧美+日韩+精品| 天天躁日日操中文字幕| 我的老师免费观看完整版| 在线看三级毛片| 久久精品久久久久久噜噜老黄 | av黄色大香蕉| 欧美一区二区国产精品久久精品| 在线十欧美十亚洲十日本专区| 亚洲精品久久国产高清桃花| 两个人的视频大全免费| 国产亚洲欧美98| 久久精品国产自在天天线| 一本精品99久久精品77| 国产亚洲欧美在线一区二区| 91在线观看av| or卡值多少钱| 国产精品人妻久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 麻豆成人午夜福利视频| 亚洲国产高清在线一区二区三| 亚洲av熟女| 欧美精品啪啪一区二区三区| 超碰av人人做人人爽久久| 麻豆一二三区av精品| 有码 亚洲区| 日日夜夜操网爽| 亚洲av成人av| 国产成人啪精品午夜网站| 3wmmmm亚洲av在线观看| 免费看日本二区| 亚洲国产精品sss在线观看| 国产精品伦人一区二区| 日本免费一区二区三区高清不卡| 亚洲欧美精品综合久久99| 丰满人妻一区二区三区视频av| 看免费av毛片| 狠狠狠狠99中文字幕| 日本黄色视频三级网站网址| 两人在一起打扑克的视频| 最新中文字幕久久久久| 精品国内亚洲2022精品成人| 一夜夜www| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| 亚洲片人在线观看| 国产欧美日韩精品一区二区| 亚洲欧美日韩卡通动漫| 麻豆久久精品国产亚洲av| 无人区码免费观看不卡| 国产三级中文精品| 三级毛片av免费| 日韩免费av在线播放| 高清毛片免费观看视频网站| 欧美区成人在线视频| 亚洲最大成人手机在线| 欧美日韩黄片免| 欧美色视频一区免费| 国产一区二区三区视频了| 欧美色视频一区免费| 国内少妇人妻偷人精品xxx网站| 久久久色成人| 亚洲国产高清在线一区二区三| 嫩草影院入口| 国产老妇女一区| 18禁裸乳无遮挡免费网站照片| 欧美激情国产日韩精品一区| 亚洲av一区综合| 国产伦一二天堂av在线观看| 午夜亚洲福利在线播放| netflix在线观看网站| 长腿黑丝高跟| 十八禁国产超污无遮挡网站| 91麻豆精品激情在线观看国产| 国产大屁股一区二区在线视频| 精品一区二区免费观看| 99久国产av精品| 午夜福利欧美成人| 少妇人妻精品综合一区二区 | 精品不卡国产一区二区三区| 国模一区二区三区四区视频| 一级黄色大片毛片| 91久久精品国产一区二区成人| 国产黄片美女视频| 欧美成人一区二区免费高清观看| 日本成人三级电影网站| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 欧美黑人巨大hd| 九九在线视频观看精品| 18禁裸乳无遮挡免费网站照片| 精品国产亚洲在线| 日韩有码中文字幕| 国产三级中文精品| 国产视频内射| 亚洲成人精品中文字幕电影| 婷婷丁香在线五月| 黄色女人牲交| 国产综合懂色| 少妇的逼好多水| a级一级毛片免费在线观看| 90打野战视频偷拍视频| 成人永久免费在线观看视频| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 亚洲欧美日韩高清专用| 三级国产精品欧美在线观看| 精品人妻熟女av久视频| 99国产极品粉嫩在线观看| 少妇被粗大猛烈的视频| 中文字幕免费在线视频6| 免费电影在线观看免费观看| 中文字幕久久专区| 90打野战视频偷拍视频| 99国产精品一区二区三区| 丝袜美腿在线中文| 欧美不卡视频在线免费观看| 久久久久国内视频| 精品国产亚洲在线| 三级毛片av免费| 搡老岳熟女国产| 久久久久精品国产欧美久久久| 亚洲国产欧洲综合997久久,| 色综合婷婷激情| 性色av乱码一区二区三区2| 国产精品国产高清国产av| 午夜免费激情av| 中文字幕av成人在线电影| 成人鲁丝片一二三区免费| 18禁黄网站禁片免费观看直播| 尤物成人国产欧美一区二区三区| АⅤ资源中文在线天堂| 国产亚洲精品综合一区在线观看| 91久久精品国产一区二区成人| 欧美日韩综合久久久久久 | 免费观看人在逋| 亚洲经典国产精华液单 | 成人av一区二区三区在线看| 很黄的视频免费| 日韩中字成人| 精品人妻一区二区三区麻豆 | 国产成人a区在线观看| 国产欧美日韩精品亚洲av| 十八禁国产超污无遮挡网站| 久久久成人免费电影| 精品日产1卡2卡| av在线观看视频网站免费| 国产美女午夜福利| 午夜福利高清视频| 午夜激情欧美在线| av国产免费在线观看| 国产 一区 欧美 日韩| 欧美一区二区国产精品久久精品| 欧美激情国产日韩精品一区| 亚洲精华国产精华精| 色哟哟哟哟哟哟| 两人在一起打扑克的视频| 亚洲美女视频黄频| 脱女人内裤的视频| 制服丝袜大香蕉在线| 麻豆成人av在线观看|