• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Study of Hyperbolicity of Kinetic Stochastic Galerkin System for the Isentropic Euler Equations with Uncertainty*

    2019-09-26 02:56:04ShiJINRuiwenSHU

    Shi JIN Ruiwen SHU

    (Dedicated to Professor Andrew J.Majda on the occasion of his 70th birthday)

    Abstract The authors study the fluid dynamic behavior of the stochastic Galerkin (SG for short)approximation to the kinetic Fokker-Planck equation with random uncertainty.While the SG system at the kinetic level is hyperbolic,its fluid dynamic limit,as the Knudsen number goes to zero and the underlying kinetic equation approaches to the uncertain isentropic Euler equations,is not necessarily hyperbolic,as will be shown in the case study fashion for various orders of the SG approximations.

    Keywords Hyperbolic equations,Uncertainty quantification,Stochastic Galerkin methods

    1 Introduction

    Hyperbolic conservation laws are one of the classical nonlinear partial differential equations with important applications from gas dynamics,shallow water,combustion,to magnetohydrodynamics.A general system of conservation laws reads

    where t ∈R≥0is time,and x ∈Ω ?R is space,assumed to be one-dimensional for simplicity.U(t,x)= (U1(t,x),··· ,Un(t,x))Tis the vector of conserved quantities,and F(U)=(F1(U),··· ,Fn(U))is the flux function,assumed to be at least C1.The system is called hyperbolic if the Jacobian matrix ?UF is real-diagonalizable.For most models from physics in conservation forms,in particular,the compressible Euler equations in gas dynamics,the hyperbolicity condition is satisfied.

    Consider the isentropic Euler equations

    Here ρ >0 is the density of gas,and m is the momentum.The Jacobian of ?UF is given by

    Hydrodynamic equations have two components:Conservations and equations of state (or constitutive relations).While the conservation properties are basic physical properties typically satisfied for an ensemble of large number of particles,the equation of state or constitutive relations are usually empirical,thus inevitably contains uncertainty.Uncertainties also arise from initial and/or boundary data,and/or forcing or source terms,due to measurement or modeling errors.By quantifying how these uncertainties affect the behavior of the solution,one can make reliable predictions of the physical quantities modeled by the conservation laws and further calibrate or improve the models.To model the uncertainty,we introduce a random variable z lying in a random space Iz?Rdwith a probability distribution π(z)dz,and any uncertain quantity is described by its dependence on z.For example,uncertain initial data is modeled by Uin= Uin(x,z).As a result,the solution U also depends on z:U = U(t,x,z).The solution U(t,x,z)still satisfies the same equations (1.1),but depends on an extra random parameter z.

    In the last few decades,many methods have been developed for uncertainty quantification(UQ for short)(see[8-9,17,28-29]),including the Monte Carlo methods,stochastic collocation(SC for short)methods and stochastic Galerkin (SG for short)methods.The Monte Carlo methods (see [20])solve the deterministic problem on random sample points,and then obtain statistical information by averaging.Stochastic collocation methods (see [1,3,21,30])solve the deterministic problem on some well-chosen sample points (for example,quadrature points,or points chosen by some optimization procedure),and then compute statistical quantities by interpolation.Stochastic Galerkin methods (see [2-3,31])use a finite (K-)dimensional orthonormal basis in the random space Iz(with respect to π(z)dz),expand any function in z in the L2space as a linear combination of this basis.After conducting the Galerkin projection one obtains a deterministic system of the K coefficients in the expansion.A popular choice of basis is the generalized polynomial chaos (gPC for short)basis (see [31]),which are the orthonormal polynomials with respect to π(z)dz.

    The main advantage of the Monte Carlo methods is that it maintains a convergence orderfor any dimensional random spaces,thus it is efficient even if the dimension d is large.SC and SG methods can achieve high convergence order if the solution is sufficiently smooth in the random space,but they suffer from the ‘curse of dimensionality’ if d becomes large.

    The Monte Carlo and SC methods are non-intrusive methods:One only needs to run the deterministic solver many times to obtain statistical information of the random solution.However,for the intrusive gPC-SG methods,the system of the gPC coefficients is a coupled system,which may be significantly different from the deterministic equations.One usually needs to design new numerical methods to solve it.

    When applied to system of hyperbolic conservation laws (1.1),the gPC-SG method gives a system of conservation laws for the gPC coefficients which may lose the hyperbolicity,unless for special classes of systems which include:

    · Symmetric conservation laws,i.e.,?UF is symmetric.This includes scalar conservation laws.See [11] for an example.

    · Linear conservation laws,i.e.,F is linear.

    One example of loss of hyperbolicity is given in [5] for the Euler equations.When hyperbolicity of the gPC-SG method is lost,the initial value problem of the gPC-SG system becomes ill-posed.

    One possible fix of the loss of hyperbolicity of the gPC-SG method is proposed by [24].By using entropy variables,they write (1.1)into a symmetric form,and this symmetry can be maintained by the gPC-SG method.However,this method requires the transformation between the conservative variables U and the entropy variables in each time step and every grid point,which is very costly in general.For other efforts in this direction see [7,23,26].

    It is well known that many hyperbolic conservation laws can be obtained as the hydrodynamic limit of kinetic equations.For example,the Euler equations are the hydrodynamic limit of the Boltzmann equation (with the hyperbolic scaling)(see [4]),and the isentropic Euler equations (1.2)is the hydrodynamic limit of the kinetic Fokker-Planck equation (see [27])

    where v ∈R is the velocity variable,f =f(t,x,v)is the particle distribution function,and Lfis the kinetic Fokker-Planck operator

    Here Kn is the Knudsen number,the dimensionless particle mean free path.As Kn →0,the hydrodynamic limit (1.2)is (formally)obtained.

    Recently there has been a rapid progress on the gPC-SG methods for multiscale kinetic equations with uncertainty (see [10,13-15,32]).Many gPC-SG methods have the stochastic asymptotic-preserving(s-AP for short)property(see[15]),which means that the method works uniformly from the kinetic regime (Kn = O(1))to the fluid regime (Kn <<1),with a fixed number K of basis functions.Also,the random space regularity of the solutions for various kinetic equations have been proved,in the linear cases (see [12-13,18]),and nonlinear ones(see [16,19,25]).Consequently one can even establish the spectral accuracy,uniform in Kn,of the gPC-SG methods.In the case of nonlinear kinetic equations,such results were obtained for solutions near the global Maxwellian.Note that at the kinetic level,the equation is a scalar equation,and moreover,with a linear convection,thus the gPC-SG approximations naturally preserve the hyperbolicity of the kinetic equations.Therefore,one may be curious whether the hyperbolicity of the kinetic gPC-SG system for a kinetic equation will survive in the fluid dynamic limit.If it does,then this would provide a vehicle to derive stable gPC-SG approximations for the compressible Euler equations,as in their deterministic counterparts,which is known as the kinetic schemes for the Euler equations (see [22]).

    In this work,we give a counter-argument to this.For the kinetic Fokker-Planck equation(1.4),we show that the gPC-SG system for (1.4),after taking a formal hydrodynamic limit by sending Kn →0,does not necessarily give a hyperbolic gPC-SG approximation for (1.2).To be precise,our numerical results suggest that the gPC-SG method obtained from a kinetic approach may fail to be hyperbolic even for arbitrarily small randomness,if K = 4.However,for K =2,3,we prove that hyperbolicity holds under reasonable assumptions.

    The paper is organized as follows:In Section 2 we introduce the gPC-SG method for the kinetic Fokker-Planck equation (1.4)with uncertainty,and formally derive its hydrodynamic limit as the gPC-SG method for the isentropic Euler equations (1.2); in Section 3 we show that the Jacobian matrix of the gPC-SG system of(1.2),if contains imaginary eigenvalues,the imaginary part will be small if the uncertainty of ρ and m is small; in Section 4 we prove the hyperbolicity of this gPC-SG system for K = 2,3 under reasonable assumptions,and provide numerical evidence suggesting that hyperbolicity may fail for arbitrarily small randomness when K =4.The paper is concluded in Section 5.

    2 The gPC-SG Method

    In this section we aim to derive a gPC-SG method for the isentropic Euler equations (1.2)with uncertainty as the hydrodynamic limit of a gPC-SG method for the kinetic Fokker-Planck equation (1.4)with uncertainty.

    We start by deriving formally the hydrodynamic limit of the deterministic kinetic Fokker-Planck equation (1.4).The Fokker-Planck operator (1.5)conserves mass and momentum:

    The local equilibrium of Lf(f),i.e.,the f with Lf(f)=0,is given by the local Maxwellian

    with ρ(t,x)and u(t,x)being the local density and bulk velocity.As Kn →0 in (1.4),one can see (formally)that f is at this local equilibrium.Then by taking moments of (1.4)against 1,v and using (2.2),one obtains the hydrodynamic limit (1.2)with m=ρu.

    2.1 The gPC-SG method for (1.4)

    For simplicity,we assume the random space is one-dimensional.The gPC basis associated to π(z)dz is denoted byis a polynomial of degree k - 1,satisfying the orthonormal property

    We expand the solution f(t,x,v,z)to (1.4)into gPC series and truncate:

    Here fk(t,x,v)are the gPC coefficients,which no longer depend on the random variable z.

    If one directly substitutes (2.4)into (1.4)and conduct Galerkin projection,then the termin the Fokker-Planck operator will becomedz,with ρK,mKdefined similarly to (2.4).This term is not easy to compute numerically from the gPC coefficients f1,··· ,fK.Instead,by conducting the gPC-SG method on the identity

    we get an approximation

    where

    is the vector of the gPC coefficients,and A(ρ)is the multiplication matrix given by

    Notice that A(ρ)is symmetric,and positive-definite iffor all z.In this case,

    Similarly,we obtain

    Using these two approximations,we obtain the gPC system

    Remark 2.1There is more than one way to approximate the gPC coefficients of the termf,for example,by A(ρ)-1A(m)However,(2.12)seems to be the only consistent approximation which is easy to compute and conserves momentum (see next section for the conservation properties).

    2.2 Properties of the gPC system

    (2.12)has the same conservation properties.

    Lemma 2.1(2.12)conserves mass and momentum:

    ProofIt is clear thatTo see the second equality,

    Notice that if we use A(ρ)-1A(m)instead of A(m)A(ρ)-1then the momentum conservation does not hold.

    Then,similar to [14],we have the local equilibrium ofgiven by the following.

    Lemma 2.2Assume ρK(z)>0 for all z.Thenimplies

    where exp(-A?v)is defined as the solution at s=1 to the system

    ProofWe first show that exp(-A?v)is well-defined,i.e.,the linear system of conservation laws (2.17)is hyperbolic.We need to show that the matrix A is real-diagonalizable.To see this,notice that

    Then,to see the local equilibrium (2.16),we use the conjugate structure of →L:

    Remark 2.2A rigorous proof of (2.19)can be obtained in a similar way to [14].We omit the details.

    Using (2.16),one obtains

    where we first integrate by parts,and use the fact that only the terms with j = 0,2 do not vanish.Taking moments of(2.11)and using this,one obtains the limiting fluid dynamic system

    (2.22)is a system of conservation laws for the 2K functionsandThe Jacobian of the flux function of (2.22)is given by the block matrix

    where I stands for the identity matrix,

    and

    3 Analysis of Hyperbolicity of (2.22)for Small Randomness

    In this section we study the eigenvalues of J,in the case when the randomness is small.

    Theorem 3.1The imaginary part of any eigenvalue of J is at most O(∈2).

    To prove the theorem,we start with the following lemma.

    Lemma 3.1For givenwe denote the corresponding J asThen one has

    where eig means the eigenvalues of matrix,and the last +α means adding α to each eigenvalue.

    ProofExplicit calculation shows that

    where B(1),B(2)are those inThus

    Without loss of generality,we may assume ρ1=1.To analyze the imaginary parts of eig(J),one can replaceto make m1=0,in view of Lemma 3.1.Since m1=O(1),this replacement does not affect any smallness condition.From now on we will assume

    Then we define the following matrix:

    Also define

    and its inverse is given by

    Explicit computation shows

    Lemma 3.2Assume (3.4).Then

    ProofIt suffices to check B(1)=-A(m)2+O(∈2)and B(2)=2A(m)+O(∈2).

    The equation for B(1)is clear since both B(1)and -A(m)2are of order O(∈2).

    To check the expansion for B(2),notice that

    To analyze the size of imaginary part of eigenvalues of J,we need the following lemma,which is a consequence of the Gershgorin Circle Theorem (see [6]).

    Lemma 3.3Suppose A,B are real matrices.Suppose A can be real-diagonalized by PAP-1= D = diag{λ1,··· ,λK} with max(‖P‖,‖P-1‖)≤C1and ‖B - A‖ ≤C2.Here ‖A‖ =Then

    (i)each eigenvalue η of B satisfiesfor some i.In particular,the imaginary part of η is at most C;

    (ii)if |λi-λj|>2C for each i <j,then the eigenvalues {ηk} of B can be arranged so that|ηk-λk|≤C,k =1,··· ,K,and B is real-diagonalizable.

    ProofFirst,

    Since‖P(B-A)P-1‖≤‖P‖‖B-A‖‖P-1‖≤C,it follows from the Gershgorin Circle Theorem that each eigenvalue η of B satisfies |η-λi|≤C for some i.This proves (i).

    To prove(ii),let ηk(t)be the k-th eigenvalue of(1-t)A+tB,for 0 ≤t ≤1.Then each ηk(t)is a complex-valued continuous function,with ηk(0)=λk.Also,for each fixed k,t,one has the estimate |ηk(t)-λi|≤C for some i.Since |λi-λj|>2C for each i <j,the only possibility is that |ηk(t)-λk| ≤C for 0 ≤t ≤1.This shows that |Re(ηk(1))-λk| ≤C,and thus {ηk(1)},the eigenvalues of B,have distinct real parts.Since B is a real matrix,this implies that B is real-diagonalizable.

    Finally we prove Theorem 3.1.

    Proof of Theorem 3.1The matrixcan be diagonalized by

    where P1is an orthogonal matrix,P2is defined in (3.6),and λ1,··· ,λKstand for the real eigenvalues of the symmetric matrix A(m).This is because

    is symmetric(see(3.8)),and has eigenvalues{λk±1,k=1,··· ,K}.It is clear that P1,P2,,are of order O(1).Therefore the conclusion follows from Lemma 3.2 and Lemma 3.3(i).

    4 Analysis of Hyperbolicity of (2.22)for Specific Values of K

    In this section we analyze the hyperbolicity of(2.22)for specific values of K.We will show:

    · For K =2,(2.22)is hyperbolic iffor all z ∈Iz(Theorem 4.1).

    · For K = 3,(2.22)may fail to be hyperbolic if one only assumes ρK(z)>0 (Subsection 4.2.1).However,(2.22)is hyperbolic if ρ1= O(1),m1= O(1)and ρ2,ρ3,m2,m3are small enough (Theorem 4.2),for some special cases of π(z).

    · For K ≥4,we provide numerical evidence showing that (2.22)may fail to be hyperbolic even if ρ1=O(1),m1=O(1)and ρk,mk,k =2,··· ,K are small (Subsection 4.3).

    4.1 The case K = 2

    Lemma 4.1Assume K =2.Define the 2*2 matrix Φij=φj(zi),where z1,z2∈Izare the two-point Gauss quadrature points (with respect to the probability measure π(z)dz).Then for any=(f1,f2)T,we have

    ProofWe first show that the matrix Ψ defined by Ψij= φi(zj)wj,where w1,w2are the quadrature weights corresponding to z1,z2,is the inverse of Φ.In fact,

    where the second equality is because φiφkis a polynomial of degree at most 2,and the quadrature is exact for polynomials of degree at most 3.Similarly,

    since φiφjφkis a polynomial of degree at most 3.

    Then,denoting Sias the matrix given by (Si)jk=Sijk,we have

    where in the third equality we used ΦΨ=I.Thus

    and the conclusion follows.

    Then it follows easily.

    Theorem 4.1Assume K =2.If ρK(z)>0 for all z ∈Iz,then (2.22)is hyperbolic.

    ProofWe use the same notation as Lemma 4.1.Multiplying by Φ on each equation of(2.22)and using Lemma 4.1 gives

    Remark 4.1In fact,this proof shows that for K =2 the gPC system (2.22)is equivalent to a stochastic collocation method at z1,z2.

    4.2 The case K = 3

    In this subsection we assume K =3 and prove the hyperbolicity of(2.22)for small randomness.Same as the previous subsection,we will assume (3.4)without loss of generality.

    Lemma 4.2Assume (3.4)and |m2|+|m3| = 1.Then there exists c1>0 such that any two eigenvalues λi,λjof the symmetric matrix A(m)satisfy |λi-λj|≥c1.

    Proof for Special DistributionsIt is clear that all λiare at most O(1).Therefore,it suffices to show that the discriminant of det(λI -A(m))(as a cubic polynomial of λ)is away from zero.Let us write x=m2,y =m3,a=S223,b=S333for clarity,

    Its discriminant is given by the degree-6 homogeneous polynomialHere G(x)is a degree three polynomial,given by the following in the special cases:

    · When Iz=[-1,1]with the uniform distribution,φkare the normalized Legendre polynomials,andThen

    ·When Iz=R with the Gaussian distribution,φkare the normalized Hermite polynomials,andThen

    One can easily verify that for both cases G(x)is positive for x >0.Therefore disc is always positive,ifSince the set |x|+|y| = 1 is compact and disc is continuous with respect to x and y,disc has a positive lower bound.

    Theorem 4.2Assume (3.4)and |ρ2|+|ρ3|+|m2|+|m3| ≤c with c >0.If c is small enough,then J defined in (2.23)is real-diagonalizable,i.e.,(2.22)is hyperbolic.

    ProofWe denote δ =|m2|+|m3|.Then we claim

    where B(1),B(2)are the block matrices appeared in (2.23).The equation for B(1)is clear since both B(1)and -A(m)2are of order O(δ2).To check the equation for B(2),

    where ρ′= (0,ρ2,ρ3)T,and we used A(ρ′)= O(c),= O(δ).We also used the fact that c is small enough so that

    Now we claim that if c is small enough,thenJ and J satisfy the assumptions of Lemma 3.3(ii).In fact,we already showed in Theorem 3.1 that the transformation matrix P = P1P2of(defined in the proof of Theorem 3.1)is C1= O(1)(following the notation in Lemma 3.3).Then we have ‖J -‖ = C2= O(cδ).Therefore C = C21C2= O(cδ).We also have|μi-μj| ≥c1δ.Therefore,if we choose c small enough such that C = O(cδ)<,then one has |μi-μj|≥2C.Then the conclusion that J is real-diagonalizable follows from Lemma 3.3(ii).

    4.2.1 Loss of hyperbolicity forK = 3 with large uncertainty

    We show by counterexample that for K = 3,even if ρK(z)>0 for all z ∈Iz,(2.22)may still fail to be hyperbolic if the uncertainty of m is large.

    We take Iz=[-1,1]with the uniform distribution(so that φk(z)are the normalized Legendre polynomials).We take →ρ=(1,-0.1076151078,-0.01061304986)T,→m=(0,4.678859141,3.49 8325096)T.In this case one clearly has ρK(z)>0.Numerical result shows that J has the complex eigenvalues -2.172329053±0.009698318358i.

    4.3 The case K ≥4

    For K ≥ 4,we try to find →ρ,→m with (3.4)and small uncertainty (in the sense thatis small),such that J(→ρ,→m)has non-real eigenvalues,and we want the imaginary part of non-real eigenvalues as large as possible.We take Iz= [-1,1] with the uniform distribution (so that φk(z)are the normalized Legendre polynomials).The algorithm for finding such →ρ,→m and the numerical parameters are described in Appendix.

    We take K = 4,5,6 and various values of size of randomness ∈.For each K,we plot the maximal imaginary part of eigenvalues of J found by the algorithm (the variable maximag in the algorithm)versus ∈,see Figure 1.One can clearly see that for each K,maximag is proportional to ∈3.In particular,this result strongly suggests that there are examples for which J has non-real eigenvalues for arbitrarily small size of randomness.Also,this result suggests that Theorem 3.1 may not be sharp,the sharp estimate could be O(∈3).

    Figure1 Maximal imaginary part of eigenvalues of J (found by Algorithm 1)versus ∈.From top to bottom:K = 4,5,6.Horizontal axis:The size of randomness ∈.Blue asterisks:Maximal imaginary part of eigenvalues of J (found by Algorithm 1).Red line:slope=3.

    5 Conclusion

    In this paper,we study the fluid dynamic behavior of the stochastic Galerkin system to the kinetic Fokker-Planck (FP for short)equation with random uncertainty.As the Knudsen number goes to zero,the FP system approaches to the isentropic Euler system with uncertainty.For various orders of the Stochastic Galerkin (SG for short)system for the FP,we show that their fluid dynamic limits,which give rise to SG systems to the Euler equations,are not necessarily hyperbolic.Thus one cannot expect to derive kinetic SG system to the isentropic Euler equations with uncertainty from the kinetic approximation,in contrast to the deterministic case where kinetic approximations provide a robust mechanism to derive kinetic schemes for the Euler equations.

    Our analysis was carried out in the case study fashion,for various orders of the SG approximation.So far there has been no general theory for general order of the SG approximation.It will be interesting to develop a more general theory for the problem.It will also be interesting to study the problem for the full Euler equations as the fluid dynamic limit of the Boltzmann equation.

    6 Appendix:The Algorithm for Finding J with Non-real Eigenvalues

    We use the following algorithm to find J with non-real eigenvalues:For a randomly chosenwe try to adjustto decrease the minimum distance of two distinct real eigenvalues of J as much as possible.This procedure drives J to have multiple eigenvalues,and one expects a small perturbation may make J have non-real eigenvalues,in case there are no obstruction for the eigenvalues of being non-real.Then we try to adjustto increase the imaginary parts of non-real eigenvalues.

    Here we provide the code for the algorithm used in Subsection 4.3 to find J with non-real eigenvalues.It looks forsuch that the size of randomness,measured by

    is equal to a given ∈>0.We need three numerical parameters ntrial,niter1and niter2,whose meanings are explained as follows:For each randomly chosenwe try niter1times to adjust it in order to decrease the minimum distance of two distinct real eigenvalues of J.In case we fnidsuch that J has non-real eigenvalues,we then try niter2times to adjust it in order to increase the imaginary parts of non-real eigenvalues.The whole procedure is repeated ntrialtimes and the largest imaginary part of non-real eigenvalues (the variable maximag)is reported.In all the numerical results,we take the numerical parameters ntrial= 100 and niter1=niter2=1000.

    AcknowledgementThe authors thank Prof.Pierre Degond for stimulating discussions and encouragement for this work.

    Algorithm 1 Look for →ρ,→m such that J has large non-real eigenvalues Require:∈>0,ntrial,niter1,niter2 ∈Z>0 Ensure:Print →ρmax,→mmax,maximag such that ρ1 = 1,m1 = 0,K∑(|ρk| + |mk|)= ∈,and eig(J(→ρmax,→mmax))has a complex eigenvalue with imaginary part maximag >0,or print ‘Did not found’.1:maximag ←0 2:for itrial =1:ntrial do 3:ρ1 ←1,m1 ←0 4:Randomly generate ρk,mk,k =2,··· ,K such that k=2 K∑(|ρk|+|mk|)=∈5:eigJ ←eig(J(→ρ,→m))6:ind ←min{|λ1-λ2|:λ1,λ2 ∈eigJ,λ1 /=λ2}7:for iiter1 =1:niter1 do 8:if not isreal(eigJ)then 9:break 10:end if 11:Perturb ρk,mk,k = 2,··· ,K into ρ1k,m1k randomly,with size of perturbation ind,such that they do not change sign,and k=2 K∑(|ρk|+|mk|)=∈is kept the same.12:eigJ1 ←eig(J(→ρ1,→m1))13:ind1 ←min{|λ1-λ2|:λ1,λ2 ∈eigJ1,λ1 /=λ2}14:if not isreal(eigJ1)or ind1 <ind then 15:→ρ ←→ρ1,→m ←→m1,eigJ ←eigJ1,ind ←ind1 16:end if 17:end for 18:if isreal(eigJ)then 19:continue 20:end if 21:ind ←max{Im(λ):λ ∈eigJ}22:for iiter2 =1:niter2 do 23:Perturb ρk,mk,k = 2,··· ,K into ρ1k,m1k randomly,with size of perturbation ind,such that they do not change sign,and k=2 K∑(|ρk|+|mk|)=∈is kept the same.24:eigJ1 ←eig(J(→ρ1,→m1))25:if isreal(eigJ1)then 26:ind1 ←0 27:else 28:ind1 ←max{Im(λ):λ ∈eigJ1}29:end if 30:if ind1 >ind then 31:→ρ ←→ρ1,→m ←→m1,eigJ ←eigJ1,ind ←ind1 32:end if 33:end for 34:if ind >maximag then 35:→ρmax ←→ρ,→mmax ←→m,maximag ←ind 36:end if 37:end for 38:if maximag >0 then 39:print →ρmax,→mmax,maximag 40:else 41:print ‘Did not found’42:end if k=2

    中文字幕精品亚洲无线码一区| 国产精品一区二区三区四区免费观看| 午夜福利在线在线| 成年女人永久免费观看视频| 亚洲av免费高清在线观看| 亚洲av电影不卡..在线观看| 亚洲国产精品合色在线| 国产 一区精品| 丰满乱子伦码专区| 亚洲人与动物交配视频| 欧美最黄视频在线播放免费| 一进一出抽搐gif免费好疼| 97超视频在线观看视频| 成人毛片a级毛片在线播放| 国产成人精品一,二区 | 插逼视频在线观看| 亚洲电影在线观看av| 在线观看av片永久免费下载| 欧美日韩在线观看h| 国产成人91sexporn| 少妇的逼好多水| 免费看美女性在线毛片视频| 嫩草影院入口| 国产人妻一区二区三区在| 国产单亲对白刺激| 日韩一区二区视频免费看| 小说图片视频综合网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩大尺度精品在线看网址| 欧美日韩一区二区视频在线观看视频在线 | 国产高清视频在线观看网站| 国产人妻一区二区三区在| 级片在线观看| 日本-黄色视频高清免费观看| 亚洲欧洲国产日韩| 99riav亚洲国产免费| 直男gayav资源| 国产精品国产高清国产av| 国产一区二区三区av在线 | 日本熟妇午夜| 最好的美女福利视频网| 亚洲最大成人av| 最近的中文字幕免费完整| av专区在线播放| av在线蜜桃| 亚洲精品色激情综合| 亚洲精品国产av成人精品| 国产av一区在线观看免费| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 久久午夜福利片| 免费黄网站久久成人精品| 国产成人freesex在线| 91aial.com中文字幕在线观看| 嫩草影院精品99| 久久精品国产亚洲网站| 看免费成人av毛片| 99久久精品热视频| 给我免费播放毛片高清在线观看| 免费观看精品视频网站| 久久久午夜欧美精品| 狂野欧美激情性xxxx在线观看| 欧美xxxx性猛交bbbb| 国产av麻豆久久久久久久| 成人毛片a级毛片在线播放| 哪里可以看免费的av片| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 久久这里只有精品中国| 毛片女人毛片| 看片在线看免费视频| 中文字幕av成人在线电影| 国产成人福利小说| 国产黄色视频一区二区在线观看 | 我的老师免费观看完整版| 久久久久久久久久黄片| 精品人妻熟女av久视频| 久久久久久久久久成人| 国产精品av视频在线免费观看| 色播亚洲综合网| 高清毛片免费看| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 性色avwww在线观看| 国产又黄又爽又无遮挡在线| 午夜福利在线观看免费完整高清在 | 午夜激情福利司机影院| 少妇熟女aⅴ在线视频| 亚洲成人中文字幕在线播放| 卡戴珊不雅视频在线播放| 高清毛片免费看| 九九在线视频观看精品| 久久久精品94久久精品| 成人二区视频| 国产亚洲精品久久久久久毛片| 深夜精品福利| 中文字幕精品亚洲无线码一区| 亚洲无线观看免费| www.色视频.com| 亚洲最大成人手机在线| 日韩在线高清观看一区二区三区| av在线观看视频网站免费| 日本免费a在线| 中出人妻视频一区二区| 天天一区二区日本电影三级| 欧美日本亚洲视频在线播放| 精品久久久久久久末码| 99热精品在线国产| 日本与韩国留学比较| 在线观看美女被高潮喷水网站| 可以在线观看的亚洲视频| 久久久欧美国产精品| 边亲边吃奶的免费视频| 亚洲最大成人av| 日本撒尿小便嘘嘘汇集6| 国产成人一区二区在线| 神马国产精品三级电影在线观看| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av天美| 波野结衣二区三区在线| 亚洲熟妇中文字幕五十中出| 99热这里只有是精品在线观看| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| av在线播放精品| 亚洲不卡免费看| 国产熟女欧美一区二区| a级毛片a级免费在线| 狂野欧美白嫩少妇大欣赏| 久久久久免费精品人妻一区二区| 精品国产三级普通话版| 好男人在线观看高清免费视频| 天堂√8在线中文| 午夜福利高清视频| 别揉我奶头 嗯啊视频| 麻豆成人av视频| 美女脱内裤让男人舔精品视频 | 变态另类成人亚洲欧美熟女| 日韩欧美 国产精品| 久久精品久久久久久噜噜老黄 | 中国国产av一级| videossex国产| 日韩 亚洲 欧美在线| 国产综合懂色| 欧美不卡视频在线免费观看| 亚洲精品自拍成人| 深夜精品福利| 国模一区二区三区四区视频| 美女高潮的动态| 黄色一级大片看看| 成人国产麻豆网| 最近手机中文字幕大全| 中文资源天堂在线| 国产成人91sexporn| 在线免费十八禁| 色5月婷婷丁香| 亚洲欧美成人综合另类久久久 | av黄色大香蕉| 欧美精品一区二区大全| 久久久精品94久久精品| 久久久久久久午夜电影| 日韩人妻高清精品专区| 日韩一区二区三区影片| 午夜免费激情av| 午夜激情欧美在线| 久久久久久久久久久丰满| 日韩成人伦理影院| 国产女主播在线喷水免费视频网站 | 久久久精品欧美日韩精品| 午夜福利视频1000在线观看| 久久精品国产亚洲av天美| 精品少妇黑人巨大在线播放 | 2021天堂中文幕一二区在线观| 久久久久久久午夜电影| 午夜免费激情av| 日本一本二区三区精品| 哪个播放器可以免费观看大片| 97热精品久久久久久| 国产激情偷乱视频一区二区| 搡女人真爽免费视频火全软件| 久久午夜福利片| 青春草视频在线免费观看| 村上凉子中文字幕在线| 精品欧美国产一区二区三| 在线播放无遮挡| 婷婷六月久久综合丁香| 麻豆乱淫一区二区| 黄色日韩在线| 18禁在线播放成人免费| 成人美女网站在线观看视频| 3wmmmm亚洲av在线观看| 日韩一区二区三区影片| 国内精品美女久久久久久| 青青草视频在线视频观看| 国产精品永久免费网站| 中文字幕av成人在线电影| 女人十人毛片免费观看3o分钟| 国产在线精品亚洲第一网站| 黄片wwwwww| 国产亚洲av嫩草精品影院| 少妇的逼水好多| www日本黄色视频网| 国产精品嫩草影院av在线观看| 伦精品一区二区三区| 日韩欧美三级三区| 亚洲不卡免费看| 在线观看av片永久免费下载| 最近手机中文字幕大全| 日韩,欧美,国产一区二区三区 | 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 黄片wwwwww| 成人av在线播放网站| 岛国毛片在线播放| a级毛片a级免费在线| 久久久久久久久久久丰满| 久久欧美精品欧美久久欧美| 日本一二三区视频观看| 国产精品.久久久| 精品久久国产蜜桃| 又黄又爽又刺激的免费视频.| 亚洲成人精品中文字幕电影| 亚洲国产精品成人久久小说 | 免费观看的影片在线观看| 日韩大尺度精品在线看网址| 亚洲综合色惰| 成人亚洲精品av一区二区| 两个人的视频大全免费| 卡戴珊不雅视频在线播放| 亚洲av中文字字幕乱码综合| 亚洲自偷自拍三级| 久久精品国产亚洲av天美| av天堂在线播放| 亚洲精品国产av成人精品| 欧美日韩国产亚洲二区| 男女边吃奶边做爰视频| 亚洲在线观看片| 少妇人妻一区二区三区视频| 99热全是精品| 国内精品美女久久久久久| 两个人视频免费观看高清| 中文字幕久久专区| 美女黄网站色视频| 直男gayav资源| 久久99精品国语久久久| 国产黄色视频一区二区在线观看 | 九九久久精品国产亚洲av麻豆| 亚洲成人久久爱视频| 国产伦在线观看视频一区| 身体一侧抽搐| 国产精品久久久久久精品电影| 欧美xxxx黑人xx丫x性爽| 国产乱人偷精品视频| 全区人妻精品视频| 国产国拍精品亚洲av在线观看| 国产精品美女特级片免费视频播放器| 尾随美女入室| 国产蜜桃级精品一区二区三区| 国产淫片久久久久久久久| 亚洲人成网站在线观看播放| 91aial.com中文字幕在线观看| 一级二级三级毛片免费看| 国产视频内射| 免费一级毛片在线播放高清视频| 永久网站在线| 长腿黑丝高跟| 亚洲av免费在线观看| 99久国产av精品国产电影| 日韩大尺度精品在线看网址| 波多野结衣高清无吗| 91在线精品国自产拍蜜月| 亚洲第一电影网av| 日本-黄色视频高清免费观看| 少妇的逼好多水| 美女高潮的动态| 欧美激情久久久久久爽电影| 久久人人精品亚洲av| 最近中文字幕高清免费大全6| 国产69精品久久久久777片| 99热精品在线国产| ponron亚洲| 狂野欧美激情性xxxx在线观看| 非洲黑人性xxxx精品又粗又长| 91狼人影院| 亚洲精品成人久久久久久| 午夜老司机福利剧场| 亚洲在线自拍视频| 国产三级中文精品| 成人午夜高清在线视频| 亚洲图色成人| 在线观看免费视频日本深夜| 色哟哟·www| 免费在线观看成人毛片| 搞女人的毛片| 精品一区二区免费观看| 日韩亚洲欧美综合| 看黄色毛片网站| 国产一区二区三区av在线 | 国产精品1区2区在线观看.| 亚洲av一区综合| 成人欧美大片| 少妇的逼好多水| 老师上课跳d突然被开到最大视频| 国产不卡一卡二| 久久精品久久久久久久性| 一区二区三区高清视频在线| 亚洲国产色片| 亚洲成人久久性| 99riav亚洲国产免费| 看免费成人av毛片| av视频在线观看入口| 色5月婷婷丁香| 91久久精品国产一区二区三区| 国产日韩欧美在线精品| 久久中文看片网| 99久久人妻综合| 美女大奶头视频| 久久人人爽人人片av| 欧美一区二区精品小视频在线| 午夜老司机福利剧场| 三级经典国产精品| 毛片一级片免费看久久久久| 久久久久久久久久久免费av| 国产成人a∨麻豆精品| 久久久久国产网址| 最近中文字幕高清免费大全6| 欧美日本视频| 日韩强制内射视频| 在线播放无遮挡| 淫秽高清视频在线观看| 看黄色毛片网站| 国产一区二区亚洲精品在线观看| 日韩视频在线欧美| 亚洲国产欧美在线一区| 欧美最黄视频在线播放免费| 九色成人免费人妻av| 日韩视频在线欧美| 九色成人免费人妻av| 欧美一级a爱片免费观看看| 美女国产视频在线观看| 久久精品国产鲁丝片午夜精品| 久久精品久久久久久噜噜老黄 | 国产精品一区二区三区四区免费观看| 一区二区三区四区激情视频 | 久久久久九九精品影院| 欧美日韩一区二区视频在线观看视频在线 | 国产久久久一区二区三区| 婷婷色综合大香蕉| 久久草成人影院| 人人妻人人澡欧美一区二区| 99久久精品国产国产毛片| 九九在线视频观看精品| 国产亚洲av嫩草精品影院| 全区人妻精品视频| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 日韩欧美精品免费久久| 99视频精品全部免费 在线| 97热精品久久久久久| av福利片在线观看| 一本久久中文字幕| 精品熟女少妇av免费看| 欧美色视频一区免费| 国产成人精品久久久久久| 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| 1024手机看黄色片| 又粗又爽又猛毛片免费看| 1024手机看黄色片| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩高清专用| 国产女主播在线喷水免费视频网站 | 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久 | 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 久久亚洲精品不卡| 国产综合懂色| 国产亚洲91精品色在线| 欧美潮喷喷水| 舔av片在线| 中文资源天堂在线| 91在线精品国自产拍蜜月| 成人高潮视频无遮挡免费网站| а√天堂www在线а√下载| 免费看光身美女| 久久6这里有精品| 少妇高潮的动态图| 亚洲精品久久国产高清桃花| 天堂中文最新版在线下载 | 最近2019中文字幕mv第一页| 97超碰精品成人国产| 久久这里只有精品中国| 精品无人区乱码1区二区| 大香蕉久久网| 免费不卡的大黄色大毛片视频在线观看 | 老熟妇乱子伦视频在线观看| 国产精品一及| 成人二区视频| 国内少妇人妻偷人精品xxx网站| av卡一久久| a级一级毛片免费在线观看| 国产精品一及| 久久久国产成人精品二区| 人妻夜夜爽99麻豆av| 两个人视频免费观看高清| 天堂av国产一区二区熟女人妻| 久久精品国产清高在天天线| 老师上课跳d突然被开到最大视频| 在线免费观看的www视频| 精品久久久久久久久久免费视频| 亚洲国产欧美在线一区| 亚洲人成网站在线观看播放| 免费观看人在逋| www.av在线官网国产| 性插视频无遮挡在线免费观看| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区视频在线| av在线观看视频网站免费| 国产单亲对白刺激| 国产蜜桃级精品一区二区三区| 中文在线观看免费www的网站| 五月玫瑰六月丁香| 中文字幕av在线有码专区| 黄色视频,在线免费观看| 内射极品少妇av片p| 69av精品久久久久久| av天堂中文字幕网| 在现免费观看毛片| av天堂在线播放| 一级av片app| 亚洲中文字幕日韩| 国产一区二区激情短视频| 精品久久久久久久久久久久久| 亚洲精品亚洲一区二区| 国产成人影院久久av| 黄色配什么色好看| 一级二级三级毛片免费看| 啦啦啦韩国在线观看视频| 亚洲av.av天堂| 99久国产av精品| 久久精品人妻少妇| 给我免费播放毛片高清在线观看| 午夜久久久久精精品| 国产精品av视频在线免费观看| 国产亚洲av片在线观看秒播厂 | av在线蜜桃| 午夜激情欧美在线| 少妇被粗大猛烈的视频| 老女人水多毛片| 麻豆国产97在线/欧美| 亚洲欧美成人精品一区二区| 欧美激情在线99| 黄色日韩在线| 亚洲国产精品成人久久小说 | 国内久久婷婷六月综合欲色啪| 丰满人妻一区二区三区视频av| 日韩一区二区视频免费看| 深爱激情五月婷婷| 免费av不卡在线播放| 亚洲va在线va天堂va国产| 国产精品综合久久久久久久免费| 亚洲成a人片在线一区二区| 婷婷色综合大香蕉| 99热这里只有是精品50| 丰满乱子伦码专区| 色综合色国产| 在现免费观看毛片| 国产午夜精品久久久久久一区二区三区| 亚洲av电影不卡..在线观看| 精品午夜福利在线看| 国产精品人妻久久久久久| 一个人免费在线观看电影| 婷婷精品国产亚洲av| 久久久色成人| 亚洲乱码一区二区免费版| 嘟嘟电影网在线观看| www.色视频.com| 美女被艹到高潮喷水动态| 青青草视频在线视频观看| 变态另类成人亚洲欧美熟女| 久99久视频精品免费| 成人三级黄色视频| av黄色大香蕉| 国产精品爽爽va在线观看网站| 久久鲁丝午夜福利片| 国产亚洲av嫩草精品影院| 久久欧美精品欧美久久欧美| 高清毛片免费看| 久久精品影院6| 特级一级黄色大片| 一本久久精品| 亚洲精品久久久久久婷婷小说 | 亚洲三级黄色毛片| 日本免费a在线| 亚洲人成网站在线播放欧美日韩| 热99re8久久精品国产| 男人舔女人下体高潮全视频| 国产色婷婷99| 日本av手机在线免费观看| 亚洲人成网站在线播放欧美日韩| 少妇熟女欧美另类| 日韩中字成人| 欧美最黄视频在线播放免费| 精品免费久久久久久久清纯| 亚洲中文字幕一区二区三区有码在线看| 99热6这里只有精品| 精品久久久久久久久亚洲| 久久久a久久爽久久v久久| 我要看日韩黄色一级片| 亚洲色图av天堂| 精品欧美国产一区二区三| 黄片无遮挡物在线观看| 日韩欧美国产在线观看| 激情 狠狠 欧美| .国产精品久久| 久久久国产成人免费| 免费观看a级毛片全部| 国产精品永久免费网站| 淫秽高清视频在线观看| 亚洲色图av天堂| 人妻少妇偷人精品九色| av天堂在线播放| 精品99又大又爽又粗少妇毛片| 99久久中文字幕三级久久日本| 欧美高清成人免费视频www| 女人十人毛片免费观看3o分钟| 日本黄大片高清| 麻豆av噜噜一区二区三区| 免费av毛片视频| 亚洲三级黄色毛片| 岛国在线免费视频观看| 边亲边吃奶的免费视频| 啦啦啦啦在线视频资源| 亚洲18禁久久av| 97超碰精品成人国产| 一级毛片我不卡| 成年女人看的毛片在线观看| 久久精品国产99精品国产亚洲性色| 国产精品av视频在线免费观看| 国产激情偷乱视频一区二区| 亚洲欧美日韩卡通动漫| 日本免费一区二区三区高清不卡| 又爽又黄无遮挡网站| 精品久久久久久久久亚洲| 欧美高清性xxxxhd video| 亚洲三级黄色毛片| 丰满人妻一区二区三区视频av| 中文字幕免费在线视频6| 成人三级黄色视频| 久久久久性生活片| 国产精品福利在线免费观看| 中文字幕精品亚洲无线码一区| ponron亚洲| 精品一区二区三区视频在线| 男人舔奶头视频| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 乱码一卡2卡4卡精品| 久久人人爽人人爽人人片va| 在线国产一区二区在线| 国产黄a三级三级三级人| 波多野结衣巨乳人妻| 嫩草影院精品99| 九草在线视频观看| 欧美成人a在线观看| 人妻夜夜爽99麻豆av| 最近的中文字幕免费完整| 最好的美女福利视频网| 欧美成人精品欧美一级黄| 久久婷婷人人爽人人干人人爱| av在线老鸭窝| a级毛片a级免费在线| 久久久久国产网址| 能在线免费看毛片的网站| 久久热精品热| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆| 又爽又黄a免费视频| 天堂√8在线中文| 人人妻人人看人人澡| 搡老妇女老女人老熟妇| 老熟妇乱子伦视频在线观看| 亚洲精品影视一区二区三区av| av.在线天堂| 精品一区二区三区视频在线| 日韩精品青青久久久久久| 国产v大片淫在线免费观看| 色综合亚洲欧美另类图片| 日韩大尺度精品在线看网址| 亚洲av一区综合| 国产高清不卡午夜福利| 狂野欧美白嫩少妇大欣赏| av免费观看日本| 真实男女啪啪啪动态图| 哪里可以看免费的av片| av在线亚洲专区| 成人无遮挡网站| 欧美+亚洲+日韩+国产| 国产单亲对白刺激| 久久久久久久久大av| 亚洲在线自拍视频| 青春草亚洲视频在线观看| av天堂中文字幕网| 人妻少妇偷人精品九色| 18禁黄网站禁片免费观看直播| 久久久久久久久久久丰满| 精品久久国产蜜桃| 少妇高潮的动态图| 一本一本综合久久| 久久99精品国语久久久| 日本在线视频免费播放| 久久久久久国产a免费观看| www.av在线官网国产| 午夜免费激情av|