許丁文 熊彥 嚴(yán)慧深 雒森 姚偉娟
中圖分類號(hào) R737.31 文獻(xiàn)標(biāo)志碼 A 文章編號(hào) 1001-0408(2019)01-0040-06
DOI 10.6039/j.issn.1001-0408.2019.01.09
摘 要 目的:研究絲甘蛋白聚糖(SRGN)對(duì)卵巢癌耐藥性的影響及作用機(jī)制。方法:采用基因表達(dá)譜交互分析工具(GEPIA)提取卵巢癌相關(guān)數(shù)據(jù)集并分析SRGN mRNA在人類正常卵巢組織與卵巢癌組織的表達(dá)差異;基于基因表達(dá)數(shù)據(jù)庫(kù)(GEO)獲取SRGN mRNA在順鉑敏感性與順鉑耐藥性卵巢癌細(xì)胞株(A2780)中的表達(dá)差異;采用STRING在線數(shù)據(jù)庫(kù)篩選SRGN的互作蛋白(置信度為0.900,聯(lián)結(jié)數(shù)為10),然后通過(guò)生物學(xué)信息注釋數(shù)據(jù)庫(kù)(DAVID)進(jìn)行京都基因和基因組百科全書(shū)(KEGG)代謝通路分析,預(yù)測(cè)SRGN調(diào)節(jié)卵巢癌耐藥性的潛在通路;采用醫(yī)學(xué)本體信息檢索平臺(tái)COREMINE挖掘SRGN、卵巢癌、耐藥性三者顯著關(guān)聯(lián)的生物過(guò)程。結(jié)果:SRGN mRNA在卵巢癌組織中的表達(dá)顯著高于正常卵巢組織(P<0.05),在順鉑耐藥性卵巢癌細(xì)胞株中表達(dá)顯著高于順鉑敏感性卵巢癌細(xì)胞株(P<0.001)。篩選出10個(gè)與SRGN互作的蛋白,包括白蛋白、轉(zhuǎn)化生長(zhǎng)因子β1、血小板因子4、血纖維蛋白溶酶原、血管內(nèi)皮生長(zhǎng)因子A等;SRGN參與調(diào)節(jié)卵巢癌耐藥性的KEGG代謝通路有缺氧誘導(dǎo)因子1α信號(hào)通路、細(xì)胞因子-細(xì)胞因子受體通路、凝血與補(bǔ)體級(jí)聯(lián)反應(yīng)信號(hào)通路等,生物過(guò)程有基因表達(dá)、細(xì)胞生長(zhǎng)、凋亡過(guò)程、細(xì)胞死亡。結(jié)論:SRGN介導(dǎo)卵巢癌耐藥可能與缺氧誘導(dǎo)因子1α信號(hào)通路、細(xì)胞因子-細(xì)胞因子受體通路等有關(guān)。
關(guān)鍵詞 絲甘蛋白聚糖;卵巢癌;耐藥性;KEGG代謝通路;生物信息學(xué)
Effects of Serglycan on Drug Resistance of Ovarian Cancer and Its Mechanism Based on Bioinformatics
XU Dingwen1,XIONG Yan1,YAN Huishen1,LUO Sen1,YAO Weijuan2(1.School of Medical Science, Yangzhou Polytechnic College, Jiangsu Yangzhou 225009, China;2.School of Basic Medical Science, Peking University, Beijing 100191, China)
ABSTRACT OBJECTIVE: To study the effects of serglycan (SRGN) on drug resistance of ovarian cancer and its mechanism. METHODS: Gene expression profile interactive analysis tool (GEPIA) was used to extract related data set of ovarian cancer and analyze the difference of mRNA expression of SRGN between normal ovary tissue and ovarian cancer tissue. Gene expression database (GEO) was adopted to obtain the difference of the mRNA expression of SRGN in cisplatin sensitive and cisplatin resistant cell lines (A2780). STRING online database was used to screen proteins interacting with SRGN (confidence degree: 0.900, interactors: 10). Adopted biological information annotation database (DAVID) to analysis Kyoto encyclopedia of genes and genomers(KEGG)metabolism pathway to predict the potential pathways of SRGN regulating drug resistance of ovarian cancer. Medical ontology information retrieval platform COREMINE was used to mine the biological processes of significant relationship of SRGN and ovarian cancer with drug resistance. RESULTS: mRNA expression of SRGN in ovarian cancer tissue was significantly higher than normal ovarian tissue (P<0.05). mRNA expression of SRGN in cisplatin resistant ovarian cancer was significantly higher than cisplatin sensitive ovarian cancer (P<0.001). 10 proteins interacting with SRGN were screened, including albumin, transforming growth factor β1, platelet factor 4, fibrinolysin and vascular endothelial growth factor A. SRGN participated in KEGG metabolism pathway of regulating drug resistance of ovarian cancer, including HIF1α pathway, cytokine-cytokine receptor pathway, coagulation and complement cascades pathway, etc. Biological processes included gene expression, cell growth, apoptosis and cell death. CONCLUSION: SRGN mediates drug resistance of ovarian cancer, which is associated with HIF1α signaling pathway and cytokine-cytokine receptor pathway.
KEYWORDS Serglycan; Ovarian cancer; Drug resistance; KEGG metabolism pathway; Bioinformatics
卵巢癌(Ovarian cancer,OV)在婦科疾病中致死率最高,臨床上一般采用化療結(jié)合腫瘤細(xì)胞減滅術(shù)的手段治療卵巢癌[1]。鉑類與紫杉醇類藥物的聯(lián)合化療是治療卵巢癌的標(biāo)準(zhǔn)方案,可以使大部分卵巢癌患者得到完全緩解,但75%的卵巢癌患者在治療后期會(huì)出現(xiàn)化療耐藥,使得化療效果差、患者長(zhǎng)期存活率降低[2]。相關(guān)研究表明,耐藥相關(guān)基因的異常表達(dá)是造成耐藥一個(gè)重要而普遍的原因[3]。因此,卵巢癌耐藥基因的挖掘?qū)τ谔岣呗殉舶┗熜Ч哂兄匾饬x。
絲甘蛋白聚糖(SRGN)是一種小分子蛋白聚糖,在正常的造血細(xì)胞、胚胎干細(xì)胞、內(nèi)皮細(xì)胞和部分腫瘤細(xì)胞中均有表達(dá)。SRGN不僅參與了炎癥、傷口愈合、細(xì)胞凋亡等病理生理過(guò)程[4],而且參與了急性髓性白血病的形成、多發(fā)性骨髓瘤細(xì)胞骨礦物化、鼻咽癌的轉(zhuǎn)移、乳腺癌的轉(zhuǎn)移、非小細(xì)胞性肺癌的浸潤(rùn)等腫瘤病理過(guò)程[5]。此外,SRGN還與多發(fā)性骨髓瘤的耐藥性以及多株造血腫瘤細(xì)胞的耐藥性有關(guān)[6]。基于SRGN在多種腫瘤組織中廣泛表達(dá)且與其耐藥性有關(guān),本文綜合運(yùn)用基因組表達(dá)數(shù)據(jù)庫(kù)、基因互作檢索工具、京都基因和基因組百科全書(shū)(KEGG)代謝通路富集分析等生物信息學(xué)手段,研究SRGN在卵巢癌耐藥性形成過(guò)程中的作用,首次證明了SRGN在卵巢癌耐藥性中的作用,為以SRGN為靶點(diǎn)逆轉(zhuǎn)卵巢癌耐藥性提供理論基礎(chǔ)。
1 資料與方法
1.1 數(shù)據(jù)庫(kù)與軟件
基因表達(dá)譜交互分析工具[GEPIA,http://gepia.cancer-pku.cn,其數(shù)據(jù)來(lái)源于癌癥基因組圖譜(TCGA,https://cancergenome.nih.gov/)和基因組表達(dá)數(shù)據(jù)庫(kù)(http://commonfund.nih.gov/GTEx/)];基因表達(dá)數(shù)據(jù)庫(kù)(GEO,https://www.ncbi.nlm.nih.gov/geoprofiles/);基因互作檢索平臺(tái)(STRING,https://string-db.org/);生物學(xué)信息注釋數(shù)據(jù)庫(kù)(DAVID,https://dabid.ncifcrf.gov/);醫(yī)學(xué)本體信息檢索平臺(tái)COREMINE[http://www.coremine. com/ medical/#search,該平臺(tái)文獻(xiàn)檢索數(shù)據(jù)來(lái)源于MEDLINE數(shù)據(jù)庫(kù)(https://www.nlm.nih.gov/bsd/pmresources.html#)];GraphPad Prism5醫(yī)學(xué)作圖軟件(https://www.graphpad.com/scientific-software/prism/)。
1.2 卵巢癌組織和耐藥性卵巢癌細(xì)胞株中SRGN mRNA的表達(dá)分析
為了證明SRGN在卵巢癌組織和耐藥性卵巢癌細(xì)胞系中異常表達(dá),筆者在GEPIA檢索欄輸入SRGN,表達(dá)分析類型選擇Boxplot,數(shù)據(jù)集選擇卵巢癌/OV(OV數(shù)據(jù)集由426例卵巢癌組織和88例正常卵巢組織組成),點(diǎn)擊plot即可直接得到SRGN mRNA在卵巢癌組織以及正常卵巢組織中的表達(dá)數(shù)據(jù)的統(tǒng)計(jì)圖。在GEO數(shù)據(jù)庫(kù)檢索欄輸入“SRGN”“卵巢癌細(xì)胞株A2780”(卵巢癌耐藥實(shí)驗(yàn)中通常用A2780細(xì)胞株)進(jìn)行檢索,根據(jù)檢索出來(lái)的結(jié)果即可獲取SRGN mRNA在順鉑敏感性與順鉑耐藥性卵巢癌細(xì)胞株A2780的表達(dá)數(shù)據(jù)(共10例,每個(gè)組別5例),然后通過(guò)GraphPad Prism 5醫(yī)學(xué)作圖軟件對(duì)這些數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析,得到SRGN在順鉑敏感性和順鉑耐藥性卵巢癌細(xì)胞株中的統(tǒng)計(jì)圖。以上數(shù)據(jù)的分析皆采用非配對(duì)t檢驗(yàn),以P<0.05表示兩組數(shù)據(jù)差異具有統(tǒng)計(jì)學(xué)意義。
1.3 基于基因互作分析SRGN介導(dǎo)卵巢癌耐藥性的作用
基因互作分析可以從基因功能的角度證明SRGN不僅在卵巢癌組織和耐藥性細(xì)胞系異常表達(dá),而且在卵巢癌耐藥性中也發(fā)揮作用。筆者采用STRING在線分析工具,該工具是根據(jù)實(shí)驗(yàn)驗(yàn)證數(shù)據(jù)、精選數(shù)據(jù)庫(kù)、基因相鄰、基因融合、基因共定位、文本挖掘、共表達(dá)等證據(jù)進(jìn)行聯(lián)結(jié)分?jǐn)?shù)(互作蛋白關(guān)聯(lián)程度的量化指標(biāo))評(píng)分,再由評(píng)分結(jié)果進(jìn)行基因互作分析。首先,在STRING在線分析工具中輸入蛋白名稱“SRGN”“organism”(物種),選擇“Homo sapiens”(智人)“minimum required interaction score”(最小需要聯(lián)結(jié)分?jǐn)?shù))“highest confidence 0.900”(最高置信度0.900)“max number of interactors to show”(最大聯(lián)結(jié)展示數(shù)目)“no more than 10 interactors”(不超過(guò)10個(gè)聯(lián)結(jié)數(shù)),即可篩選10個(gè)與SRGN具有高度聯(lián)結(jié)性的互作蛋白,并結(jié)合文獻(xiàn)對(duì)與SRGN互作蛋白的進(jìn)行分析,推測(cè)SRGN在卵巢癌耐藥性中發(fā)揮的作用。
1.4 推測(cè)SRGN介導(dǎo)卵巢癌耐藥性的通路
在DAVID主頁(yè)中的選擇工具“functional annotation”,在upload欄目輸入“1.3”項(xiàng)篩選出的10個(gè)蛋白的基因以及SRGN,在Select identifier下拉框中選擇ENTREZ-GENE-ID,在list type中選擇Gene list,然后選擇submit list即可直接得到這11個(gè)基因KEGG代謝通路富集分析結(jié)果。本研究參考文獻(xiàn)[7]以P<0.05篩選具有統(tǒng)計(jì)學(xué)意義的通路,并結(jié)合相關(guān)文獻(xiàn)分析通路作用。
1.5 挖掘SRGN介導(dǎo)卵巢癌耐藥性的生物過(guò)程
基因通路通過(guò)生物過(guò)程調(diào)節(jié)生命活動(dòng)[8]。在COREMINE檢索欄輸入“SRGN”“腫瘤耐藥(drug resistance)”“卵巢癌(ovarian cancer,alias ovarian neoplasms)”,然后點(diǎn)擊檢索(Explore),在“輸出圖的網(wǎng)絡(luò)工具”中的“連接關(guān)聯(lián)性篩選”(filter by connection relevance)選擇0.05,以連接關(guān)聯(lián)性P<0.05篩選具有統(tǒng)計(jì)學(xué)意義的生物過(guò)程[9],即可以檢索出與“SRGN”“腫瘤耐藥”“卵巢癌”三者同時(shí)存在顯著關(guān)聯(lián)性的生物過(guò)程。在輸出圖中,有統(tǒng)計(jì)學(xué)意義的關(guān)聯(lián)采用直線連接起來(lái),無(wú)統(tǒng)計(jì)學(xué)意義的關(guān)聯(lián)無(wú)直線連接,直線的粗細(xì)代表關(guān)聯(lián)性的強(qiáng)弱。
2 結(jié)果
2.1 卵巢癌組織和耐藥性卵巢癌細(xì)胞株中SRGN mRNA的表達(dá)結(jié)果
卵巢癌組織和耐藥性卵巢癌細(xì)胞株中SRGN mRNA的表達(dá)結(jié)果見(jiàn)圖1。GEPIA在線分析工具發(fā)現(xiàn),卵巢癌組織中的SRGN mRNA表達(dá)水平要顯著高于正常卵巢組織(P<0.05),見(jiàn)圖1A。
通過(guò)分析GEO數(shù)據(jù)庫(kù)所獲取的2組順鉑敏感和順鉑耐藥的卵巢癌細(xì)胞株A2780,發(fā)現(xiàn)在順鉑耐藥性卵巢癌細(xì)胞株中SRGN mRNA表達(dá)水平顯著高于順鉑敏感性卵巢癌細(xì)胞株(P<0.001),見(jiàn)圖1B。由此表明SRGN可能對(duì)卵巢癌的發(fā)生發(fā)展和耐藥性起了重要作用。
2.2 基于基因互作分析SRGN介導(dǎo)卵巢癌耐藥性作用的結(jié)果
某個(gè)基因的功能可以通過(guò)與其互作蛋白的功能進(jìn)行推測(cè)[10],因此,筆者通過(guò)分析與SRGN互作的蛋白對(duì)卵巢癌耐藥性的影響,可推測(cè)SRGN對(duì)卵巢癌耐藥性的影響。通過(guò)STRING分析工具篩選出10個(gè)與SRGN具有高度互作的蛋白,如白蛋白(ALB)、轉(zhuǎn)化生長(zhǎng)因子β1(TGFB1)。與SRGN互作的蛋白關(guān)聯(lián)性分析見(jiàn)圖2。
查詢圖2中與SRGN互作的蛋白與卵巢癌耐藥性之間的關(guān)系。相關(guān)文獻(xiàn)表明,ALB納米粒包裹的紫杉醇可以有效提高順鉑耐藥性卵巢癌患者的總生存期(OS)和無(wú)進(jìn)展生存期(PFS)[11];轉(zhuǎn)化生長(zhǎng)因子β1(TGFB1)能夠作為一個(gè)衡量卵巢癌侵襲性和紫杉醇、卡鉑敏感性的一個(gè)指標(biāo),可以用來(lái)確定卵巢癌的侵襲性和惡性程度,并且可以作為判斷卵巢癌患者預(yù)后的一個(gè)指標(biāo)[12];化療前給予表皮生長(zhǎng)因子(EGF)和表皮生長(zhǎng)因子受體(EGFR)的抑制物可以顯著提高卵巢癌細(xì)胞對(duì)化療藥物的敏感性,因而改善卵巢癌患者的化療結(jié)果[13];對(duì)順鉑耐藥的卵巢癌患者血漿中的絲氨酸蛋白酶抑制劑A1(SERPINA1)顯著升高,因而SERPINA1與卵巢癌耐藥性有關(guān)并且可作為逆轉(zhuǎn)卵巢癌耐藥性的潛在治療靶點(diǎn)[14]。絲氨酸蛋白酶抑制劑E1(SERPINE1)啟動(dòng)子低甲基化引起的SERPINE1表達(dá)升高可以使A2780的上皮細(xì)胞-間充質(zhì)轉(zhuǎn)化增加,從而促進(jìn)卵巢癌細(xì)胞的耐藥的產(chǎn)生[15]。血管內(nèi)皮生長(zhǎng)因子A(VEGFA)的表達(dá)量與順鉑耐藥的卵巢癌患者的PFS正相關(guān)[16]。而血纖維蛋白溶酶原(PLG)則被認(rèn)為與卵巢癌的多藥耐藥性有關(guān),PLG激活因子的過(guò)表達(dá)與卵巢癌轉(zhuǎn)移過(guò)程中所產(chǎn)生的耐藥性正相關(guān),因此可作為逆轉(zhuǎn)卵巢癌耐藥性的潛在治療靶點(diǎn)[17]?;|(zhì)金屬蛋白酶組織抑制因子1(TIMP1),F(xiàn)ermitin家族成員3(FERMT3),血小板因子4(PF4)雖然沒(méi)有直接報(bào)道與卵巢癌耐藥性有關(guān),但這3個(gè)基因都被證明同時(shí)與其他腫瘤的耐藥性有關(guān),TIMP1可以增加乳腺癌細(xì)胞耐藥性相關(guān)基因的表達(dá)和磷酸化[18];FERMT3被報(bào)道與惡性膠質(zhì)瘤的替莫唑胺耐藥性有關(guān)[19],PF4與急性髓性白血病患者的耐藥性有關(guān)[20]。因此,10個(gè)與SRGN高度互作的基因都與腫瘤耐藥性有關(guān),而且其中7個(gè)與卵巢癌耐藥性有關(guān),進(jìn)一步證明了SRGN對(duì)卵巢癌耐藥性有著重要作用。
2.3 SRGN介導(dǎo)卵巢癌耐藥性的KEGG代謝通路
基因互作形成基因通路參與生命活動(dòng)的調(diào)節(jié)[21]。對(duì)“2.2”項(xiàng)篩選的基因進(jìn)行KEGG代謝通路富集分析顯示,SRGN介導(dǎo)卵巢癌耐藥性的KEGG代謝通路有缺氧誘導(dǎo)因子1α信號(hào)通路、細(xì)胞因子-細(xì)胞因子受體通路、凝血與補(bǔ)體級(jí)聯(lián)反應(yīng)信號(hào)通路等,SRGN介導(dǎo)卵巢癌耐藥性的KEGG代謝通路見(jiàn)表1。
查閱相關(guān)文獻(xiàn)發(fā)現(xiàn)缺氧誘導(dǎo)因子1α信號(hào)通路、細(xì)胞因子-細(xì)胞因子受體通路、凝血與補(bǔ)體級(jí)聯(lián)反應(yīng)信號(hào)通路已經(jīng)被證實(shí)與卵巢癌耐藥性密切相關(guān)。比如,抑制缺氧誘導(dǎo)因子1α的表達(dá)可以逆轉(zhuǎn)卵巢癌干細(xì)胞的順鉑耐藥性[22];缺氧誘導(dǎo)因子1α和核因子κB可以通過(guò)增加血小板活化因子受體的表達(dá),從而參與卵巢癌順鉑耐藥性的調(diào)節(jié)[23];細(xì)胞因子白介素8(IL-8)與IL-8受體通路可促進(jìn)高度惡性卵巢癌的鉑類化療藥耐藥性[24];高表達(dá)膜結(jié)合補(bǔ)體調(diào)節(jié)蛋白(mCRP)可以增加卵巢癌細(xì)胞多藥耐藥性[25]。因此,SRGN介導(dǎo)的KEGG通路皆與卵巢癌耐藥性有關(guān),進(jìn)一步證明了SRGN與卵巢癌耐藥性有關(guān)。此外,SRGN與胰腺癌、膀胱癌等通路也有顯著性關(guān)聯(lián)(P<0.05),提示SRGN與全身各個(gè)系統(tǒng)的腫瘤發(fā)生發(fā)展具有密切相關(guān)性。
2.4 SRGN介導(dǎo)卵巢癌耐藥性的生物過(guò)程
信號(hào)通路通過(guò)生物過(guò)程調(diào)節(jié)生命活動(dòng)[8]。通過(guò)CORMINE平臺(tái)檢索與SRGN、耐藥性、卵巢癌三者有關(guān)的生物過(guò)程,結(jié)果顯示,SRGN介導(dǎo)卵巢癌耐藥性的生物過(guò)程有細(xì)胞生長(zhǎng)、基因表達(dá)、凋亡過(guò)程、細(xì)胞死亡,這4個(gè)生物過(guò)程都與細(xì)胞的存活與死亡有關(guān)[26],意味著SRGN可通過(guò)這4個(gè)生物過(guò)程來(lái)影響卵巢癌細(xì)胞的存活與死亡,進(jìn)而調(diào)節(jié)卵巢癌耐藥的過(guò)程。SRGN介導(dǎo)卵巢癌耐藥性的生物過(guò)程見(jiàn)圖3。
3 討論
基因功能的研究是在生物醫(yī)學(xué)研究的基礎(chǔ)上進(jìn)行的,對(duì)新藥發(fā)現(xiàn)乃至疾病的診斷治療都具有非常重要的意義[27]。近幾年來(lái),生物信息學(xué)技術(shù)廣泛用于基因功能的研究中,與傳統(tǒng)生物醫(yī)學(xué)試驗(yàn)相比,生物信息學(xué)技術(shù)具有快速、廉價(jià)的特點(diǎn)。通過(guò)生物信息學(xué)方法,相關(guān)研究者發(fā)現(xiàn)C-C趨化因子配體21、分泌型糖蛋白類似物1、轉(zhuǎn)錄因子EB1(TFEB1)等基因與卵巢癌耐藥性有關(guān)[28-30]。因此,運(yùn)用生物信息學(xué)手段篩選卵巢癌耐藥性相關(guān)基因是一種非常具有潛力的手段。
GEPIA是北京大學(xué)張澤民教授實(shí)驗(yàn)室基于TCGA、GTEx、正常樣本的RNA數(shù)據(jù)而開(kāi)發(fā)的在線應(yīng)用工具,可以快速地分析某個(gè)基因在正常組織以及腫瘤組織中的差異表達(dá)[31];而GEO由美國(guó)國(guó)家生物信息中心開(kāi)發(fā),是當(dāng)今最大最全面的公共基因表達(dá)數(shù)據(jù)庫(kù)。因此,本研究基因表達(dá)數(shù)據(jù)來(lái)源可靠。通過(guò)GEPIA以及GEO的數(shù)據(jù)分析,筆者發(fā)現(xiàn)SRGN mRNA在卵巢癌組織、順鉑耐藥性卵巢癌細(xì)胞株中的表達(dá)量均顯著升高,由此表明SRGN可能是卵巢癌耐藥性的潛在調(diào)節(jié)因子。
單個(gè)基因與其互作的基因構(gòu)成信號(hào)通路,并通過(guò)一定的生物過(guò)程影響生命活動(dòng)[8,21]。因此,本文從基因互作分析、KEGG信號(hào)通路、生物過(guò)程三個(gè)維度來(lái)進(jìn)一步證明SRGN具有介導(dǎo)卵巢癌耐藥性作用,并探討其內(nèi)在機(jī)制。首先通過(guò)基因互作分析表明與SRGN具有高度互作的10個(gè)蛋白皆與腫瘤耐藥性有關(guān),而且大部分與卵巢癌的耐藥性有關(guān),從功能上說(shuō)明了SRGN具有介導(dǎo)卵巢癌耐藥性的作用。對(duì)10個(gè)與SRGN互作的蛋白進(jìn)行KEGG代謝通路分析發(fā)現(xiàn),缺氧誘導(dǎo)因子1α信號(hào)通路、細(xì)胞因子與細(xì)胞因子受體通路、凝血與補(bǔ)體級(jí)聯(lián)反應(yīng)信號(hào)通路與卵巢癌具有密切關(guān)系,且這3個(gè)通路是可以相互影響的,比如缺氧誘導(dǎo)因子1α既可以通過(guò)下調(diào)分化抗原55來(lái)激活補(bǔ)體[32],又可以調(diào)節(jié)細(xì)胞因子和細(xì)胞因子的表達(dá)量[33]。但是,SRGN是同時(shí)通過(guò)這3個(gè)通路還是其中1個(gè)或者2個(gè)通路介導(dǎo)了卵巢癌耐藥性,還需要進(jìn)一步的試驗(yàn)進(jìn)行研究。
本研究綜合運(yùn)用基因組表達(dá)數(shù)據(jù)庫(kù)、基因互作檢索工具、KEGG通路富集分析等生物信息學(xué)手段,首次闡述了SRGN在卵巢癌組織以及耐藥性卵巢癌細(xì)胞株中的異常表達(dá),并對(duì)其SRGN調(diào)控卵巢癌耐藥性的潛在機(jī)制做了初步探討,為以SRGN為靶點(diǎn)逆轉(zhuǎn)卵巢癌耐藥性的研究提供了理論基礎(chǔ)。
參考文獻(xiàn)
[ 1 ] DAVIDSON B,TROPE CG. Ovarian cancer:diagnostic,biological and prognostic aspects[J]. Womens Health (Lond),2014,10(5):519-533.
[ 2 ] THIBAULT B,CASTELLS M,DELORD JP,et al. Ovarian cancer microenvironment:implications for cancer dissemination and chemoresistance acquisition[J]. Cancer Metastasis Rev,2014,33(1):17-39.
[ 3 ] YIN F,LIU X,LI D,et al. Tumor suppressor genes associated with drug resistance in ovarian cancer[J]. Oncol Rep,2013,30(11):3-10.
[ 4 ] SCULLY OJ,CHUA PJ,HARVE KS,et al. Serglycin in health and diseases[J]. Anat Rec,2012,295(9):1415-1420.
[ 5 ] LI XJ,QIAN CN.Serglycin in human cancers[J]. Chin J Cancer,2011,30(9):585-589.
[ 6 ] BEYER-SEHLMEYER G,HIDDEMANN W,W?RMA- NN B,et al. Suppressive subtractive hybridisation reveals differential expression of serglycin,sorcin,bone marrow proteoglycan and prostate-tumour-inducing gene I (PTI- 1) in drug-resistant and sensitive tumour cell lines of haematopoetic origin[J]. Eur J Cancer,1999,35(12):1735-1742.
[ 7 ] HUANG DA W,SHERMAN BT,LEMPICKI RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc,2009,4(1):44-57.
[ 8 ] CHUNG C. Restoring the switch for cancer cell death:targeting the apoptosis signaling pathway[J]. Am J Health Syst Pharm,2018,75(13):945-952.
[ 9 ] LEEUW N,DIJKHUIZEN T,HEHIR-KWA JY,et al. Diagnostic interpretation of array data using public databases and internet sources[J]. Hum Mutat,2012,33(6):930- 940.
[10] COSTELLO JC,DALKILIC MM,BEASON SM,et al. Gene networks in Drosophila melanogaster:integrating experimental data to predict gene function[J]. Genome Biol,2009.DOI:10.1186/gb-2009-10-9-r97.
[11] COLEMAN RL,BRADY WE,MCMEEKIN DS,et al. A phase Ⅱ evaluation of nanoparticle,albumin-bound (nab) paclitaxel in the treatment of recurrent or persistent platinum resistant ovarian,fallopian tube,or primary peritoneal cancer:a Gynecologic Oncology Group study[J]. Gynecol Oncol,2011,122(1):111-115.
[12] KOMIYAMA S,KURAHASHI T,ISHIKAWA M,et al. Expression of TGF?1 and its receptors is associated with biological features of ovarian cancer and sensitivity to paclitaxel/carboplatin[J]. Oncol Rep,2011,25(4):1131- 1138.
[13] CAO C,LU S,SOWA A,et al. Priming with EGFR tyrosine kinase inhibitor and EGF sensitizes ovarian cancer cells to respond to chemotherapeutical drugs[J]. Cancer Lett,2008,266(2):249-262.
[14] WU W,WANG Q,YIN F,et al. Identification of proteomic and metabolic signatures associated with chemoresistance of human epithelial ovarian cancer[J]. Int J Oncol,2016,49(4):1651-1665.
[15] PAN JX,QU F,WANG FF,et al. Aberrant SERPINE1 DNA methylation is involved in carboplatin induced epithelial-mesenchymal transition in epithelial ovarian cancer[J]. Arch Gynecol Obstet,2017,296(6):1145-1152.
[16] DIAZ-PADILLA I,WILSON MK,CLARKE BA,et al. A phase Ⅱ study of single-agent RO4929097,a gamma- secretase inhibitor of Notch signaling,in patients with recurrent platinum-resistant epithelial ovarian cancer:a study of the Princess Margaret,Chicago and California phase Ⅱ consortia[J]. Gynecol Oncol,2015,137(2):216-222.
[17] CHEN H,HAO J,WANG L,et al. Coexpression of invasive markers (uPA,CD44) and multiple drug-resistance proteins (MDR1,MRP2) is correlated with epithelial ovarian cancer progression[J]. Br J Cancer,2009,101(3):432-440.
[18] HEKMAT O,MUNK S,F(xiàn)OGH L,et al. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells[J]. J Proteome Res,2013,12(9):4136-4151.
[19] LU C,CUI C,LIU B,et al. FERMT3 contributes to glioblastoma cell proliferation and chemoresistance to temozolomide through integrin mediated Wnt signaling[J]. Neurosci Lett,2017,657(17):77-83.
[20] KIM JY,SONG HJ,LIM HJ,et al. Platelet factor-4 is an indicator of blood count recovery in acute myeloid leukemia patients in complete remission[J]. Mol Cell Proteomics,2008,7(2):431-441.
[21] LI X,WANG W,CHEN J,et al. From pathways to networks:connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry[J]. Proteomics,2015,15(2/3):188-202.
[22] WANG WJ,SUI H,QI C,et al. Ursolic acid inhibits proliferation and reverses drug resistance of ovarian cancer stem cells by downregulating ABCG2 through suppressing the expression of hypoxia-inducible factor-1α in vitro[J]. Oncol Rep,2016,36(1):428-440.
[23] YU Y,ZHANG X,HONG S,et al. The expression of platelet-activating factor receptor modulates the cisplatin sensitivity of ovarian cancer cells:a novel target for combination therapy[J]. Br J Cancer,2014,111(3):515-524.
[24] STRONACH EA,CUNNEA P,TURNER C,et al. The role of interleukin-8 (IL-8) and IL-8 receptors in platinum response in high grade serous ovarian carcinoma[J]. Oncotarget,2015,6(31):31593-31603.
[25] ODENING KE,LI W,RUTZ R,et al. Enhanced complement resistance in drug-selected pglycoprotein expressing multi-drug-resistant ovarian carcinoma cells[J]. Clin Exp Immunol,2009,155(2):239-248.
[26] ZAKERI Z,PENALOZA CG,SMITH K,et al. What cell death does in development[J]. Int J Dev Biol,2015,59(1/3):11-22.
[27] 蔣先仲.藥物發(fā)現(xiàn)及其新策略[J].中國(guó)藥房,2016,27(23):3169-3171.
[28] YIN F,LIU X,LI D,et al. Bioinformatic analysis of chemokine (C-C motif) ligand 21 and SPARC-like protein 1 revealing their associations with drug resistance in ovarian cancer[J]. Int J Oncol,2013,42(4):1305-1316.
[29] LIU X,GAO Y,LU Y,et al. Upregulation of NEK2 is associated with drug resistance in ovarian cancer[J]. Oncol Rep,2014,31(2):745-754.
[30] LIU X,GAO Y,LU Y,et al. Downregulation of NEK11 is associated with drug resistance in ovarian cancer[J]. Int J Oncol,2014,45(3):1266-1274.
[31] TANG Z,LI C,KANG B,et al. GEPIA:a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res,2017,45(W1):W98- W102.
[32] PANDYA PH,F(xiàn)ISHER AJ,MICKLER EA,et al. Hypoxia-inducible factor-1α regulates CD55 in airway epithelium[J]. Am J Respir Cell Mol Biol,2016,55(6):889-898.
[33] PLOTKIN BJ,SIGAR IM,SWARTZENDRUBER JA, et al. Differential expression of cytokines and receptor expression during anoxic growth[J]. BMC Res Notes,2018,11(1):406.
(收稿日期:2018-08-10 修回日期:2018-11-05)
(編輯:唐曉蓮)