• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The mechanism of flapping propulsion of an underwater glider*

    2016-12-06 08:15:47YongchengLI李永成DingyiPAN潘定一ZhengMA馬崢

    Yong-cheng LI (李永成), Ding-yi PAN (潘定一), Zheng MA (馬崢)

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    The mechanism of flapping propulsion of an underwater glider*

    Yong-cheng LI (李永成)1, Ding-yi PAN (潘定一)2, Zheng MA (馬崢)1

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    To develop a bionic maneuverable propulsion system to be applied in a small underwater vehicle, a new conceptual design of the bionic propulsion is applied to the traditional underwater glider. The numerical simulation focuses on the autonomous underwater glider (AUG)'s flapping propulsion at Re=200 by solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method. The systematic analysis of the effect of different motion parameters on the propulsive efficiency of the AUG is carried out, including the hydrofoil's heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency. The results obtained in this study can provide some physical insights into the propulsive mechanisms in the flapping -based locomotion.

    autonomous underwater glider, flapping propulsion, immersed boundary method

    The autonomous underwater glider (AUG) is a new type of underwater vehicles and it is driven by its own buoyancy. Compared with the traditional underwater vehicle, it has the advantages of low noise, low energy consumption, and long range[1].

    Despite these advantages, some problems regarding the AUG should be given serious consideration. One of the most crucial problems is the “drift”. For collecting intense data, the gliding speed of the AUG has to be relatively low, which is only about 0.5 knot(0.25 m/s). Under such a low speed, the movement of the AUG would be easily influenced by the ocean current, and it is not easy to continually follow the initially determined route.

    In order to solve this problem, a conceptual design of the bionic propulsion method is adopted for the design of the AUG. In this paper, the bionic propulsion of a newly designed underwater glider is investigated by numerically solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method to reveal the effect of hydrofoil's motion parameters on the propulsive efficiency, including the heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency and to have an improved understanding of physical mechanisms of the flapping-based locomotion adopted by swimming animals.

    As shown in Fig.1, the computational model is composed of the hull and the hydrofoils. The total length of the model is 1.200 m, where the middle part is a cylinder of 0.250 m in diameter and 0.625 m in length. The front part is a semi-ellipsoid of 0.175 m in semi-major axis, and the rear part is also a semi-ellipsoid of 0.400 m in semi-major axis. The hydrofoil is in the NACA0015 profile with a span length of 0.300 m and a chord length of 0.300 m, which is chosen as the characteristic length C.

    Fig.1 Schematic diagram of the computational model

    The bionic propulsion method is introduced into the design of the AUG, and and the hydrofoil's flapping is used to increase the AUG's advancing speed. The hydrofoil's motion is the combination of the heaving motion along the Y axis and the pitching motion around the Z axis, both directions of motion are sinusoidal, with a phase lag in the same motion cycle. The equations of the heave motion and the pitch motion are, respectively:

    where0h is the heaving amplitude,0θ the pitching amplitude, f the flapping frequency and0ψ the phase lag. As a result of the hydrofoil's flapping, the underwater glider can move quickly. The schematic diagram of the movement is shown in Fig.2.

    Fig.2 Schematic diagram of the motion process

    The surrounding water around the AUG is considered as incompressible and viscous, and the Navier-Stokes equations of fluid motion is employed as[2,3]

    where u is the velocity vector, p is the pressure,Re is the Reynolds number, which can be calculated as Re=U0L/ν with U0and L being the characteristic velocity and length scales, and f is the additional body force. To discretize the Navier-Stokes equations for numerical solutions, the Crank-Nicolson scheme is used for viscous terms and the Adams-Bashforth scheme is applied for other terms in Eq.(3). In addition, the finite difference projection method is used to obtain the velocity and pressure fields. For simplification, the Reynlods number in the current study is chosen as 200, without any additional turbulent model to be applied.

    The immersed boundary (IB) method is applied to capture the flapping motion of the hydrofoil.The additional body force f of the IB method near the moving boundary is modified according to the “direct forcing” approach[2], in which the body force can be derived as

    It is worth mentioning that unlike other bionic propulsion studies, this paper focuses on the practical application, to maintain a balance between the hull's average resistance and the hydrofoil's average thrust. Thus a glider can maintain a constant moving speed. The formula of balance is defined as

    where D represents the drag experienced by the hull,F(xiàn) represents the thrust generated by the hydrofoils,and T is a motion period.

    We here present some typical results on the bionic propulsion of the underwater glider. Based on the measurements and the modeling of the animal locomotion,the governing parameters used in this study are chosen as follows: the flapping frequency f=0.3Hz-1.0Hz, the phase lag between heaving and pitching ψ0=30o-110o, the heaving amplitude=0.05C-0.5C, the pitching amplitude θ=30oand the moving velocity V =0.5m/s-1.2m/s.

    In order to characterize the propulsive efficiency of the underwater glider, the ratio of the kinetic energy of the body and the input work is usually employed[3,4]and defined as

    where T is a movement period, and P the input power, which represents the energy required by the AUG to overcome the fluid force in the unit time and it consists of two parts, which arewhere1P is the power required by the hull to overcome the fluid resistance,2P is the power required by the hydrofoils to overcome the fluid dynamics, V is the average advancing speed, ()Lt is the vertical force acted on the hydrofoils and ()Mt is the torque around the Z axis.

    Figure 3 shows the propulsive efficiency η versus the phase lag with the fixed pitching amplitude θ=30oand the flapping frequency f=0.6Hz .

    Fig.3 Propulsive efficiency versus phase lag

    It is seen from Fig.3 that the propulsive efficiency for each moving velocity increases to its maximum and then decreases with0ψ, the best phase lag increases constantly while the highest propulsive efficiency sees a slight change with the increase of the moving velocity. When the phase lag is aroundo90, the maximum value of the propulsive efficiency is obtained. So, in the following calculation, the phase lag is set aso90.

    Figure 4 shows the curve of the propulsive efficiency versus the pitching amplitude and the moving velocity with the fixed flapping frequency f=0.6Hz and the phase lago90.

    Fig.4 Propulsive efficiency versus pitching amplitude and moving velocity

    As shown in Fig.4, similarly, the propulsive efficiency increases to its maximum and then gradually decreases with the increase of θ at several moving velocities. Furthermore, with the increase of the moving velocity, the highest propulsive efficiency experiences a sharp decline while the pitching amplitude corresponding to the maximum propulsive efficiency shows a slight change, abouto30. So it is recommended that the pitching amplitude is chosen aso30.

    Figure 5 shows the propulsive efficiency versus the heaving amplitude and the moving velocity with the fixed pitching amplitude θ=30oand the phase lag ψ0=90o.

    Fig.5 Propulsive efficiency versus heaving amplitude and moving velocity

    As shown in Fig.5, there exists a certain heaving amplitude leading to the highest propulsive efficiency for a specified moving velocity and the best heaving amplitude increases constantly with the increase of the moving velocity while the corresponding propulsive efficiency shows a gradual decrease, which means that to obtain a high moving velocity means a sacrifice of the propulsive efficiency, and therefore the loss of the long range and the high duration.

    Figure 6 shows the propulsive efficiency versus flapping frequency and the moving velocity with the fixed pitching angle 30oand the phase lag 90o.

    Fig.6 Propulsive efficiency versus flapping frequency and moving velocity

    As can be seen from Fig.6, at different moving velocities, the propulsive efficiency increases to itsmaximum and then gradually decreases with the increase of the flapping frequency. Besides that, the best flapping frequency increases constantly with the increase of the moving velocity while the maximum propulsive efficiency in the corresponding case decreases with the increase of the moving velocity.

    Fig.7 (Color online) Instantaneous vortex structures for =f0.4 Hz, 0.6 Hz and 1.0 Hz

    The propulsive behaviors of the flapping propulsion are closely associated with the vortex structures around the hydrofoils. In order to explain the above phenomenon, the vortex structures are obtained for three flapping frequencies =f0.4 Hz, 0.6 Hz and 1.0 Hz with V =1.2m/s , θ=30oand ψ0=90o. The instantaneous vortex structures are shown in Fig.7.

    As shown in Figs.7(a)-7(c) for f=0.6Hz , the leading-edge vortex first moves along the upper surface of the hydrofoil to the trailing edge and falls off while a new leading-edge vortex emerges on the leading edge of the hydrofoil. The shedding leading-edge vortex is then connected with the tip vortices, lying in the two sides of the flapping hydrofoil, and is eventually closed with the trailing edge leading to vortex loops in the tail flow field. This phenomenon is consistent with the experimental observations of Von Ellenrieder[5,6].

    In the case of f=0.4Hz , Figs.7(d)-(7f) show that the shedding vortices in the upper and lower surfaces of the hydrofoil separate from each other in the tail flow field, therefore, there is no vortex loop exists. In the case of a higher frequency f=1.0Hz ,F(xiàn)igs.7(g)-7(i) show that the vortices in the upper and lower surfaces of the hydrofoil separate earlier and they are overlapping with each other, so it is more difficult to form a vortex loop. Since the energy required for the propulsion is mainly derived from the vortex loop, so that may explain the results we have obtained above.

    References

    [1]CHEN Ya-jun, CHEN Hong-xun and Ma zheng Hydrodynamic analyses of typical underwater gliders[J]. Journal of Hydrodynamics, 2015, 27(4): 556-561

    [2]HUA R. N., ZHU L. and LU X. Y. Locomotion of a flapping flexible plate[J].Physics of Fluids, 2003, 25(12): 121901.

    [3]SHAO Xue-ming, PAN Ding-yi and DENG Jian et al. Numerical studies on the propulsive and wake structure of finite-span flapping hydrofoils with different aspect ratios[J]. Journal of Hydrodynamics, 2010, 22(2): 147-154.

    [4]PAN D., DENG J. and SHAO X. et al. On the propulsive performance of tandem flapping hydrofoils with a modified immersed boundary method[J]. International Journal of Computational Method, 2016, 13: 1650025.

    [5]Von ELLENRIEDER K., PARKER K. and SORIA J. Flow structures behind a heaving and pitching finite-span wing[J]. Journal of Fluid Mechanics, 2003, 490: 129-138.

    [6]TANG Chao, LU Xi-yun. Self-propulsion of a threedimensional flapping flexible plate[J]. Journal of Hydrodynamics, 2016, 28(1): 1-9.

    (August 18, 2016, Revised September 10, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279184).

    Biography: Yong-cheng LI (1992-), Male, Master Candidate

    Ding-yi PAN,

    E-mail: dpan@zju.edu.cn

    国产探花在线观看一区二区| 色综合婷婷激情| 在线播放无遮挡| 女同久久另类99精品国产91| 国产真人三级小视频在线观看| 久久久久久国产a免费观看| 日韩欧美精品免费久久 | 久久久久性生活片| 国产成人a区在线观看| 亚洲av二区三区四区| 伊人久久大香线蕉亚洲五| 国产不卡一卡二| 国内毛片毛片毛片毛片毛片| 少妇人妻精品综合一区二区 | 黄色丝袜av网址大全| 757午夜福利合集在线观看| 人人妻,人人澡人人爽秒播| 黄色成人免费大全| 国产精品99久久久久久久久| 欧美一区二区精品小视频在线| 久久精品国产清高在天天线| 嫩草影院入口| 午夜久久久久精精品| 免费无遮挡裸体视频| 午夜福利在线在线| 我要搜黄色片| 人妻久久中文字幕网| 国产av麻豆久久久久久久| 欧美三级亚洲精品| 九九久久精品国产亚洲av麻豆| 一个人免费在线观看的高清视频| 成人av在线播放网站| 制服人妻中文乱码| 国产亚洲精品av在线| 日本黄大片高清| 亚洲激情在线av| 欧美黑人巨大hd| 色视频www国产| 亚洲在线自拍视频| 亚洲精品在线美女| 国产高清视频在线观看网站| 一边摸一边抽搐一进一小说| 亚洲在线自拍视频| 午夜福利高清视频| 九九热线精品视视频播放| 一级作爱视频免费观看| 国产探花在线观看一区二区| 伊人久久大香线蕉亚洲五| 19禁男女啪啪无遮挡网站| 久久九九热精品免费| 狂野欧美激情性xxxx| 91在线观看av| 国产三级在线视频| 性色av乱码一区二区三区2| 国内精品久久久久久久电影| 亚洲无线观看免费| 国产三级中文精品| 18禁在线播放成人免费| 女警被强在线播放| 搞女人的毛片| 国产精品av视频在线免费观看| 一夜夜www| 亚洲人成伊人成综合网2020| 搡老熟女国产l中国老女人| 91字幕亚洲| 国产一区二区激情短视频| 国产淫片久久久久久久久 | 啦啦啦韩国在线观看视频| 精品一区二区三区视频在线观看免费| 亚洲熟妇中文字幕五十中出| 欧美色视频一区免费| 欧洲精品卡2卡3卡4卡5卡区| 丁香六月欧美| 在线观看av片永久免费下载| 18禁在线播放成人免费| 久久伊人香网站| 欧美最新免费一区二区三区 | 午夜a级毛片| 在线观看美女被高潮喷水网站 | 在线观看免费视频日本深夜| 国产精品一及| 亚洲aⅴ乱码一区二区在线播放| 首页视频小说图片口味搜索| 白带黄色成豆腐渣| 欧美午夜高清在线| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 老汉色∧v一级毛片| 五月玫瑰六月丁香| 午夜精品久久久久久毛片777| 中文字幕人妻熟人妻熟丝袜美 | 久久久国产成人免费| 特大巨黑吊av在线直播| 99久久九九国产精品国产免费| 一a级毛片在线观看| 亚洲av电影在线进入| 一本久久中文字幕| 真人做人爱边吃奶动态| 一进一出抽搐gif免费好疼| 亚洲熟妇中文字幕五十中出| 午夜激情欧美在线| 久久久久久久久中文| 国产精品一区二区三区四区免费观看 | 99视频精品全部免费 在线| 久久精品国产清高在天天线| 99在线视频只有这里精品首页| 日本在线视频免费播放| 夜夜看夜夜爽夜夜摸| 中文字幕人妻丝袜一区二区| 热99re8久久精品国产| 看片在线看免费视频| 精品人妻偷拍中文字幕| 欧美一区二区国产精品久久精品| 国产97色在线日韩免费| 婷婷精品国产亚洲av| 免费av毛片视频| a在线观看视频网站| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 国产精品精品国产色婷婷| 欧美丝袜亚洲另类 | 国产成人a区在线观看| 日韩欧美 国产精品| 九色成人免费人妻av| 久久久国产成人免费| 一区二区三区国产精品乱码| 搡老岳熟女国产| 一夜夜www| 亚洲不卡免费看| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久大av| 国产精华一区二区三区| 免费av观看视频| 婷婷精品国产亚洲av在线| 亚洲av一区综合| 校园春色视频在线观看| 国产伦一二天堂av在线观看| 男人舔女人下体高潮全视频| 麻豆成人午夜福利视频| 久久久久国产精品人妻aⅴ院| 久久亚洲精品不卡| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区av网在线观看| 日韩欧美国产一区二区入口| 中国美女看黄片| 午夜久久久久精精品| 一区二区三区高清视频在线| 国产精品精品国产色婷婷| 狂野欧美激情性xxxx| 又紧又爽又黄一区二区| 亚洲精品粉嫩美女一区| 午夜激情福利司机影院| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩黄片免| 男女床上黄色一级片免费看| 黄片大片在线免费观看| 亚洲人成网站在线播| 成年版毛片免费区| 国产亚洲欧美在线一区二区| 精品久久久久久成人av| av在线蜜桃| 88av欧美| 蜜桃亚洲精品一区二区三区| 久久香蕉精品热| 19禁男女啪啪无遮挡网站| 色视频www国产| 亚洲av五月六月丁香网| 亚洲精品美女久久久久99蜜臀| 亚洲av免费高清在线观看| 美女被艹到高潮喷水动态| 全区人妻精品视频| 国产精品日韩av在线免费观看| 成人鲁丝片一二三区免费| 国产黄片美女视频| 淫秽高清视频在线观看| 精品久久久久久久久久久久久| 久久久久久九九精品二区国产| 90打野战视频偷拍视频| 熟女少妇亚洲综合色aaa.| 国产精品国产高清国产av| 国产精品久久久久久久电影 | 国产真实乱freesex| 一级毛片高清免费大全| 亚洲人成网站在线播放欧美日韩| 91麻豆精品激情在线观看国产| 毛片女人毛片| 搡老熟女国产l中国老女人| 黄色女人牲交| 男人和女人高潮做爰伦理| 亚洲人与动物交配视频| 法律面前人人平等表现在哪些方面| 白带黄色成豆腐渣| 国产精品自产拍在线观看55亚洲| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 听说在线观看完整版免费高清| x7x7x7水蜜桃| h日本视频在线播放| 亚洲熟妇熟女久久| 99热这里只有精品一区| 欧美又色又爽又黄视频| 国产精品久久视频播放| 夜夜躁狠狠躁天天躁| av天堂在线播放| 亚洲精华国产精华精| 免费观看精品视频网站| 久久婷婷人人爽人人干人人爱| 好男人在线观看高清免费视频| 香蕉久久夜色| 中文字幕人妻丝袜一区二区| 欧美一级毛片孕妇| 一进一出抽搐gif免费好疼| 啦啦啦免费观看视频1| 美女cb高潮喷水在线观看| 9191精品国产免费久久| 久久精品国产清高在天天线| 精品午夜福利视频在线观看一区| 午夜福利高清视频| 免费观看的影片在线观看| 免费av观看视频| 免费av毛片视频| 热99re8久久精品国产| 欧美日韩精品网址| 亚洲精品国产精品久久久不卡| 欧美中文日本在线观看视频| 国产爱豆传媒在线观看| 国产精品久久久久久人妻精品电影| 亚洲av成人精品一区久久| 午夜福利18| 最近最新免费中文字幕在线| 看黄色毛片网站| 男人舔女人下体高潮全视频| 日本黄色片子视频| 麻豆久久精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 日日夜夜操网爽| 男女下面进入的视频免费午夜| 精品一区二区三区视频在线 | 中亚洲国语对白在线视频| 免费人成在线观看视频色| 久久精品国产自在天天线| 麻豆成人午夜福利视频| 日韩精品中文字幕看吧| 18禁在线播放成人免费| 脱女人内裤的视频| 国产私拍福利视频在线观看| 女人被狂操c到高潮| 成年女人看的毛片在线观看| 日本免费a在线| 欧美大码av| 日本与韩国留学比较| 久久6这里有精品| 脱女人内裤的视频| 99热只有精品国产| 国产精品 欧美亚洲| 日韩欧美国产一区二区入口| 成人性生交大片免费视频hd| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 免费av观看视频| 国产精品免费一区二区三区在线| 校园春色视频在线观看| 亚洲自拍偷在线| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 高清日韩中文字幕在线| 亚洲欧美精品综合久久99| 我的老师免费观看完整版| 91在线精品国自产拍蜜月 | 偷拍熟女少妇极品色| 两人在一起打扑克的视频| 麻豆成人av在线观看| 99精品欧美一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 每晚都被弄得嗷嗷叫到高潮| 俺也久久电影网| 99国产精品一区二区三区| 天堂√8在线中文| 夜夜夜夜夜久久久久| 悠悠久久av| 老鸭窝网址在线观看| 好看av亚洲va欧美ⅴa在| 九色成人免费人妻av| av黄色大香蕉| 三级国产精品欧美在线观看| 一本久久中文字幕| 国产精品亚洲一级av第二区| 99久久无色码亚洲精品果冻| 757午夜福利合集在线观看| or卡值多少钱| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| 亚洲av不卡在线观看| 婷婷精品国产亚洲av在线| 久9热在线精品视频| 在线十欧美十亚洲十日本专区| 九色成人免费人妻av| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 99热6这里只有精品| 身体一侧抽搐| 午夜福利视频1000在线观看| 熟女电影av网| 超碰av人人做人人爽久久 | 人人妻人人澡欧美一区二区| 亚洲成人久久爱视频| 亚洲成人免费电影在线观看| 最近最新免费中文字幕在线| h日本视频在线播放| 老汉色av国产亚洲站长工具| www国产在线视频色| av在线蜜桃| 性色av乱码一区二区三区2| 欧美国产日韩亚洲一区| 亚洲乱码一区二区免费版| 成人无遮挡网站| 日日摸夜夜添夜夜添小说| 国产高清激情床上av| 老司机午夜十八禁免费视频| 搞女人的毛片| 久久精品夜夜夜夜夜久久蜜豆| 性色avwww在线观看| 脱女人内裤的视频| 美女免费视频网站| 嫁个100分男人电影在线观看| 一级作爱视频免费观看| 老司机在亚洲福利影院| 久久香蕉国产精品| 亚洲av不卡在线观看| 中文字幕av成人在线电影| 嫩草影院入口| 中文字幕高清在线视频| 日韩精品青青久久久久久| 岛国在线免费视频观看| 日本一本二区三区精品| av在线蜜桃| 日本免费a在线| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av在线| 嫩草影院入口| 中文字幕高清在线视频| 国产主播在线观看一区二区| 黄色片一级片一级黄色片| 国产精品野战在线观看| 国产精品香港三级国产av潘金莲| 最近在线观看免费完整版| 在线播放无遮挡| 国产精品久久久久久精品电影| 99精品久久久久人妻精品| 亚洲最大成人中文| 长腿黑丝高跟| 性欧美人与动物交配| 小说图片视频综合网站| 成年女人永久免费观看视频| 亚洲av中文字字幕乱码综合| 美女高潮喷水抽搐中文字幕| 精品久久久久久久久久免费视频| 十八禁网站免费在线| 日本在线视频免费播放| 免费av毛片视频| 亚洲第一电影网av| 国产欧美日韩一区二区三| 熟女少妇亚洲综合色aaa.| 3wmmmm亚洲av在线观看| 成年免费大片在线观看| 国产一区二区三区视频了| 免费搜索国产男女视频| 老熟妇乱子伦视频在线观看| 精品久久久久久久末码| 在线a可以看的网站| 夜夜爽天天搞| www日本在线高清视频| 国产高清有码在线观看视频| 国产黄片美女视频| a在线观看视频网站| 亚洲中文字幕日韩| 国产精品嫩草影院av在线观看 | 一a级毛片在线观看| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 欧美黄色淫秽网站| 久久精品国产自在天天线| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| www.999成人在线观看| 国产精品综合久久久久久久免费| 欧美性猛交黑人性爽| 在线免费观看不下载黄p国产 | 久久久精品欧美日韩精品| 欧美色视频一区免费| 天天一区二区日本电影三级| 嫩草影视91久久| 中亚洲国语对白在线视频| 欧美日韩国产亚洲二区| 岛国视频午夜一区免费看| 欧美中文日本在线观看视频| 亚洲中文字幕日韩| 深爱激情五月婷婷| 一级黄片播放器| 99视频精品全部免费 在线| 亚洲精品影视一区二区三区av| 国产精品99久久久久久久久| 中文字幕人妻丝袜一区二区| 亚洲欧美激情综合另类| 久久久久久人人人人人| 成人午夜高清在线视频| 成人亚洲精品av一区二区| 成人三级黄色视频| 国产成人av教育| 老熟妇乱子伦视频在线观看| 88av欧美| 欧美成狂野欧美在线观看| 国产欧美日韩精品一区二区| 伊人久久大香线蕉亚洲五| 精品一区二区三区视频在线 | 色精品久久人妻99蜜桃| 久久久精品大字幕| 美女高潮喷水抽搐中文字幕| 在线看三级毛片| 此物有八面人人有两片| 真人一进一出gif抽搐免费| 波野结衣二区三区在线 | 欧美丝袜亚洲另类 | 午夜精品在线福利| 真人做人爱边吃奶动态| 丰满的人妻完整版| 午夜激情福利司机影院| 熟女电影av网| 少妇的逼好多水| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 午夜免费成人在线视频| 精品无人区乱码1区二区| 国产极品精品免费视频能看的| 最近最新免费中文字幕在线| 又黄又粗又硬又大视频| 最近视频中文字幕2019在线8| aaaaa片日本免费| 在线观看免费视频日本深夜| av视频在线观看入口| 91在线观看av| 国产精品一及| 中出人妻视频一区二区| 9191精品国产免费久久| 有码 亚洲区| 一本精品99久久精品77| 国产蜜桃级精品一区二区三区| 久久草成人影院| 亚洲乱码一区二区免费版| 亚洲人与动物交配视频| 两个人的视频大全免费| 69av精品久久久久久| 国产伦精品一区二区三区四那| eeuss影院久久| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 亚洲专区中文字幕在线| 高清毛片免费观看视频网站| 白带黄色成豆腐渣| 国产高清有码在线观看视频| 亚洲欧美精品综合久久99| 免费无遮挡裸体视频| 免费观看人在逋| 一级毛片女人18水好多| 国产免费av片在线观看野外av| 狂野欧美白嫩少妇大欣赏| 国产高潮美女av| 给我免费播放毛片高清在线观看| 少妇熟女aⅴ在线视频| 男女床上黄色一级片免费看| 中文字幕人妻熟人妻熟丝袜美 | 成人鲁丝片一二三区免费| 亚洲精品在线观看二区| 亚洲人成电影免费在线| 全区人妻精品视频| 欧美xxxx黑人xx丫x性爽| 精品午夜福利视频在线观看一区| 国产精品电影一区二区三区| 亚洲av美国av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费搜索国产男女视频| 757午夜福利合集在线观看| 波多野结衣高清作品| 国产中年淑女户外野战色| 在线观看免费视频日本深夜| 国产精品久久久人人做人人爽| 欧美色视频一区免费| 欧美三级亚洲精品| 国产av不卡久久| www.熟女人妻精品国产| 久久精品国产自在天天线| 亚洲精品456在线播放app | 久久久久精品国产欧美久久久| 一区福利在线观看| 欧美3d第一页| 亚洲真实伦在线观看| 操出白浆在线播放| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| 亚洲电影在线观看av| 午夜免费激情av| 亚洲成人免费电影在线观看| 性色avwww在线观看| 在线观看免费视频日本深夜| 在线观看午夜福利视频| 精品福利观看| 91久久精品国产一区二区成人 | 精品电影一区二区在线| 久久6这里有精品| 亚洲欧美日韩东京热| 51午夜福利影视在线观看| 亚洲国产高清在线一区二区三| 18禁黄网站禁片午夜丰满| 国产不卡一卡二| 一级毛片女人18水好多| 午夜福利18| 最近在线观看免费完整版| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 亚洲精品在线美女| 一本久久中文字幕| 黄色日韩在线| 久久亚洲真实| 国产毛片a区久久久久| 久久久久久久精品吃奶| 激情在线观看视频在线高清| 欧美在线一区亚洲| 岛国在线观看网站| 欧美成人a在线观看| 亚洲专区国产一区二区| 最后的刺客免费高清国语| 中文亚洲av片在线观看爽| 美女cb高潮喷水在线观看| 色哟哟哟哟哟哟| 精品熟女少妇八av免费久了| 国产乱人视频| e午夜精品久久久久久久| 2021天堂中文幕一二区在线观| 美女高潮的动态| 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| avwww免费| 一本精品99久久精品77| 亚洲av免费在线观看| av专区在线播放| 床上黄色一级片| 中文字幕高清在线视频| 欧美性猛交╳xxx乱大交人| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 一个人免费在线观看电影| 熟妇人妻久久中文字幕3abv| 亚洲性夜色夜夜综合| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 国产精品影院久久| 久久人妻av系列| 99国产综合亚洲精品| 精品国产亚洲在线| 欧美一级毛片孕妇| 国产三级黄色录像| www日本在线高清视频| 欧美日韩福利视频一区二区| 婷婷六月久久综合丁香| 99久久精品一区二区三区| 亚洲精华国产精华精| 午夜免费成人在线视频| 久久国产精品人妻蜜桃| 亚洲av第一区精品v没综合| 一进一出抽搐gif免费好疼| 国产久久久一区二区三区| 天堂√8在线中文| 网址你懂的国产日韩在线| 亚洲欧美激情综合另类| 亚洲av美国av| 久久久久国产精品人妻aⅴ院| 国产成人aa在线观看| 精品国产美女av久久久久小说| 中文资源天堂在线| tocl精华| 日本免费一区二区三区高清不卡| 在线播放国产精品三级| 免费观看人在逋| 两个人的视频大全免费| 色尼玛亚洲综合影院| 舔av片在线| 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 中文字幕人成人乱码亚洲影| 窝窝影院91人妻| 中国美女看黄片| 欧美av亚洲av综合av国产av| 欧美极品一区二区三区四区| 国产精品爽爽va在线观看网站| 国产亚洲精品久久久久久毛片| 久久草成人影院| 国产精品日韩av在线免费观看| 在线观看免费视频日本深夜| 蜜桃亚洲精品一区二区三区| 色综合站精品国产| 又紧又爽又黄一区二区| 性欧美人与动物交配| 亚洲国产欧美人成| 午夜两性在线视频| 亚洲欧美精品综合久久99| 免费无遮挡裸体视频| 国内精品久久久久久久电影| 一a级毛片在线观看| 中文字幕久久专区| 亚洲av日韩精品久久久久久密|