• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Harmonic Maps in Connection of Phase Transitions with Higher Dimensional Potential Wells*

    2019-09-26 02:56:16FanghuaLINChangyouWANG

    Fanghua LIN Changyou WANG

    (Dedicated to Professor Andrew J.Majda with deep admiration)

    Abstract This is in the sequel of authors’paper [Lin,F.H.,Pan,X.B.and Wang,C.Y.,Phase transition for potentials of high dimensional wells,Comm.Pure Appl.Math.,65(6),2012,833-888] in which the authors had set up a program to verify rigorously some formal statements associated with the multiple component phase transitions with higher dimensional wells.The main goal here is to establish a regularity theory for minimizing maps with a rather non-standard boundary condition at the sharp interface of the transition.The authors also present a proof,under simplified geometric assumptions,of existence of local smooth gradient flows under such constraints on interfaces which are in the motion by the mean-curvature.In a forthcoming paper,a general theory for such gradient flows and its relation to Keller-Rubinstein-Sternberg’s work (in 1989)on the fast reaction,slow diffusion and motion by the mean curvature would be addressed.

    Keywords Partially free and partially constrained boundary,Boundary partial regularity,Boundary monotonicity inequality

    1 Introduction

    This is a continuation of our previous work Lin-Pan-Wang [12] in which we had set up a program to verify various phenomena associated with multiple components phase transitions with higher dimensional wells.One of the goals here is to show rigorously the formal asymptotic arguments for the description of fast reaction,slow diffusion and sharp interface dynamics using the Ginzburg-Landau approximation as in the celebrated papers [17-18] by Keller-Rubinstein-Sternberg.For the leading term of the energy functional in the static energy minimization,we showed in [12] that the sharp interfaces for these general phase transition problem must be area minimizing hypersurfaces with weights.For the energy minimization,each of weights must be a constant giving by the length of a so-called minimal connection between a pair of potential wells.Therefore for the gradient flow,the dynamic of these sharp interfaces would simply be the motion by mean curvature provided that this weight function remains to be a constant that equals the length of a minimal connection.The latter leads to a challenging issue of studying energy minimizing maps(phases)and its gradient flows that lie in multiple potential wells (submanifolds)of high dimensions and,that each patch of such maps (phases)possesses a specific and non-standard boundary condition at corresponding sharp interfaces.The phases and their dynamics within each of the potential wells would be derived from the“slow diffusion”part as in [17-18],and it is hence in the next term of formal asymptotic for the energy of the system.This gives a nonlinear coupling between terms of different orders(in formal expansions)of the energy through boundary conditions,and it leads us to the study of harmonic maps with these unusual boundary conditions.In this paper,we show a boundary regularity theory of minimizing harmonic maps in the above described problems.We also establish a theorem on the short time existence of classical solutions to the corresponding heat flows.In a forthcoming work,we will address these dynamical issues in a more general context.

    Let us first recall the Cahn-Hilliard energy functional that models the phase transition described by a scalar function v:

    where Ω ?Rnis assumed to be a bounded,smooth domain in Rnthroughout this paper,v:ΩR is the density function,andis a double-well potential function that has two minima (zeros)at ±1.The term ∈|?v|2is the interfacial energy that penalizes the formation of interface.The asymptotic behavior of minimizers v∈of E∈(·)under the constraintwas first studied by Modica-Mortola [16],Modica [15],and Luckhaus-Modica [13]:They have showed that the separation region between the two stable phases has O(∈)thickness and the phase transition converges to a minimal hypersurface within the frame work of De Giorgi’s Γ-convergence theory.There are many important contributions to this problem (see for examples [5,10,13-15,21-22]).

    Rubinstein-Sternberg-Keller [17-18] introduced the vector-valued system of fast reaction and slow diffusion:

    Next we recall the main results of [12].For k >1,let

    be the union of two disjoint,compact,connected,smooth Riemannian manifolds N±?Rkwithout boundaries.For δ >0,let denote the δ-neighborhood of N.It is well known that there exists δN>0 such that d2(p,N)∈C∞(NδN).Consider the class of double-well potential functions depending only on the distance function from N,namely,

    where f ∈C∞(R+,R+)satisfies the property that there exist c1,c2,c3>0 such that

    Consider the family of Cahn-Hiliard functional

    that are singular perturbations of the functional of phase transitions of high dimensional wells:

    For the boundary conditions,we let Σ±??Ω be two disjoint,connected,open subsets of ?Ω such that

    (1)?Σ+=?Σ-=Σ is a connected (n-2)-dimensional smooth manifold;

    (2)?Ω=Σ+∪Σ-∪Σ.

    For any small η >0,let Ση= {x ∈Rn:d(x,Σ)<η} be the η-neighborhood of Σ,and denoteAssume that for some β >0,R >0,L >0,and C >0,g∈:satisfy:

    (2)for any p±∈N±,?extension maps

    such that

    where ?τdenotes the tangential derivative on hypersurfaces in Rn.

    Set

    In [12],we proved the following theorem.

    Theorem AAssume that F ∈C∞(Rk)satisfies (1.1),Γ ?Ω is an area-minimizing hypersurface with ?Γ=Σ and g∈:?ΩRksatisfies conditions (1.2)and (1.3).Then

    where cF0is the energy of the minimal connecting orbits between N+and N-defined by

    and

    Let

    be the euclidean distance between N+and N-,and

    be the pair of minimal sets in N±.

    Assume that g∈is almost optimal near Σ in the sense that its limitgives the minimal connecting orbits between N+and N-(see [12,pp.804-841] for more details).Then we also proved in [12] the following result.

    Theorem BAssume F(p)= f(d2(p,N))satisfies (1.1),Γ is a unique area minimizing hypersurface with ?Γ=Σ,which is smooth and strictly stable.Assume also that

    Then

    where

    Furthermore,if {u∈} is a sequence of minimizers of E(∈),then there exists u ∈A attaining the value D such that after taking a possible subsequence,u∈converges to u in L1(Ω,Rk).

    The first aim of this paper is to study the boundary regularity of a minimizing harmonic map v ∈A that attains D near the sharp interface Γ.In order to achieve it,we make some further assumptions on the minimal sets M±.More precisely,let M+?N+and M-?Nbe such that

    · M+and M-are connected,C1-manifolds without boundaries,equipped with induced metric from N+and N-respectively;

    ·there exists a C1diffeomorphism,whose inverse map is

    Let Γ ?Ω be a smooth hypersurface with boundary Σ,i.e.,?Γ=Σ.Denote the two connected components of Ω separated by Γ by Ω±,i.e.,ΩΓ=Ω+∪Ω-,so that

    Let g:?Ω →N be a given map such that g ∈H1(Σ±,N±),and the two one-side trace values of g on Σ satisfy:

    The minimization problem seeks

    where

    It is readily seen that if the configuration space

    is non-empty,then there exists at least one energy minimizing map u ∈A,i.e.,

    Note that for n ≥3 if,up to a diffeomorphism,Ω=B1?Rn,the unit ball,Σ=?B1∩{xn=0},Σ±=?B1∩Rn±,Γ=B1∩{xn=0},and g ∈H1(Σ±,N±)satisfies (1.11),thenIn fact,it is not hard to verify that the homogeneous of degree zero extensionbelongs to A.In general,we have the following lemma.

    Lemma 1.1Assume that Π1(N+)= Π1(N-)= {0},g:?ΩN satisfies g|Σ±∈H1(Σ±,N±),and the condition (1.11)holds.Then A is non-empty.

    ProofDenote the two one side trace of g on Σ by g±(x)for x ∈Σ.Then by (1.11)g±∈(Σ,M±).First,we want to extend g±:ΣM±to maps G±:ΓM±.By (1.11),it suffices to construct an extension map G+of g+,since G-(x)= Φ+(G+(x))for x ∈Γ will provide an extension of g-.Since M+is connected,i.e.,Π0(M+)={0},Theorem 6.2 of Hardt-Lin [7-8] implies that for any 1 <p <2,there exists an extension map G+∈W1,p(Γ,M+)such thatin the trace sense.Now we let u+∈H1(Ω+,Rk)solve

    Since Π1(N+)=0,by applying the extension Lemma 6.1 of [8] as in the proof of Theorem 6.2 of [8] we conclude that there exists a mapsuch thatand

    Similarly,we can find an extension map∈H1(Ω-,N-)such that= g on Σ-and= G-on Γ.Now if we set:ΩN by lettingfor x ∈Ω±,then∈A.This completes the proof.

    For a minimizing harmonic map u ∈A,denote the set of discontinuous points of u in Ω±∪Γ by S±(u)?Ω±∪Γ and define

    as the set of discontinuous points of u in Ω.

    It follows from the interior regularity theory of minimizing harmonic maps by Schoen-Uhlenbeck [19] that S(u)∩(Ω{Γ})has Hausdorffdimension at most n-3.

    Our first main result concerns the boundary partial regularity at Γ for a minimizing harmonic map u in A,which is stated as follows.

    Theorem 1.1Assume that the boundary value g ∈H1(Σ±,N±)satisfies the condition(1.11).If u ∈A is an energy minimizing harmonic map,then

    (i)S(u)∩Γ is discrete for n=3;

    (ii)S(u)∩Γ is of Hausdorffdimension at most (n-3)for n ≥4.

    The paper is organized as follows.In §2,we will give a proof of Theorem 1.1.In §3,we will discuss the corresponding problem on the heat flow and establish the existence of short time regular solutions.In§4,we will provide boundary monotonicity inequalities for both stationary harmonic maps and their corresponding heat flows under the same boundary condition in Theorem 1.1,which may have its own interest and are useful to future studies.

    2 Proof of Theorem 1.1

    2.1 Euler-Lagrange equation

    In this subsection,we will derive the Euler-Lagrange equation for energy minimizing maps in A.

    Assume that u ∈A is an energy minimizing map.For a sufficiently small δ >0,let u(t,·)∈A,t ∈(-δ,δ),be a family of comparison maps for u,i.e.,u(0,·)=u(·).For t ∈(-δ,δ),let u±(t,x)denote the two one-sided trace value of u(t,x)for x ∈Γ.Then for t ∈(-δ,δ),we have

    and

    For the test function φ,if we denote by φ±(x)the two one-sided trace value of φ on Γ from Ω±,then

    and

    Let A±denote the second fundamental form of N±in Rkand denoteThen by integration by parts u satisfies

    Here (·)T(x):denotes the orthogonal projection map for x ∈Γ,and

    denotes the adjoint of the linear map

    It is not hard to see that the 5th equation of (2.1)can also be written as

    2.2 Boundary monotonicity inequality

    In order to establish the partial boundary regularity for energy minimizing maps in A,we need a version of boundary monotonicity inequality.

    For R >0,denote by BR?Rnthe ball of radius R and center 0,B±R= BR∩Rn±.Since Γ is smooth,there exists r0= r0(Γ)>0 such that for any x0∈Γ,0 <r ≤r1:=min{r0,dist(x0,?Ω)},there exist C >0 and C1-diffeomorphism Ψ:Br(x0)=Br(x0)∩ΩBrso that

    Here Inis the identity matrix of order n.By Fubini’s theorem,u ∈H1(?Br(x0)∩Ω±,N±)for almost all r ∈(0,r1)so that if we define

    Utilizing (2.2)and direct calculations,we have that

    Therefore,for any x0∈Γ and r ∈(0,r1),we have that

    holds,provided u ∈A is an energy minimizing map.In particular,by integrating (2.3)with respect to r,we obtain that for any x0∈Γ and 0 <R1≤R2<r1,

    holds for any energy minimizing map u ∈A.

    2.3 Boundary extension lemma

    A crucial ingredient to prove Theorem 1.1 is the following boundary extension lemma,similar to [9,Lemma 3.1].

    Lemma 2.1There exist positive constants δ,q,and C such that,if 0 <∈<1,x0∈Γ,and 0 <r0<dist(x0,?Ω),if η±∈H1(?Br0(x0)∩Ω±,N±)satisfies

    for some p±∈Rk,and if η±:?Br0(x0)∩ΓM±satisfies

    then there exist maps ω±∈H1(Br0(x0)∩Ω±,N±)such that ω±=η±on ?Br0(x0)∩Ω±,and ω±:Br0(x0)∩ΓM±satisfies

    Furthermore,it holds that

    Here ?tandenotes the tangential gradient on ?Br0(x0).

    ProofThe proof can be done by suitable modifications of the arguments from [8-9] and[19].It is based on an induction of the dimension n.There are two crucial ingredients of the construction:

    (i)Construction in dimension n=2;

    (ii)Homogeneous of degree zero extension for n ≥3.

    For simplicity,we will only indicate how to implement these two ingredients in our situation.The interested readers can consult with [8-9,19] for more details.

    Case 1n = 2 (linear interpolation).Since the problem is invariant under bi-Lipschitz transformations,we may assume that x0= 0,r0= 1,Ω = B1,and Γ = Γ1(= B21∩{x2= 0}).Denote by S±1??B21the half unit circles.Choose θ±0∈S±1so that

    Then it is easy to see that

    By Sobolev’s embedding inequalitywe have that

    Set

    Then we have

    Recall that there exists δ0= δ0(M±)>0 such that for any 0 <δ <δ0,the nearest point projection maps ΠM±:(M±)δM±and ΠN±:(N±)δN±are smooth,where (M±)δ(or (N±)δrespectively)denotes the δ-neighborhood of M±(or N±respectively)in Rk.Let v+:B+1Rksolve

    Thus we can define

    To construct ω-,first let

    so that w-(Γ1)?M-.Let v-:solve

    Then we also have

    so that we can define

    It follows directly from the above construction that ω-(x)= Φ+(ω+(x))for x ∈Γ1,and (2.6)follows from the standard estimate on harmonic functions.

    Case 2n ≥3(homogeneous of degree zero extension).For 0 <δ <1,letbe(n-1)-dimensional half balls of radius δ >0,andbe the n-dimensional half cylinders of size δ.Letbe the (n -2)-dimensional half spheres of radius δ so that

    Lemma 2.2Forif u±1(x)=u±(x,-δ)and u±2(x)= u±(x,δ),x ∈,satisfiesif u±(x,t)= u±0(x)forwithand if

    Then there exist extension mapssuch that

    and

    Here

    and

    for some fixed p*∈RL.

    ProofBy scaling,we may assume δ = 1.There exists a bi-Lipschitz homeomorphismsuch thatis also a bi-Lipschitz homeomorphism.Letbe the radial projection map.Define the projection mapThen define

    It is easy to see that (2.7)implies thatsatisfies the trace condition (2.8)on Γ1.It is also easy to see that

    where K is a constant depending on the Lipschitz constants of f±andThis implies(2.9).Similar argument for W also yields (2.10).

    Corollary 2.1There is a constant c >0 such that under the same assumptions of Lemma 2.1,if u ∈H1(Ω±,N±)∩A is energy minimizing among all maps in A,and for any x0∈Γ and 0 <r0<dist(x0,?Ω),

    then

    where u±=u|Ω±denotes the restriction of u on Ω±,and

    is the average of the one-side trace of u±in Br0(x0)∩Γ.

    ProofFor simplicity,we assume r0= 1.Since u±:Ω±→N±and N±is compact,it follows

    From the Poincaré inequality,we have that

    From the trace estimate and the Poincaré inequality,we also have that

    Applying Fubini’s theorem,we can choosesuch that

    and

    By choosing a sufficiently small c >0,we can apply Lemma 2.1 with η±=u±|?Br(x0)∩Ω±andto obtain an extension map ω±∈H1(Br(x0)∩Ω±,N±)such that ω±= u±onhas image in M±that satisfies

    and the estimate (2.6).If we define:Ω →N by

    which,combined with (2.6),then implies (2.11).This completes the proof.

    2.4 Small energy regularity

    Another crucial step to prove Theorem 1.1 is the following energy improvement property.

    Lemma 2.3There exist positive constants ∈,C,and θ <1 such that if u ∈A is an energy minimizing map that satisfies,for x0∈Γ and some 0 <r0<dist(x0,?Ω),

    then

    The proof of Lemma 2.3 is based on a blowing up argument,similar to [9,Theorem 3.3].Before presenting it,we need the following regularity estimate on the linear equation,resulting from the blow-up process of the nonlinear harmonic map equation (2.2).

    Denote by B+1and B-1the upper half and lower half unit ball,and set Γ1=B1∩{xn=0}.For a+∈M+,let a-= Φ+(a+)∈M-.Let Tan(a±,M±)denote the tangent space of M±at a±,and Nor(a±,M±)denote the normal space of M±?N±at a±,i.e.,

    For any vector v±∈Tan(a±,N±),we decompose it as

    where vt±denotes the orthogonal projection of v±into Tan(a±,M±),and vn±denotes the orthogonal projection of v±into Nor(a±,M±).

    Lemma 2.4Suppose that v±∈H1(B±1,Tan(a±,N±))are two harmonic functions,with tracesTan(a±,M±)),satisfying

    ProofSince a±∈M±,we can decompose v±=vt±+vn±so that

    and

    Since v±(x)∈Tan(a±,M±)for Hn-1a.e.x ∈Γ1,we have that

    It is readily seen that by (2.17)and (2.18),and for any l ≥1,

    To show regularity of vt±,we denote P =DΦ+(a+)and proceed as follows.DefineTa+N+be an even extension v-,i.e.,

    Then it is easy to see that

    and

    From the standard theory of harmonic functions,we see that (2.20)and (2.21)imply

    and it holds that,for any l ≥1,

    If PPt=Ik,i.e.,P ∈O(k)is an orthogonal matrix,then we have

    This and (2.22)easily yield (2.15).

    If PPtIk,then P-1Ptand we can also see easily that(2.15)follows from(2.22).This completes the proof.

    Proof of Lemma 2.4The proof follows from a blow-up argument,Lemma 2.4,and the boundary extension Lemma 2.2.Here we only sketch the argument.

    For simplicity,assume that x0= 0,r0= 1,Ω = B1,and Γ = Γ1so that Lip(Γ)= 0.Suppose that the conclusion were false.Then for any θ ∈(0,1),there would exist ∈i→0 and a sequence of minimizing harmonic maps ui∈A that satisfy

    and

    Therefore for i sufficiently large there is a unique nearest pointsuch that

    Now we define the corresponding blow-up sequence vi:B1→Rkby letting

    It is easy to see that

    and

    By (2.25)and the H1-trace theory,we have

    Hence,after taking a subsequence,there exists v:B1→Rk,withsuch that vi±converge to v±weakly in H1(B1±,Rk).In particular,by (2.25),we have

    Again passing to a subsequence,we assume that

    It is not hard to verify that v+(x)∈Ta+N+for a.e.x ∈B+1,and v-(x)∈Ta-N-for a.e.x ∈B1-.Since(x)∈M±for Hn-1a.e.x ∈Γ1,it is also not hard to see that

    and

    we have,after taking i to infinity,that

    Since vi±also satisfies the trace condition

    we obtain,after taking i to infinity,that

    This implies

    so that

    By (2.28)-(2.30),we can apply Lemma 2.4 to conclude thatMoreover,by(2.27)and (2.31)we have that for any 0 <θ <1,

    Combining(2.11)with (2.34).we can repeat the argument of[8] to get a desired contradiction.

    Proof of Theorem 1.1It is well-known that iterations of Lemma 2.3,combined with the interior ∈-regularity,implies that there exist ∈0>0 and α0∈(0,1)such that if for x0∈Γ,there exists r0>0 such that

    3 On the Local Existence of Regular Solutions to Heat Flow

    In this section,we will consider the gradient flow associated with the minimization problem(1.12),or,equivalently,the parabolic version of the harmonic map equation (2.1).Under some further assumptions on M±and Γ,to be specified below,we will establish the local existence of regular solutions of the heat flow under the initial and corresponding boundary conditions.For the harmonic map heat flow,the reader can refer to the articles [2-3,24-25].

    Before describing the corresponding heat flow problem,we first need to introduce some notations.For a given T >0,let{Γ(t):t ∈[0,T]}be a smooth family of smooth hypersurfaces,with Γ(0)=Γ,such that

    For t ∈[0,T],decompose ΩΓ(t)into the disjoint union of two simply connected components Ω+(t)and Ω-(t),i.e.,

    Denote Ω±=Ω±(0),and write

    so that ?Ω±=Γ ∪Σ±.Set

    and

    The harmonic heat flow problem corresponding to (2.1)can be formulated as follows.We are looking for u±:Q±TN±,with u±(x,t)∈M±for (x,t)∈ΓT,that solves

    Here u±0:Ω±N±,with u±0(x)∈M±satisfying u-0(x)= Φ+(u+0(x))for x ∈Γ,andare given initial and boundary values.

    In order to establish the short time existence of regular solutions to (3.1),we need to set up the problem appropriately by specifying the assumptions (A),(B),and (C)on N±and M±:

    (A)The target Riemannian manifolds(N±,h±)have the same dimension dim(N±)=k+m.For,otherwise,if k1=dim(N+)<k2=dim(N-),then we can replace (N+,h+)by

    where hcandenotes the standard metric on Sk2-k1.Notice thatMoreover,for any map u:Ω+(t)×[0,T] →N+,if we define(x,t)= (u(x,t),e):Ω+(t)×[0,T] →where e ∈Sk2-k1,then we can show that if u is a solution to the heat flow of harmonic maps to N+,thenis also a solution to the heat flow of harmonic maps to.This follows from the chain rule and the fact that (N+,h+)is a totally geodesic sub-manifold of

    (B)The manifolds M±?N±are two k-dimensional compact smooth sub-manifolds,with?M±= ?,such that there exists a smooth diffeomorphism Φ+:M+M-,whose inverse is denoted by Φ-:M-M+.Moreover,there exists r0= r0(M+)>0 such that for any p+∈M+,Φ+can be extended into a smooth diffeomorphism,still denoted as itself,

    whose inverse is also denoted by Φ-.

    (C)There exists a 0 <r1= r1(N+)≤r0(M+)such that for any p+∈N+,there exists a local parametrization ofi.e.,

    provides a local representation ofvia the diffeomorphism

    We may assume that U(p+)=(0,0),and if p+∈M+then

    and the Riemannian metric h+oncan be expressed by

    and the induced metric of h+onis given by

    It is readily seen that for p+∈M+and p-= Φ+(p+),through the diffeomorphism Φ+:provides a local parametrization ofthrough the diffeomorphismIn particular,U(p-)=(0,0),

    and the Riemannian metric h-oncan be expressed by

    and the induced metric of h-onis given by

    We may assume henceforth that r1(N+)=r0(M+)in the assumptions (B)and (C).

    Remark 3.1Under the assumptions(A),(B),and(C),it is not hard to see that by choosing a sufficiently small r0= r0(M+)>0,under the above local parametrization ofthe local representations of the Riemannian metrics h±enjoy the following properties:

    such that

    for some C >0 depending only on M±and N±.

    Now we are ready to state a theorem on the local existence of regular solutions to (3.1),whose full proof will be given in another future work.

    Theorem 3.1Under the assumptions (A),(B),and (C)on N±and M±,for 0 <α <1,letbe given initial and boundary data such thatsatisfies u-0(x)=Φ+(u+0(x))andfor x ∈Γ.Then there exist T0>0,depending on ‖u±0‖C1,α(Ω±),and a unique solution u±∈of the initial and boundary value problem (3.1).

    The proof of Theorem 3.1 is more delicate than the usual proofs of short time smooth solutions to the heat flow of harmonic maps under the Dirichlet boundary condition (see [1,6])or the free boundary condition (see [25]).It involves to first show the local existence of regular solutions over small balls,and then patch these local solutions by extending the Schwarz alternating method on linear parabolic equations to the quasilinear harmonic map heat flows into small neighborhoods of points in N±.For this,we have to overcome major difficulties that arise near the interface Γ.A detailed proof will be addressed in a forthcoming work.The approach that we will utilize is based on the Schwartz reflection method adapted to the parabolic settings,see [4] and [7] for some backgrounds on this method.

    In this part,we will indicate a proof of Theorem 3.1 when the images of u±is contained in a single coordinate chart of N±.Before doing it,we want to rewrite the system (3.1)in an intrinsic form near a small neighborhood of a point (x0,t0)∈ΓTand also derive a generalized energy inequality.

    3.1 Local representation of (3.1)

    For t0∈(0,T)and x0∈Γ(t0),choose a small δ0>0,depending on ‖u±‖C0(Q±T),such that

    where Pδ0(x0,t0)= Bδ0(x0)×(t0-δ20,t0+δ20).Then,by employing the local representations given by the assumptions (B)and (C)on M±,N±,we can rewrite the harmonic heat flow equation (3.1)as

    where U = (U1,U2):Q+T∩Pδ0(x0,t0)Bk1×Bm1is the local representation of u = u±:Q+T∩Pδ0(x0,t0)N,and ?!?·)(·,·)is the Christoffel symbol of N±.

    Observe that within this local coordinate system,the boundary condition the 4th equation of (3.1)on the free interface ΓTgives rise to

    and by (3.2)the boundary condition the 5th equation of (3.1)on the free interface ΓTreduces to

    3.2 Parametrization of domains

    Since Ω±(t)is t-dependent over[0,T],in this subsection we will re-parametrize the domains and rewrite(3.1)so that it can be viewed as the heat flow of harmonic maps over fixed domain but with time-dependent metrics on the domain.

    Given that u±:Q±TN±satisfies (3.1),we want to derive the equation fornow.To do it,first set

    and

    Then direct calculations imply that

    and

    Hence the 1st and 2nd equation of (3.1)becomes

    where

    Observe that the boundary condition the 4th equation of(3.1)on the free interface ΓTgives rise to

    while the boundary condition the 5th equation of (3.1)on the free interface ΓTgives rise to

    where ν(=ν(t))is the unit outer normal of Γ with respect to the metric

    First we observe that a sufficiently regular solution of (3.1)enjoys a generalized energy inequality.For 1 <p <∞,T >0,and an open set E ?Rn,denote

    Lemma 3.1For T >0,and g ∈C1(Σ±,N±),if u±∈withL2(Q±T),is a strong solution of (3.1),then there exists constant C >0 depending on ΓTsuch that

    for all 0 ≤s <t ∈[0,T].

    ProofLet Ψ(·,t):Ω×[0,T]Ω be a smooth family of diffeomorphism given by (3.6).Defineby

    Within this time dependent parametrization,we can write

    It is easy to see that

    While,applying the integration by parts,(3.8),the boundary conditions (3.9),(3.10)and(3.12),and the fact thatfor (x,t)∈ΓT,andon Σ±×[0,T],we can show that the boundary contributions on both Γ and ?Ω are zeroes.Hence we can estimate I by

    It is easy to see that

    Hence

    On the other hand,it follows from the chain rule (3.7)that

    Putting all these estimate together,we obtain

    which,combined with Gronwall’s inequality,implies (3.11).

    We will sketch a proof of Theorem 3.1 by employing the fixed point argument,under two extra assumptions that

    (i)the images of u±0is contained in a single coordinate chart,i.e.,

    for a pair of points p±0∈M±that satisfies p-0=Φ+(p+0); and

    (ii)

    First we will give some heuristic arguments to indicate that the appropriate function spaces for the local existence of regular solutions are

    which is equipped with the norm

    To see this,assume that Γ(t)≡Γ for 0 ≤t ≤T.Letbe given,andbe a local representation ofConsider V =(V1,V2):QTBk1×Bm1that is a weak solution of

    under the initial and boundary condition:

    It follows from the regularity of linear parabolic equations thatMoreover,since

    for any 1 <p <∞.

    By the Sobolev’s embedding theorem (see [11,Lemma II.3.3]),we conclude that V ∈and

    Proof of Theorem 3.1 under the assumptions (3.13)and (3.14)For a pair of initial and boundary data(u0,g)given by Theorem 3.1,letbe a local representation of u0.It follows from the assumptions(3.13)and(3.14)thatif and only if its local representation U belongs to the space

    From the condition on U0,we know that there exists ∈0>0 such that

    Hence by the maximum principle,we have that

    As a consequence,for any 0 <∈≤∈0,we can see that

    Now we define the solution mapby letting V =be the solution of

    subject to the initial and boundary condition (3.16).

    Now we need the following lemma.

    Lemma 3.2There exist ∈>0 and T >0 such thatis a contractive map,i.e.,for any θ ∈(0,1),we can find ∈>0 and T >0 such that

    Therefore there exists a uniquesuch that U =T(U).In particular,ifQ±TN±has U as its local representation,then u is a unique regular solution of (3.1)in QT.

    ProofFor U ∈B(U0,∈),since V -U0satisfies

    and

    Hence,similar to the earlier discussion,we have that for some p=p(α)>n+2,

    provided we choose a sufficiently small T = T0>0,depending only on U0and α.Hence

    and

    Hence we can conclude that for any θ ∈(0,1)such that for p=p(α)>n+2,

    provided T =T0>0 is chosen so that

    This completes the proof of both Lemma 3.2 and Theorem 3.1 under the assumptions (3.13)and (3.14).

    4 Boundary Monotonicity Inequality of (3.1)

    In this section,we will derive a boundary monotonicity inequality on (3.1),analogous to Struwe’s monotonicity formula,which may have its own interest.

    To simplify the presentation,we assume that

    Let u±:Rn±×[0,+∞)→N±,with u±(x,t)∈M±for (x,t)∈?Rn+×(0,∞),satisfy

    For (x0,t0)∈Rn×(0,+∞)andlet

    denote the backward heat kernel on Rn.Set

    Lemma 4.1Suppose that(x0,t0)=(0,0)∈?Rn+×(-∞,0]andis a solution to the system (4.1).Then

    ProofWrite G(x,t)for G(0,0)(x,t)and define

    It is easy to see that

    For simplicity,we only verify (4.2)at R=1.Since

    we have

    Since

    and

    we have

    Since x=(x′,0)for x ∈?Rn±,and

    we have

    so that

    Since

    we have

    on ?Rn±×(-∞,0)and hence

    Therefore we have

    where we have used the boundary condition the 5th equation of (4.1)in the last step.Putting all these calculations together,we obtain

    This completes the proof.

    久久久久久大精品| 日本黄色视频三级网站网址| 搡老熟女国产l中国老女人| 中文在线观看免费www的网站 | 亚洲av第一区精品v没综合| 欧美日韩亚洲综合一区二区三区_| 亚洲七黄色美女视频| 国产成人影院久久av| 国产亚洲av嫩草精品影院| 人人妻人人澡人人看| 最近在线观看免费完整版| 亚洲五月婷婷丁香| 亚洲五月婷婷丁香| xxxwww97欧美| 成熟少妇高潮喷水视频| 欧美黄色淫秽网站| 夜夜夜夜夜久久久久| 国产激情久久老熟女| 制服人妻中文乱码| 99国产精品99久久久久| 久久久久免费精品人妻一区二区 | 精品不卡国产一区二区三区| 一级a爱视频在线免费观看| 少妇 在线观看| 欧美激情久久久久久爽电影| 欧美精品啪啪一区二区三区| 黑人巨大精品欧美一区二区mp4| 一进一出抽搐gif免费好疼| 在线视频色国产色| 在线免费观看的www视频| 国产精品自产拍在线观看55亚洲| 男女视频在线观看网站免费 | 亚洲一区高清亚洲精品| 人妻久久中文字幕网| 最新美女视频免费是黄的| 国产精品久久电影中文字幕| 久久人妻av系列| 黑人操中国人逼视频| 欧美精品亚洲一区二区| ponron亚洲| 国产一区在线观看成人免费| 欧美激情 高清一区二区三区| 色综合站精品国产| 国产亚洲精品久久久久5区| 国产伦人伦偷精品视频| 久久精品国产亚洲av香蕉五月| 黄色 视频免费看| 国产精品影院久久| avwww免费| 美女高潮喷水抽搐中文字幕| 久久久久久国产a免费观看| 91麻豆精品激情在线观看国产| 日韩欧美 国产精品| 一区二区三区高清视频在线| 午夜福利高清视频| 欧美+亚洲+日韩+国产| 神马国产精品三级电影在线观看 | 悠悠久久av| 12—13女人毛片做爰片一| 天天躁夜夜躁狠狠躁躁| 国产男靠女视频免费网站| 国产成人系列免费观看| 丰满的人妻完整版| 变态另类丝袜制服| 国产一区二区三区在线臀色熟女| 精品国产乱码久久久久久男人| 免费搜索国产男女视频| 国产精品美女特级片免费视频播放器 | 嫁个100分男人电影在线观看| 国产精品久久久久久精品电影 | 欧美久久黑人一区二区| 国产激情偷乱视频一区二区| 白带黄色成豆腐渣| 成人国产一区最新在线观看| 在线永久观看黄色视频| 亚洲无线在线观看| 亚洲五月婷婷丁香| 久久草成人影院| 怎么达到女性高潮| 国产精品国产高清国产av| 日本免费一区二区三区高清不卡| 欧美黑人精品巨大| 极品教师在线免费播放| 一本久久中文字幕| 亚洲第一欧美日韩一区二区三区| 怎么达到女性高潮| 黄色成人免费大全| 午夜免费成人在线视频| 91字幕亚洲| 欧美亚洲日本最大视频资源| 国产视频一区二区在线看| 一级黄色大片毛片| 午夜两性在线视频| 麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 在线永久观看黄色视频| 成在线人永久免费视频| 嫩草影院精品99| 久久久久久久精品吃奶| aaaaa片日本免费| 我的亚洲天堂| 免费无遮挡裸体视频| 好男人电影高清在线观看| 亚洲国产看品久久| 久久香蕉国产精品| 最近最新免费中文字幕在线| 免费在线观看成人毛片| 亚洲欧美日韩高清在线视频| 婷婷亚洲欧美| 欧美在线黄色| 一本一本综合久久| 久久 成人 亚洲| 99久久久亚洲精品蜜臀av| 老司机在亚洲福利影院| 亚洲自偷自拍图片 自拍| 欧美不卡视频在线免费观看 | 两个人看的免费小视频| 色播在线永久视频| 欧美精品啪啪一区二区三区| 好男人电影高清在线观看| 亚洲av美国av| 欧美性猛交╳xxx乱大交人| 91国产中文字幕| 亚洲精品国产一区二区精华液| 美女扒开内裤让男人捅视频| 国内精品久久久久精免费| 国产精品99久久99久久久不卡| 精品电影一区二区在线| 在线观看一区二区三区| 天堂动漫精品| 黄频高清免费视频| 给我免费播放毛片高清在线观看| 成年免费大片在线观看| 国产av一区在线观看免费| 免费观看精品视频网站| 免费在线观看视频国产中文字幕亚洲| 亚洲专区国产一区二区| 在线观看www视频免费| 一级a爱片免费观看的视频| 99在线人妻在线中文字幕| 黄色视频,在线免费观看| av有码第一页| 久久久国产精品麻豆| 国产成人精品久久二区二区91| 久久久国产成人免费| 亚洲成国产人片在线观看| 久久久久久久久免费视频了| 老熟妇乱子伦视频在线观看| 2021天堂中文幕一二区在线观 | 亚洲avbb在线观看| 国产成+人综合+亚洲专区| 99久久久亚洲精品蜜臀av| 欧美激情 高清一区二区三区| 久久中文字幕一级| 久久九九热精品免费| 色尼玛亚洲综合影院| 亚洲自偷自拍图片 自拍| 午夜视频精品福利| 欧美黄色片欧美黄色片| www.www免费av| 特大巨黑吊av在线直播 | 国产蜜桃级精品一区二区三区| 俄罗斯特黄特色一大片| 男人操女人黄网站| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看 | 老司机靠b影院| 99精品欧美一区二区三区四区| 午夜亚洲福利在线播放| 禁无遮挡网站| 日本在线视频免费播放| 久久久久久久久中文| 黑人巨大精品欧美一区二区mp4| 久久亚洲精品不卡| 久久中文字幕人妻熟女| 午夜精品在线福利| 日本在线视频免费播放| 久热爱精品视频在线9| 巨乳人妻的诱惑在线观看| 天堂动漫精品| 亚洲五月婷婷丁香| 欧美国产日韩亚洲一区| 日本熟妇午夜| 国产真人三级小视频在线观看| 久久中文字幕人妻熟女| 久久久国产成人免费| 人人澡人人妻人| 久久婷婷成人综合色麻豆| 美女午夜性视频免费| 久久久久久大精品| 国产单亲对白刺激| 久久 成人 亚洲| 欧美日韩黄片免| 午夜影院日韩av| 亚洲成人国产一区在线观看| 精品免费久久久久久久清纯| 免费在线观看黄色视频的| 精品国内亚洲2022精品成人| av电影中文网址| 国产精品一区二区精品视频观看| 国内揄拍国产精品人妻在线 | 亚洲午夜理论影院| 国产精品综合久久久久久久免费| 亚洲aⅴ乱码一区二区在线播放 | 国产激情欧美一区二区| 日韩 欧美 亚洲 中文字幕| 亚洲色图 男人天堂 中文字幕| 国产成+人综合+亚洲专区| 国产精品免费一区二区三区在线| 十分钟在线观看高清视频www| 精品不卡国产一区二区三区| 最近最新中文字幕大全免费视频| 亚洲av片天天在线观看| 岛国视频午夜一区免费看| 国产97色在线日韩免费| 久久久久久九九精品二区国产 | 亚洲av电影不卡..在线观看| 人人妻,人人澡人人爽秒播| 99久久无色码亚洲精品果冻| 中文资源天堂在线| 久久香蕉国产精品| xxx96com| 两个人免费观看高清视频| 日本一区二区免费在线视频| 久久国产精品影院| 91av网站免费观看| 久久 成人 亚洲| avwww免费| 人人妻人人澡人人看| 一级a爱视频在线免费观看| 久久久久久久午夜电影| 黄色a级毛片大全视频| 亚洲第一av免费看| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女| 国产精品自产拍在线观看55亚洲| 欧美最黄视频在线播放免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩乱码在线| 国内精品久久久久久久电影| 男女那种视频在线观看| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 91av网站免费观看| 亚洲免费av在线视频| 9191精品国产免费久久| 亚洲真实伦在线观看| 露出奶头的视频| 欧美色欧美亚洲另类二区| 美国免费a级毛片| 一级a爱片免费观看的视频| 欧美激情极品国产一区二区三区| 黑人巨大精品欧美一区二区mp4| 曰老女人黄片| 女人高潮潮喷娇喘18禁视频| 亚洲性夜色夜夜综合| 国产视频内射| 在线国产一区二区在线| 午夜免费成人在线视频| 日本免费a在线| 最新在线观看一区二区三区| 不卡av一区二区三区| 一a级毛片在线观看| cao死你这个sao货| 两个人看的免费小视频| 国产精品综合久久久久久久免费| 国产精品自产拍在线观看55亚洲| 精品欧美一区二区三区在线| 老司机在亚洲福利影院| 国产精品久久久av美女十八| 亚洲九九香蕉| 性欧美人与动物交配| 午夜日韩欧美国产| av中文乱码字幕在线| 免费女性裸体啪啪无遮挡网站| 日韩有码中文字幕| 免费在线观看日本一区| 色老头精品视频在线观看| 特大巨黑吊av在线直播 | 免费在线观看影片大全网站| 久久国产精品男人的天堂亚洲| 啦啦啦 在线观看视频| 精品熟女少妇八av免费久了| 9191精品国产免费久久| 大型黄色视频在线免费观看| 亚洲九九香蕉| 一卡2卡三卡四卡精品乱码亚洲| 成人国产综合亚洲| 久久天堂一区二区三区四区| 美女 人体艺术 gogo| 不卡av一区二区三区| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片 | 免费观看人在逋| 99国产极品粉嫩在线观看| 精品第一国产精品| 免费看美女性在线毛片视频| 欧美性长视频在线观看| 欧美成人免费av一区二区三区| 国产精品日韩av在线免费观看| 国产午夜福利久久久久久| 亚洲av电影不卡..在线观看| 制服诱惑二区| 免费高清在线观看日韩| 国产精品久久久av美女十八| 精品一区二区三区视频在线观看免费| www.精华液| 夜夜夜夜夜久久久久| 麻豆国产av国片精品| 亚洲狠狠婷婷综合久久图片| 最好的美女福利视频网| 熟女电影av网| 91在线观看av| svipshipincom国产片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲色图 男人天堂 中文字幕| 叶爱在线成人免费视频播放| www日本黄色视频网| 午夜视频精品福利| 午夜视频精品福利| 日韩国内少妇激情av| 白带黄色成豆腐渣| 亚洲最大成人中文| 日日夜夜操网爽| 啦啦啦韩国在线观看视频| 成人三级做爰电影| 51午夜福利影视在线观看| 色综合站精品国产| 亚洲成人国产一区在线观看| 亚洲精品一区av在线观看| 欧美日本亚洲视频在线播放| 国产三级在线视频| 国产三级在线视频| 亚洲成人免费电影在线观看| 国产精品一区二区免费欧美| 少妇的丰满在线观看| 欧美日韩乱码在线| 日日干狠狠操夜夜爽| 黑丝袜美女国产一区| 欧美中文综合在线视频| 白带黄色成豆腐渣| 亚洲欧美日韩高清在线视频| 校园春色视频在线观看| 在线观看免费日韩欧美大片| 一本久久中文字幕| 青草久久国产| 欧美激情高清一区二区三区| 听说在线观看完整版免费高清| 午夜福利欧美成人| 亚洲精品中文字幕在线视频| 亚洲专区中文字幕在线| 国产在线精品亚洲第一网站| 亚洲男人的天堂狠狠| 免费观看人在逋| 久久久久久久久久黄片| 国产蜜桃级精品一区二区三区| 亚洲三区欧美一区| 亚洲av中文字字幕乱码综合 | 18禁黄网站禁片午夜丰满| 欧美zozozo另类| 国内毛片毛片毛片毛片毛片| 一个人免费在线观看的高清视频| 久久精品国产清高在天天线| 宅男免费午夜| 美女免费视频网站| 动漫黄色视频在线观看| 757午夜福利合集在线观看| 好看av亚洲va欧美ⅴa在| 精品国内亚洲2022精品成人| 国产人伦9x9x在线观看| 99久久综合精品五月天人人| 久久午夜亚洲精品久久| av超薄肉色丝袜交足视频| 亚洲成人久久性| 99久久99久久久精品蜜桃| 成人亚洲精品av一区二区| 狂野欧美激情性xxxx| 免费在线观看成人毛片| 亚洲成a人片在线一区二区| 欧美日韩福利视频一区二区| 精品乱码久久久久久99久播| 亚洲中文字幕日韩| 日韩欧美在线二视频| 欧美黄色淫秽网站| 亚洲七黄色美女视频| 日韩视频一区二区在线观看| 叶爱在线成人免费视频播放| 97碰自拍视频| 日本 av在线| 免费看a级黄色片| 一级毛片精品| 少妇熟女aⅴ在线视频| 夜夜躁狠狠躁天天躁| 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| 精品日产1卡2卡| 亚洲色图av天堂| 90打野战视频偷拍视频| 我的亚洲天堂| 日韩精品免费视频一区二区三区| 精品欧美国产一区二区三| 少妇熟女aⅴ在线视频| 亚洲激情在线av| 午夜老司机福利片| 国语自产精品视频在线第100页| АⅤ资源中文在线天堂| 久久久久精品国产欧美久久久| 久久精品人妻少妇| 国产成人精品无人区| 久久人妻av系列| 日韩免费av在线播放| 国产黄色小视频在线观看| 中文在线观看免费www的网站 | 搡老岳熟女国产| 亚洲五月天丁香| 91九色精品人成在线观看| 久久精品国产清高在天天线| 国产极品粉嫩免费观看在线| 日本成人三级电影网站| 听说在线观看完整版免费高清| 国产久久久一区二区三区| 久久久久亚洲av毛片大全| 欧美黑人巨大hd| 国产激情偷乱视频一区二区| 国产精品久久久久久精品电影 | 国产成年人精品一区二区| 少妇的丰满在线观看| 亚洲 欧美 日韩 在线 免费| av在线天堂中文字幕| 欧美久久黑人一区二区| 日韩成人在线观看一区二区三区| 高清毛片免费观看视频网站| 亚洲av中文字字幕乱码综合 | 夜夜躁狠狠躁天天躁| 1024香蕉在线观看| 国产97色在线日韩免费| 美女国产高潮福利片在线看| 国产精品一区二区三区四区久久 | 亚洲一区中文字幕在线| 亚洲人成77777在线视频| 国产激情久久老熟女| 欧美又色又爽又黄视频| 女生性感内裤真人,穿戴方法视频| 亚洲成人久久性| 99国产综合亚洲精品| 看黄色毛片网站| 啦啦啦 在线观看视频| 国产成人av激情在线播放| 日本精品一区二区三区蜜桃| 成人18禁高潮啪啪吃奶动态图| 黄色女人牲交| 国产精品久久电影中文字幕| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码| 国产精品综合久久久久久久免费| 欧美日韩一级在线毛片| 自线自在国产av| 国产精品美女特级片免费视频播放器 | 久久精品国产综合久久久| 午夜a级毛片| 成人亚洲精品av一区二区| 国产99白浆流出| 精品久久久久久久毛片微露脸| 男男h啪啪无遮挡| 亚洲国产精品999在线| 成人手机av| 亚洲精品在线美女| 国产欧美日韩一区二区精品| 亚洲国产高清在线一区二区三 | 夜夜躁狠狠躁天天躁| 欧美激情 高清一区二区三区| 国产精品一区二区免费欧美| 日韩欧美三级三区| svipshipincom国产片| 99re在线观看精品视频| 婷婷丁香在线五月| 成人三级黄色视频| 狂野欧美激情性xxxx| 好男人电影高清在线观看| 给我免费播放毛片高清在线观看| 无限看片的www在线观看| 久久久久久大精品| 国产人伦9x9x在线观看| 色在线成人网| 久久香蕉激情| 欧美不卡视频在线免费观看 | 99在线人妻在线中文字幕| 中文在线观看免费www的网站 | 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人免费| 麻豆成人av在线观看| 国产精品 国内视频| 美女国产高潮福利片在线看| 51午夜福利影视在线观看| 搡老熟女国产l中国老女人| 欧美性猛交╳xxx乱大交人| 熟妇人妻久久中文字幕3abv| 午夜福利免费观看在线| 黄色a级毛片大全视频| 国产精品二区激情视频| 久久青草综合色| 在线天堂中文资源库| 日日夜夜操网爽| 变态另类丝袜制服| 午夜日韩欧美国产| 国产精品av久久久久免费| 香蕉久久夜色| 欧美成人性av电影在线观看| 国产精品99久久99久久久不卡| 亚洲精华国产精华精| 欧美成人午夜精品| 视频在线观看一区二区三区| 又紧又爽又黄一区二区| 一本久久中文字幕| 国产高清视频在线播放一区| x7x7x7水蜜桃| 好男人电影高清在线观看| 欧美丝袜亚洲另类 | 国产精品爽爽va在线观看网站 | 自线自在国产av| 欧美丝袜亚洲另类 | 中文字幕人妻熟女乱码| 久久婷婷成人综合色麻豆| 99在线视频只有这里精品首页| 久久久久久九九精品二区国产 | 欧美另类亚洲清纯唯美| 一区福利在线观看| 欧美成人免费av一区二区三区| 人人妻,人人澡人人爽秒播| 欧美色欧美亚洲另类二区| 女人高潮潮喷娇喘18禁视频| 日韩一卡2卡3卡4卡2021年| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 此物有八面人人有两片| 老司机午夜十八禁免费视频| 精品人妻1区二区| 国产97色在线日韩免费| 久久精品夜夜夜夜夜久久蜜豆 | 一进一出抽搐动态| 97碰自拍视频| 99在线视频只有这里精品首页| 欧美日韩精品网址| 日韩欧美免费精品| 成人欧美大片| 国产一区在线观看成人免费| 久99久视频精品免费| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 黄色成人免费大全| 成人午夜高清在线视频 | 免费高清在线观看日韩| 一级毛片高清免费大全| 国产精品九九99| 可以在线观看毛片的网站| 免费高清视频大片| 色综合婷婷激情| 欧美激情高清一区二区三区| 女性被躁到高潮视频| 日韩高清综合在线| 黄色 视频免费看| 可以在线观看的亚洲视频| 伊人久久大香线蕉亚洲五| 老司机午夜福利在线观看视频| 99re在线观看精品视频| 中文在线观看免费www的网站 | 国产三级黄色录像| 九色国产91popny在线| 黄色视频不卡| 国产伦在线观看视频一区| 国产成人精品无人区| 麻豆成人av在线观看| 99在线视频只有这里精品首页| 波多野结衣高清无吗| 性欧美人与动物交配| 一区福利在线观看| 精品第一国产精品| 长腿黑丝高跟| 亚洲国产日韩欧美精品在线观看 | 精品不卡国产一区二区三区| 国产伦人伦偷精品视频| 亚洲色图av天堂| 两性夫妻黄色片| 午夜视频精品福利| 十分钟在线观看高清视频www| 亚洲片人在线观看| 精品久久久久久久人妻蜜臀av| 久久久国产精品麻豆| 中文资源天堂在线| 一个人观看的视频www高清免费观看 | 欧美日韩瑟瑟在线播放| 亚洲精品久久成人aⅴ小说| 男女那种视频在线观看| 琪琪午夜伦伦电影理论片6080| 91九色精品人成在线观看| 亚洲国产精品成人综合色| 黄网站色视频无遮挡免费观看| 国产国语露脸激情在线看| 亚洲第一av免费看| 国产精品一区二区免费欧美| 午夜福利免费观看在线| 欧美激情久久久久久爽电影| 国产av又大| 精品人妻1区二区| svipshipincom国产片| 亚洲精品粉嫩美女一区| 中文字幕精品免费在线观看视频| 久久久久久久精品吃奶| 丝袜在线中文字幕| 成人国语在线视频| 91麻豆精品激情在线观看国产| 中文字幕av电影在线播放| 国产精品爽爽va在线观看网站 | 美女免费视频网站| 国产又黄又爽又无遮挡在线|