• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Framework for Automated Pop-song Melody Generation with Piano Accompaniment Arrangement

    2019-10-09 01:51:38WANGZiyuXIAGus

    WANG Ziyu, XIA Gus

    (New York University, Shanghai 200122, China)

    Abstract: We contribute a pop-song automation framework for lead melody generation and accompaniment arrangement. The framework reflects the major procedures of human music composition, generating both lead melody and piano accompaniment by a unified strategy. Specifically, we take chord progression as an input and propose three models to generate a structured melody with piano accompaniment textures. First, the harmony alternation model transforms a raw input chord progression to an altered one to better fit the specified music style. Second, the melody generation model generates the lead melody and other voices (melody lines) of the accompaniment using seasonal Autoregressive Moving Average(ARMA) processes. Third, the melody integration model integrates melody lines (voices) together as the final piano accompaniment. We evaluate the proposed framework using subjective listening tests. Experimental results show that the generated melodies are rated significantly higher than the ones generated by bi-directional LSTM, and our accompaniment arrangement result is comparable with a state-of-the-art commercial software, Band in a Box.

    Keywords: melody generation; automated composition; automated accompaniment arrangement

    In recent years, great progress has been made in music automation with the development of machine learning. Various generative models have been able to generate interesting music segments. See Ref.[1-3] for melody generation and Ref.[4] for accompaniment arrangement just to name a few. However, most models merely focus on specific modules of music generation and rarely consider how to connect or unify the modules in order to generate a complete piece of music. To be specific, we see three severe problems. First, melody generation and polyphonic accompaniment arrangement are mostly treated two separate tasks. Consequently, melody generation models cannot be applied to generate voices in the polyphonic accompaniment directly as composers usually do. Second, end-to-end sequence-generation models lack the representation and design of phrasing structure, resulting in “noodling around” music. Last but not least, a given chord progression is regarded as a rigid input of music generation systems, instead of a soft constraint that is flexible to be altered by composers to interact with different music styles.

    To solve the above three problems, we contribute a pop-song automation framework for lead melody generation and accompaniment arrangement (as shown in Fig.1(See page 522)). The framework follows the major procedures of human music composition and generates melody and accompaniment in a unified strategy. A popular song usually consists of three parts, namely a chord progression, a lead melody, and an accompaniment (represented by the three corresponding dotted rectangular areas). The framework uses three models to execute the generation process, namely harmony alternation model, melody generation model and melody integration model (represented by corresponding colored arrows).

    We assume a minimum input of a raw (original) chord progression for the whole framework, which can be either manually defined or automatically generated by using harmonization algorithms. In the first step, the harmony alternation model transforms the raw, original progression into a concrete, decorated one to best fit a certain music style. The underlying idea is that any initial progression should only be a “soft” restriction of a piece and adaptable to different music context. For example, a major triad could be modified as an “add6” chord for Chinese music or as major 11thchord for jazz music. The second step is the most important one, in which the melody generation model considers the accompaniment of a set of melodies (monophonic melody lines, e.g. secondary melody, arpeggios etc.), performs a hierarchical contour decomposition to each melody, and generates melodies in parallel using seasonal Autoregressive Moving Average(ARMA) processes[5]. The core feature of this step is that the model can create lead melody in exactly the same way, and hence unifies melody generation and accompaniment arrangement problems. Finally, the melody integration model combines melodies into parts (e.g. left-hand part and right-hand part) and adds column chords to embellish the accompaniment.

    The dotted arrows are to be implementedFig.1 A system diagram of the melody generation and accompaniment arrangement framework

    1 Related work

    We review three realms of related work, namely chord progression generation, melody generation and accompaniment arrangement.

    A chord can be represented as nominal[6], continuous[7], or structural[8]variables. A nominal representation builds a straightforward one-to-one mapping between pitches and chord symbols. Such simple representation has been used in various tasks, such as chord extraction[6,9], melody harmonization[10-11], and automated composition[12]. To reveal chord distance, chord embedding representation (say, in a continuous psychoacoustic space) has been proposed to address jazz harmonization[7]. The work by Cambouropoulos et al.[8,13]further used a hierarchical chord structure to reveal chord similarity from an analytical perspective. Based on the idea of Ref.[8], our model performs structural chord alternation on original progressions in order to better match different music styles. To generate a chord progression, the common approaches are directed probabilistic graphical models[10-11]and tree structured models[14]. The target of these models is to find the optimal chord progression that is arranged in a most logical way and agrees with the input melody most. In the context of automatic composition and accompaniment arrangement, this is the first study to consider the alternation of chords.

    Current melody generation methods can be categorized into two types: Traditional Markovian approaches[3,12]and modern deep generative models[2,3,15-16]. According to Ref.[17], both approaches are not able to generate truly creative music. The former could interact with human inputs, but requires too much constraint and can hardly capture long-term dependencies. The latter, on the other hand, have long-term memories but still largely depend on training data and cannot yet interact with user input. In our framework, we use weaker constraint for melody generation, providing an insight on the connection of Markovian and deep learning approaches in the future.

    For melody generation and accompaniment arrangement, the framework of XiaoIce band[4]is very relevant to our work. It used two end-to-end models for lead melody generation and accompaniment arrangement respectively. The first model used a melody-rhythm-cross-generation method to improve its rhythmic structure, while the second model use multi-task joint generation network to ensure the harmony among different tracks. Compared to XiaoIce band, we used a unified strategy to generate both lead melody and voices in the accompaniment. Moreover, we are more focused on revealing the music composition procedures in automated generation including chord progression re-arrangement and music structural design.

    2 Methodology

    In this section, we present the design of our framework in detail. As shown in Fig.1, given an original chord progression, the entire generation process contains three steps, each associated with a tailored model.

    2.1 Harmony alternation model

    Fig.2 An example of the proposed chord representation

    In most music automation systems, chord progressions are taken as rigid inputs without any changes. However, according to music theory, a chord progression is a guideline rather than a fixed solution. This is analogous to a recommended GPS route, which has to be adjusted based on various traffic situations. For example, a progression of [C, Am, F, G] can be altered into [Cmaj7, Am7, Fmaj7, G7] for jazz music. For pop songs, [Cadd2, Am7, Fmaj7(add9), Gsus4] is more likely to appear.

    2.1.1 Chord representation

    A chord may contain many notes, and it is generally considered that only a subset (usually the first three/four notes) of the chord decides its basic type and function, whereas the other notes make the chord more complicated and characterized. Inspired by this observation, we represent a chord by four parts: root, chord type, decorations and bass.

    Fig.2 shows an example of the four-part chord representation. Root is the lowest note in a chord, which is denoted by one of the 12 pitch classes. Chord type is a simplified version when a chord is reduced to triads or seventh chords (which decides the basic types and functions). Decorations consists of two sub-parts: add and omit. The former records whether 9th, 11th, and 13thare in the chord and the interval to the default degrees (major 9th, perfect 11th, and major 13threspectively) in semitones. The latter records whether the 3rdand 5thdegree note is omitted in a chord.

    2.1.2 Chord decoration operations

    We currently define two chord-decoration operations: add() and omit(). The two operations add or reduce the corresponding note indicated in the brackets. For example, when add((11th,0)) is applied to a major triad, the chord becomes an add4 chord, whereas if add((11th,1)) is applied to a major seventh chord, the chord becomes a 11th(#11, omit9) chord. In the same sense, when omit(1st) operation is applied to Em7, it becomes a G; if omit(3rd) is applied to Em7, it becomes Em7(omit3); and if omit9 is applied to it, nothing happens. These operations keep track of how much the chord has changed. For example, a modification of the root note is considered a large change, while 11thand 13thof a chord have smaller impact on the chord function.

    2.1.3 Decorate chord progression

    Based on the chord representation and the definition of decoration operation, an altered chord progression can be obtained by the original progression with a sequence of decoration operations. To model their relationship, a Hidden Markov Model(HMM) is trained based on 890 songs in McGill Billboard dataset[18].

    2.2 Melody generation model

    Melody generation model is the core part of the framework. By melody, we do not only mean the lead melody, but rather, in a general sense, every discernable monophonic component in the composition. To be specific, we decompose a pop song into four types of melody lines (or melody), namely lead melody, simplified melody, secondary melody and harmonic melody. Lead melody is the human voice. Simplified melody supports the lead melody, which is a variation of lead melody with less notes and less complicated rhythmic pattern. Secondary melody serves as a parallel theme, an independent melody. Harmonic melody reflects the chord progression, which is usually specific patterns of broken chords, including arpeggio, walking bass, Alberti bass, etc. Fig.3 shows an example, in which the upper part is the original composition and the lower part is the decomposed melodies. In this section, we discuss how to use a unified model to generate the four types of melodies.

    Fig.3 A comparison between the original accompaniment and its decomposed melodies

    2.2.1 Melody representation

    m=c+ε,

    (1)

    2.2.2 Contour-inspiration model

    (2)

    whereiis the index of element within a layered signal, andkis the index of layered signals.s(0)is a deterministic trend, ands(k),k=1,2,…,pare stochastic processes. These stochastic processes describe the shape of the melody contour in various periods. Particularly, the layered signals(k)has a sample rate 2kand captures only the contour information not obtained in the previous layers with lower sample rates. In this way, a melody contour is decomposed into different seasonal components.

    Fig.4 Demonstration of melody contour under different sample rate(left) and layered signals(right)(The x-axes indicate 64 timetamps in a four-bar melody; the y-axes indicate the relative pitch contour(in semitone))

    2.2.3 Error-expertise model

    The contour-inspiration modelcgenerates a continuous melody contour, while error expertise modelεperforms quantization based on domain knowledge. In theory,εis a correlated multivariate Gaussian distribution (weighted by chord context). In practice, the distribution is weighted by chord context and modified by rules in the following to ways.

    First, the model quantizes the contour (floating points) into MIDI pitches (integers) under the context of chord progression. Specifically, an exact MIDI pitch is selected under a Gaussian distribution (centered at the contour float) weighted byp(pitch|chord) learned from data.

    Second, the model adjusts the rhythm of the melody contour. Rather than assigning a rhythmic pattern, we derive rhythms from the melody contour. Generally, when two adjacent contour values are closer than a threshold, we merge the two notes, assigning a sustain state to the latter one.

    From Section 2.2.4 to Section 2.2.7, we discuss how to apply melody generation model (2) to the four types of melodies introduced in the beginning of Section 2.2.

    2.2.4 Lead melody generation

    In contour-inspiration model (2),s(0)is a constant ands(1),s(2),…,s(6)are modeled by seasonal ARMA(1,1)×(1,1)sprocesses[5]with different parameters. The hyperparameters (i.e., the order of the model) are set based on the observation of the AutoCorrelation Function(ACF) and Partial AutoCorrelation Function(PACF) of the layered signals.

    In error-expertise model, melody contourcis quantized to discrete MIDI pitches under a weighted Gaussian distribution (see Section 2.2.3). Before that, we use rules to make sure adjacent notes with similar contour values are quantized to the same pitch. Particularly, we adopt a thresholdη; if |ci-ci-1|<η,mi=sustain; otherwise, we select the note according to the distribution given above.

    2.2.5 Secondary melody generation

    The model is exactly the same as lead melody generation. In modeling seasonal ARMA process, we set the parameters within a low range since secondary melody is usually less complicated than the lead melody.

    2.2.6 Harmonic melody generation

    In contour-inspiration model, in order to represent the accompaniment texture, we learn a deterministic trends(0)from pattern samples. We assumes(0)=bass+pattern, in whichbassis the bass of the ongoing chord andpatterna particular way to arrange notes into sequence.bassis extracted from the input chord progression, andpatternis estimated by the sample means. As for the other layered signals, they are modeled as white noises to improve randomness and enhance the sense of improvisation. Error-expertise model is the same as used in Section 2.2.4.

    2.2.7 Simplified melody generation

    In simplified melody generation, contour-inspiration model captures the shape of the melody to be simplified and the error-expertise model executes the simplification. Specifically, in contour-inspiration model, the deterministic trends(0)is identical to the lead melody and others(k)are set to be zero. In error-expertise model, it makes delete-note and alter-onset decisions on eachciaccording to various properties, such as passing note, trill, downbeat, etc. We grade each note their importance and delete the relatively unimportant notes. Also, some note onsets are moved to the downbeat if the note supposed to be at that beat position is deleted. In short, decorative notes as well as outliers are likely to be deleted, whereas critical notes that shape the contour of the melody are maintained.

    2.3 Melody integration model

    Melody integration model acts as the final step in our system. For now, this model is only in its preliminary phase, which consists of a set of rule-based algorithms.

    Firstly, it combines secondary melody, simplified melody and harmonic melody together as the accompaniment. In our current settings, harmonic melody serves as the left-hand part. As for the right-hand part, a rule-based method is designed to combine secondary melody and simplified melody. We use function to analyze the smoothness of lead melody per bar. If the smoothness exceeds a threshold, secondary melody is selected. Otherwise, simplified melody is selected to support the lead melody. Secondly, column chords are randomly added to the accompaniment based on a manually defined distribution. Notes with higher pitch or a relatively strong metrical strength are likely to be appended with column chord.

    3 Experimental results

    We evaluate the performance of melody generation and the whole system through listening experiments. We created a survey to evaluate melody generation model and the accompaniment arrangement system. We compared the former with a bi-directional Long Short-Term Memory(LSTM) model[1](the representative deep generative model for music generation). We compared the latter with Band in a Box(BIAB) (short for BIAB, the state-of-the-art commercial software for accompaniment generation). We showed the paired music demos in a random order to each experimenter without directly revealing the condition. Each demo is about 30 seconds long. After each demo, they are asked to rate the overall musicality, interactivity (between melody and progression/accompaniment and melody), structural organization. For all three criteria, we used a 5-point continuous scale from 1 (very low) to 5 (very high).

    We collected 47 and 41 valid samples for melody comparison and accompaniment comparison. To validate the significance of differences, we conducted pairedt-test. Fig.5(See page 528) shows that our model is significantly better than LSTM model (withp-values<0.005) for melody generation and marginally better than BIAB (p-values>0.5 ) for accompaniment arrangement.

    Fig.5 A comparison between our framework with LSTM for melody generation(left) and BIAB for arrangement(right)

    We provide demos for each step in our system as well as the overall generation. Demos are available at demo-album: https:∥soundcloud.com/wang-michael-452158298/sets/auto-compose.

    4 Conclusion and future work

    We have created an automated composition framework. Firstly, we improve the existing chord model to enhance the inner-relationship among chords. Secondly, we decompose the whole composition into a set of melodies and regard each melody generation as a two-step procedure by dividing melody model into two separate sub-models. Last but not least, we present a method to integrate melodies into one whole composition.

    An ideal framework should be able to understand both concrete and abstract music content and interact with people at different levels of abstraction. We see our framework a first attempt towards this goal. In future, we plan to 1) conduct more analysis on the connection between melody contour signals and error-expertise model, 2) explore more effective representation of music structure, and 3) design better methods for melody integration.

    中文字幕高清在线视频| 亚洲欧美一区二区三区久久| av电影中文网址| 一级黄片播放器| 亚洲欧美色中文字幕在线| 久久久久精品人妻al黑| 欧美日韩一级在线毛片| 国产高清videossex| 一本久久精品| 国产一区有黄有色的免费视频| 色94色欧美一区二区| 制服诱惑二区| 国产av国产精品国产| 一级黄色大片毛片| 一区福利在线观看| 日韩一本色道免费dvd| 啦啦啦在线观看免费高清www| 午夜91福利影院| 狠狠精品人妻久久久久久综合| 人人妻人人爽人人添夜夜欢视频| 十八禁人妻一区二区| av一本久久久久| 国产老妇伦熟女老妇高清| 精品亚洲乱码少妇综合久久| 一二三四社区在线视频社区8| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 蜜桃国产av成人99| 欧美激情极品国产一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费视频播放在线视频| 99久久人妻综合| 高清视频免费观看一区二区| 两性夫妻黄色片| 国产精品一区二区在线不卡| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 最新的欧美精品一区二区| 国产成人啪精品午夜网站| 老司机影院成人| 国产日韩欧美在线精品| 日韩人妻精品一区2区三区| 欧美日韩亚洲国产一区二区在线观看 | 如日韩欧美国产精品一区二区三区| 国产精品一区二区在线不卡| 每晚都被弄得嗷嗷叫到高潮| 90打野战视频偷拍视频| 日本wwww免费看| 91精品国产国语对白视频| 久久久久久久大尺度免费视频| 亚洲成av片中文字幕在线观看| 十八禁人妻一区二区| 搡老乐熟女国产| 国产视频一区二区在线看| av视频免费观看在线观看| 满18在线观看网站| www.熟女人妻精品国产| 亚洲欧美一区二区三区国产| 午夜福利,免费看| 日韩一本色道免费dvd| 久久久精品94久久精品| 欧美亚洲日本最大视频资源| 成年人免费黄色播放视频| 久久性视频一级片| av在线播放精品| 国产成人欧美| 国产男女超爽视频在线观看| 啦啦啦在线观看免费高清www| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 亚洲五月婷婷丁香| 欧美久久黑人一区二区| 丰满饥渴人妻一区二区三| 一本一本久久a久久精品综合妖精| 最新的欧美精品一区二区| 青春草亚洲视频在线观看| 日韩一区二区三区影片| www.av在线官网国产| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看 | 国产av精品麻豆| 两人在一起打扑克的视频| 好男人视频免费观看在线| 黑人巨大精品欧美一区二区蜜桃| 最近最新中文字幕大全免费视频 | 精品人妻熟女毛片av久久网站| 欧美成狂野欧美在线观看| 黄色怎么调成土黄色| 中文字幕亚洲精品专区| 国产伦人伦偷精品视频| 亚洲欧洲精品一区二区精品久久久| 亚洲专区国产一区二区| www.999成人在线观看| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 国产爽快片一区二区三区| 久久精品人人爽人人爽视色| 大片电影免费在线观看免费| 久久精品久久久久久久性| 91精品三级在线观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲伊人色综图| 欧美激情高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 丰满饥渴人妻一区二区三| 看免费成人av毛片| 精品欧美一区二区三区在线| 美女国产高潮福利片在线看| 男女床上黄色一级片免费看| 少妇人妻久久综合中文| 久久国产精品影院| 国产一区二区三区综合在线观看| 各种免费的搞黄视频| 久久久国产一区二区| 精品国产国语对白av| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 精品一区二区三区av网在线观看 | 99国产精品99久久久久| 男人添女人高潮全过程视频| 亚洲美女黄色视频免费看| av在线播放精品| 97在线人人人人妻| 久久久亚洲精品成人影院| 国产日韩一区二区三区精品不卡| 精品人妻1区二区| 久久人妻熟女aⅴ| 国产精品欧美亚洲77777| 亚洲精品在线美女| 叶爱在线成人免费视频播放| 国产高清videossex| 丝袜在线中文字幕| 你懂的网址亚洲精品在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美视频二区| av在线老鸭窝| 国产成人精品在线电影| 久久久久视频综合| 国产亚洲一区二区精品| 国产熟女欧美一区二区| 丰满迷人的少妇在线观看| 久久久久久人人人人人| 亚洲七黄色美女视频| 男女高潮啪啪啪动态图| www.自偷自拍.com| 日韩大码丰满熟妇| 午夜日韩欧美国产| 免费看不卡的av| 美女主播在线视频| 久久久久网色| 91精品三级在线观看| 日韩一卡2卡3卡4卡2021年| 欧美精品啪啪一区二区三区 | 免费在线观看完整版高清| videosex国产| 一级毛片我不卡| 国产精品99久久99久久久不卡| 91字幕亚洲| 国产一区二区三区综合在线观看| 69精品国产乱码久久久| 中国国产av一级| 热re99久久国产66热| 国产精品久久久久久精品电影小说| www.自偷自拍.com| 久久av网站| 伊人亚洲综合成人网| 桃花免费在线播放| 91精品国产国语对白视频| 久久久久久免费高清国产稀缺| 午夜福利一区二区在线看| 久久人妻熟女aⅴ| 亚洲国产av新网站| 久久综合国产亚洲精品| 老司机在亚洲福利影院| 国产一区有黄有色的免费视频| 人体艺术视频欧美日本| 日本午夜av视频| 黄色a级毛片大全视频| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 两性夫妻黄色片| 欧美乱码精品一区二区三区| 亚洲视频免费观看视频| 操美女的视频在线观看| 国产视频一区二区在线看| 亚洲,欧美精品.| 日本黄色日本黄色录像| 9热在线视频观看99| 麻豆乱淫一区二区| 日韩电影二区| 捣出白浆h1v1| 男女下面插进去视频免费观看| 日韩大码丰满熟妇| 国产成人免费观看mmmm| 亚洲精品久久午夜乱码| 国语对白做爰xxxⅹ性视频网站| 一区二区三区激情视频| 亚洲国产看品久久| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 搡老乐熟女国产| 日韩 亚洲 欧美在线| 亚洲国产毛片av蜜桃av| 久久久久久久久久久久大奶| 亚洲欧美一区二区三区久久| 国产在线视频一区二区| 亚洲欧洲精品一区二区精品久久久| 日韩制服丝袜自拍偷拍| 日韩大码丰满熟妇| 午夜91福利影院| 蜜桃在线观看..| 两人在一起打扑克的视频| 国产精品国产三级国产专区5o| 免费高清在线观看日韩| 在线av久久热| 日日爽夜夜爽网站| 精品福利观看| tube8黄色片| 大型av网站在线播放| 少妇的丰满在线观看| 国产精品一区二区在线不卡| 欧美国产精品va在线观看不卡| 日韩一区二区三区影片| 欧美av亚洲av综合av国产av| 久久人妻福利社区极品人妻图片 | 人人妻人人爽人人添夜夜欢视频| 只有这里有精品99| 精品一区二区三区av网在线观看 | 久久99一区二区三区| 国产精品秋霞免费鲁丝片| www.精华液| 午夜久久久在线观看| 女人爽到高潮嗷嗷叫在线视频| 999久久久国产精品视频| 一本一本久久a久久精品综合妖精| 亚洲精品久久久久久婷婷小说| 美女扒开内裤让男人捅视频| 一级毛片我不卡| 青青草视频在线视频观看| 国产欧美日韩精品亚洲av| 晚上一个人看的免费电影| 国产精品久久久久久精品古装| 黄频高清免费视频| 久久久欧美国产精品| 亚洲,欧美,日韩| 亚洲av日韩精品久久久久久密 | 国产一区亚洲一区在线观看| 欧美日韩黄片免| 成人国产一区最新在线观看 | 成人国产av品久久久| 女人高潮潮喷娇喘18禁视频| 久久国产精品影院| 水蜜桃什么品种好| 老汉色∧v一级毛片| 男女午夜视频在线观看| 精品人妻熟女毛片av久久网站| 老司机影院毛片| 操美女的视频在线观看| 欧美性长视频在线观看| 丝袜在线中文字幕| 国产一级毛片在线| 妹子高潮喷水视频| 国产淫语在线视频| 1024香蕉在线观看| 国产精品一区二区在线观看99| 18在线观看网站| 精品久久久久久电影网| 我的亚洲天堂| 97在线人人人人妻| 一级毛片黄色毛片免费观看视频| 亚洲激情五月婷婷啪啪| 欧美在线一区亚洲| 亚洲av欧美aⅴ国产| 伊人亚洲综合成人网| 一区二区av电影网| 在线观看国产h片| 国产片特级美女逼逼视频| 亚洲精品美女久久久久99蜜臀 | 免费一级毛片在线播放高清视频 | 少妇猛男粗大的猛烈进出视频| 色播在线永久视频| 成人影院久久| 高清不卡的av网站| 一本综合久久免费| 啦啦啦啦在线视频资源| 亚洲第一av免费看| 波野结衣二区三区在线| 日本一区二区免费在线视频| 又紧又爽又黄一区二区| 男女之事视频高清在线观看 | 久久精品aⅴ一区二区三区四区| 国产成人av教育| 老司机在亚洲福利影院| 国产免费福利视频在线观看| 一本久久精品| 成人亚洲精品一区在线观看| 久久久久久久精品精品| 熟女av电影| 婷婷丁香在线五月| 国产精品久久久av美女十八| 国产成人免费观看mmmm| 国产亚洲一区二区精品| 十八禁网站网址无遮挡| 国产人伦9x9x在线观看| 精品人妻1区二区| 日本欧美视频一区| 最近中文字幕2019免费版| 母亲3免费完整高清在线观看| 亚洲av国产av综合av卡| 一区二区av电影网| 亚洲精品国产色婷婷电影| www日本在线高清视频| 超碰97精品在线观看| 亚洲精品一区蜜桃| 香蕉丝袜av| av片东京热男人的天堂| 最近手机中文字幕大全| 日韩视频在线欧美| 啦啦啦 在线观看视频| 亚洲美女黄色视频免费看| 亚洲精品国产一区二区精华液| 亚洲av片天天在线观看| 亚洲精品中文字幕在线视频| 中文字幕人妻丝袜一区二区| 亚洲av成人精品一二三区| 又紧又爽又黄一区二区| 又大又爽又粗| 一级黄色大片毛片| 国产成人影院久久av| a级毛片黄视频| 精品国产乱码久久久久久男人| 少妇猛男粗大的猛烈进出视频| 99re6热这里在线精品视频| 中文字幕最新亚洲高清| 欧美激情 高清一区二区三区| 美女扒开内裤让男人捅视频| 久久狼人影院| 免费久久久久久久精品成人欧美视频| 精品国产一区二区三区四区第35| xxx大片免费视频| av在线老鸭窝| 国产精品亚洲av一区麻豆| 乱人伦中国视频| 亚洲av成人精品一二三区| 纯流量卡能插随身wifi吗| 免费观看a级毛片全部| 国产亚洲av片在线观看秒播厂| 男女边摸边吃奶| 欧美日韩精品网址| 中国美女看黄片| 欧美日韩精品网址| 免费看十八禁软件| 国产视频一区二区在线看| 电影成人av| a级毛片黄视频| 大型av网站在线播放| www日本在线高清视频| 国产免费福利视频在线观看| a级毛片黄视频| 国产女主播在线喷水免费视频网站| 又黄又粗又硬又大视频| 日本a在线网址| 老司机深夜福利视频在线观看 | 91国产中文字幕| 亚洲欧美激情在线| 国产精品成人在线| 性色av一级| 久久精品亚洲av国产电影网| 另类精品久久| 欧美人与性动交α欧美精品济南到| 婷婷成人精品国产| 最黄视频免费看| 美女视频免费永久观看网站| 99香蕉大伊视频| 黄色 视频免费看| 后天国语完整版免费观看| 欧美亚洲日本最大视频资源| 别揉我奶头~嗯~啊~动态视频 | 国产精品.久久久| av在线播放精品| 久久久久精品人妻al黑| 免费一级毛片在线播放高清视频 | 精品人妻熟女毛片av久久网站| 黄色a级毛片大全视频| 精品人妻熟女毛片av久久网站| 久久精品久久精品一区二区三区| 女人久久www免费人成看片| 亚洲,一卡二卡三卡| 亚洲,欧美精品.| 亚洲av电影在线观看一区二区三区| 免费看不卡的av| 国产片内射在线| 日韩精品免费视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 午夜福利乱码中文字幕| 国产片内射在线| 国产又色又爽无遮挡免| 国产精品一区二区在线不卡| 高清视频免费观看一区二区| 亚洲欧美日韩高清在线视频 | 黄色视频在线播放观看不卡| 人成视频在线观看免费观看| 国产精品熟女久久久久浪| 黄频高清免费视频| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区91| 精品一区二区三区av网在线观看 | 午夜福利一区二区在线看| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 深夜精品福利| 777米奇影视久久| 又紧又爽又黄一区二区| 一本大道久久a久久精品| 亚洲人成网站在线观看播放| 国产成人一区二区三区免费视频网站 | 亚洲激情五月婷婷啪啪| 国产黄色视频一区二区在线观看| 视频在线观看一区二区三区| 国产亚洲av高清不卡| 欧美日韩成人在线一区二区| 在线观看www视频免费| 亚洲美女黄色视频免费看| 国产一级毛片在线| 亚洲av成人精品一二三区| av线在线观看网站| 一级毛片 在线播放| 日本91视频免费播放| 成人国产av品久久久| 2021少妇久久久久久久久久久| 男女下面插进去视频免费观看| 国产精品99久久99久久久不卡| 视频在线观看一区二区三区| 晚上一个人看的免费电影| 精品一区二区三区四区五区乱码 | 国产精品秋霞免费鲁丝片| 欧美+亚洲+日韩+国产| bbb黄色大片| 十八禁高潮呻吟视频| 国产精品亚洲av一区麻豆| avwww免费| 精品一区在线观看国产| 99re6热这里在线精品视频| 久久国产亚洲av麻豆专区| 精品久久久久久久毛片微露脸 | 激情视频va一区二区三区| 美女主播在线视频| 在线观看人妻少妇| 欧美中文综合在线视频| 国产欧美日韩精品亚洲av| 99久久综合免费| 性色av乱码一区二区三区2| 国产精品免费视频内射| 亚洲熟女精品中文字幕| 精品人妻1区二区| 国产亚洲欧美精品永久| 亚洲成人国产一区在线观看 | 在线看a的网站| 国产精品免费视频内射| av福利片在线| 丝袜喷水一区| 欧美国产精品一级二级三级| 在线观看免费视频网站a站| 精品一区在线观看国产| 五月开心婷婷网| av不卡在线播放| 最新的欧美精品一区二区| 欧美成人精品欧美一级黄| 99热网站在线观看| 两个人免费观看高清视频| 国产精品一区二区免费欧美 | 亚洲伊人久久精品综合| 国产淫语在线视频| 亚洲精品久久午夜乱码| 国产av精品麻豆| 九色亚洲精品在线播放| 亚洲天堂av无毛| 精品亚洲成a人片在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲,欧美精品.| 丝袜美足系列| 日韩人妻精品一区2区三区| 黄色 视频免费看| 亚洲免费av在线视频| 久热这里只有精品99| 黄色a级毛片大全视频| 成在线人永久免费视频| 一级黄色大片毛片| 亚洲av成人精品一二三区| 欧美97在线视频| 青青草视频在线视频观看| 大陆偷拍与自拍| 亚洲精品一卡2卡三卡4卡5卡 | 中文精品一卡2卡3卡4更新| 91麻豆精品激情在线观看国产 | 精品亚洲乱码少妇综合久久| svipshipincom国产片| 在线天堂中文资源库| 欧美 亚洲 国产 日韩一| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影| 大码成人一级视频| 99国产精品免费福利视频| 午夜福利影视在线免费观看| 一区二区三区精品91| 午夜精品国产一区二区电影| 国产男女内射视频| 捣出白浆h1v1| 久久精品亚洲熟妇少妇任你| 成年人黄色毛片网站| 91成人精品电影| 制服人妻中文乱码| 成人亚洲精品一区在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲欧美精品永久| 亚洲国产日韩一区二区| 免费在线观看视频国产中文字幕亚洲 | 欧美成狂野欧美在线观看| 亚洲成人免费av在线播放| 欧美另类一区| 女人久久www免费人成看片| 一边摸一边抽搐一进一出视频| 免费观看a级毛片全部| 亚洲第一av免费看| 校园人妻丝袜中文字幕| 亚洲国产精品一区二区三区在线| 另类精品久久| 亚洲国产欧美在线一区| 久久久久精品人妻al黑| 国产片特级美女逼逼视频| 美女主播在线视频| av欧美777| 国产1区2区3区精品| 满18在线观看网站| 国产成人欧美| 一边亲一边摸免费视频| 美女高潮到喷水免费观看| 国产精品久久久久久精品电影小说| 美女主播在线视频| 嫩草影视91久久| 国产成人91sexporn| 一个人免费看片子| 国产一区二区三区综合在线观看| 成人国语在线视频| av在线老鸭窝| 亚洲国产中文字幕在线视频| 一区福利在线观看| 成人影院久久| 九草在线视频观看| netflix在线观看网站| 五月开心婷婷网| 午夜福利影视在线免费观看| 美女脱内裤让男人舔精品视频| 亚洲自偷自拍图片 自拍| 久久精品久久久久久久性| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕精品免费在线观看视频| 国产成人精品久久久久久| 丝袜脚勾引网站| 日韩人妻精品一区2区三区| 性色av一级| 女警被强在线播放| videos熟女内射| 一级片'在线观看视频| 少妇被粗大的猛进出69影院| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三 | 久久99精品国语久久久| 欧美日韩av久久| 又大又爽又粗| 亚洲国产欧美日韩在线播放| 性少妇av在线| 免费少妇av软件| 久久久精品94久久精品| 亚洲成av片中文字幕在线观看| 午夜福利视频精品| 久久人妻福利社区极品人妻图片 | av网站免费在线观看视频| 久久人人爽人人片av| 婷婷色综合大香蕉| 国产在线一区二区三区精| 又粗又硬又长又爽又黄的视频| 国产精品国产av在线观看| 久久99热这里只频精品6学生| videosex国产| 超碰成人久久| 制服诱惑二区| 精品国产一区二区三区四区第35| 91精品伊人久久大香线蕉| 欧美亚洲 丝袜 人妻 在线| 天天影视国产精品| 国产成人免费无遮挡视频| 日韩一本色道免费dvd| 日本91视频免费播放| 一区二区三区四区激情视频| 1024视频免费在线观看| 国产亚洲精品第一综合不卡| 制服人妻中文乱码| 亚洲中文av在线| 我要看黄色一级片免费的| 日韩中文字幕欧美一区二区 | 啦啦啦视频在线资源免费观看| 国产在线免费精品| 欧美日韩国产mv在线观看视频| 大话2 男鬼变身卡| 亚洲五月色婷婷综合| 日本色播在线视频| 亚洲国产精品国产精品| 又粗又硬又长又爽又黄的视频| 欧美变态另类bdsm刘玥| 校园人妻丝袜中文字幕| 成在线人永久免费视频| 最近手机中文字幕大全| 美女大奶头黄色视频| 国产精品免费视频内射|