• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The numerical and experimental investigations of the near wake behind a modified square stay-cable*

    2016-12-06 08:15:44ShunchengSHEN沈順成MiaoWANG汪秒HongLU盧紅LinZOU鄒琳

    Shun-cheng SHEN (沈順成), Miao WANG (汪秒), Hong LU (盧紅), Lin ZOU (鄒琳)

    School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China,

    E-mail: whut517@126.com

    The numerical and experimental investigations of the near wake behind a modified square stay-cable*

    Shun-cheng SHEN (沈順成), Miao WANG (汪秒), Hong LU (盧紅), Lin ZOU (鄒琳)

    School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China,

    The near wake structure, the wake-flow characteristics and the drag coefficients behind a modified square stay-cable(MSC) with sinusoidal variations of the cross-section area along the spanwise direction are investigated experimentally and numerically. The Reynolds numbers are chosen as 100 and 500 for the laminar flow and =Re6 000 and 22 000 for the turbulent flow. The detailed near wake structures, the velocity fields and the force coefficients for the MSC are captured, the effect of the Reynolds number on the flow structure for the MSC is studied. The numerical and experimental investigations show that the free shear layers from the leading edge are widened and prolonged and then roll up into vortices further downstream the MSC, unlike a straight square stay-cable (SSC) under the same flow conditions. As a result, the distinct mean drag reduction and the fluctuating lift suppression are observed for all Reynolds numbers, a drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% are observed, as compared with the case of a straight square stay-cable at =500Re.

    modified square stay-cable (MSC), wake structure, flow control, drag reduction

    Introduction

    The flow around bluff bodies, such as cylinders,chimneys and square stay-cables, is an important technical problem associated with the energy conversion and the structural design. The fluid-dynamic vibration of a rectangular slab was the subject of extensive numerical and experimental investigations and many interesting physical phenomena were observed[1-5]. Meliga et al.[6]discussed the sensitivity of aerodynamic forces on a square cylinder. Leontini et al.[7]studied the fluid-structure interaction of a square cylinder at different angles of attack. Fu et al.[8]observed the strong 3-D characteristics of the flow past a square cylinder at Re=300 by using CFX software. Samani and Bergstrom[9]investigated the effect of a wall on the wake dynamics of an infinite square cylinder. De Stefano and Vasilyev[10]carried out the numerical simulations of 3-D flow past a square cylinder by employing the wavelet-based adaptive method.

    Many methods were proposed over the recent years to control the wake vortex dynamics with the aim of weakening the vortex shedding and reducing the amplitude of the fluctuating lift as well as the drag. Both passive and active controls were investigated in the past[11]. Active methods involving the energy input to a flow structure system to bring about desirable changes of the system. Passive schemes require no external energy input, typically changing the geometry of the structures or adding fixed mechanical vortex disturbers to influence the vortex shedding. Bearman and Owen[12]observed that the rectangular cross-section bodies with a mild wavy (wave steepness of only 0.06 to 0.09 trailing edge resulted in the complete suppression of vortexshedding and a substantial drag reduction of at least 30% at Re=40000. Darekar and Sherwin[13]suggested that the primary wavelength of the straight square-section cylinder might lead to the suppression of the Karman street. Lam and Lin[14]showed that both the mean drag coefficients and thefluctuating lift coefficients of a wavy circular cylinder were evidently smaller than those of a purely circular cylinder. Malekzadeh and Sohankar[15]studied the reduction of fluid forces and heat transfer on a square cylinder using a control plate. Abograis and Alshayji[16]studied an additional passive control method to reduce the fluid forces on a square cylinder in a laminar flow. Huang et al.[17]employed the modulation of a planar jet issued from upstream surface to reduce the forces on a square cylinder. Carassale et al.[18]investigated experimentally the effect of the rounded corners on the aerodynamic behavior of square cylinders. Rashidi et al.[19]studied the control of the wake structure behind a square cylinder by magnetohydrodynamics.

    The purpose of our work is to carry out the PIV experiment measurements and numerical studies of the three-dimensional flow around a modified square stay-cable (MSC) with sinusoidal variations of the cross-section area along the spanwise direction over a wide Reynolds number range (from 100 to 22 000) to investigate their advantages in the flow control and the drag reduction. The main objectives are as follows:(1) to determine the wake structures around and behind the MSC, (2) to calculate and analyze the difference of the drag coefficient, the root-mean-square (rms) lift coefficient and the pressure characteristics between the straight square stay-cable (SSC) and the MSC, (3) to verify the mechanism of the flow control and the drag reduction by using the modified surface of the square stay-cable. Such experimental and computational results are to establish a comprehensive database to further our understanding of the physical mechanisms of the 3-D flow characteristics for the MSC and of the physical mechanisms of the control of the flow induced vibration and drag reduction.

    1 PIV setup and flow measurement

    The particle image velocimetry (PIV) measurements are conducted using a Dantec standard PIV2100 system. Fig.1 shows the schematic diagram of the experimental setup. The present measurements are carried out in a low-speed closed-loop water tunnel with a square working section of 0.3 m×0.6 m and a length of 2.4 m. The MSC of width Dm=0.015m and height Dz=Dm+2acos(2πz/λ) with a length of 0.3 m is placed horizontally. Here,zD denotes the local height of the MSC and varies in the spanwise direction z. The sinusoidal wavelength λ, the wave amplitude a and the mean diametermD of the MSC are fixed at λ/Dm=5.6 and a/Dm=0.175, respectively (Fig.1) The axial location of the maximumzD is called the“node”, while the location of the minimumzD is called the “saddle”. A SSC of diameter Dm=0.015m is also introduced for comparison. The present measurements are conducted at =U∞0.033 m/s and 0.335 m/s, corresponding to =Re500 and 6 000, respectively.

    Fig.1 Experimental setup

    2. Computational methods

    In the present simulations, the Reynolds numbers are kept at =Re100 and 500 for the laminar flow and Re=6 000 and 22 000 for the turbulent flow. At the low Reynolds numbers, the unsteady 3-D laminar flow of a viscous incompressible fluid is considered. The dimensionless 3-D Navier-Stokes equations governing the flow of a Newtonian fluid can be written in the vector form as:

    where the non-dimensional velocity vector u in theCartesian coordinates (,,)xyz has three velocity components u, v, and w, respectively, p is the nondimensional static pressure. The Reynolds number is defined as: Re=U∞D(zhuǎn)m/ν, where ν is the fluid kinematic viscosity. In solving the governing equations, the different physical quantities are normalized by the free-stream velocity and the mean diametermD. The finite volume method (FVM) with an unstructured hexahedral grid is employed to solve the unsteady incompressible 3-D Navier-Stokes equations. The pressure velocity coupling is handled with the semi-implicit pressure linked equations (SIMPLE) scheme. Discretization of the convective terms in the conservation equations is realized through a second-order accurate upwind differencing scheme. The second-order implicit forward discretization is adopted for the time derivative term in order to accelerate the convergence process.

    In the high Reynolds number regime, the 3-D large eddy simulation (LES) turbulence model is implemented also based on the FVM. The large scale eddies are solved directly by the filtered Navier-Stokes equations, and the small eddies are modeled using a subgrid scale (SGS) model. The detailed descriptions and validation tests of the present LES for the turbulence flow past bluff bodies can be found in Ref.[20].

    In the present simulations, the computational boundaries are set at 16mD in y direction. The upstream boundary is set at 8mD away from the leading edge of the MSC. The downstream boundary is 16mD away from the trailing edge of the MSC. The spanwise length of the MSC is set equal to the wavelength λ. At the inlet boundary, uniform oncoming flows with components U∞are imposed. The Neumann-type boundary condition is used at the outlet boundary. The spanwise direction of the computational domain is assumed to satisfy the periodic boundary condition and a no-slip boundary condition (u=v=w=0) is prescribed at the surface of the MSC. The lateral surfaces are treated as slip surfaces using symmetry conditions.

    The computational domain and the grid distributions are shown on Fig.2. In the laminar flow cases,the distance of the first grid near the square surface is 0.01mD. The number of meshes around the stay-cable circumference is 120 and the number of mesh layers along the stay cable spanwise direction is 56. In the turbulent flow cases, the distance from the stay cable surface to the nearest grid points is fixed as+y. The number of meshes around the cylinder circumference is 170 and the number of mesh layers along the cylinder spanwise direction is 72.

    3. Results and discussions

    Darekar and Sherwin[13]pointed out that the optimal wavelength was around 5.6mD for the drag reduction of a wavy square cylinder at low Reynolds numbers. Therefore, we might expect a drag reduction by employing a MSC with an optimal wavelength for the best effect on the FIV suppression. As a result, a MSC with a spanwise wavelength ratio of λ/Dm=5.6 and a fixed wave amplitude of a/Dm=0.175 is employed in all present experiment measurements and numerical simulations. Furthermore, the influence of the Reynolds numbers (=Re100 to 22 000) on the MSC is considered.

    3.1Weak structures

    Figure 3 and Fig.4 show the normalized instantaneous spanwise vorticity and the normalized mean streamwise velocity behind the MSC by using the PIV measurement at =Re500 and 6 000, respectively. Compared with the case of the SSC, the 3-D free shear layers are pushed further downstream behind the MSC both at =Re500 and 6 000. And the wavy surfaces of the MSC lead to a varied wake width at different spanwise positions, the wakes are wide behind the nodal position and narrow behind the saddle position and they roll up into vortices further downstream the MSC (see Fig.3). Similar trend can be found in Fig.4. The values of the vortex formation length of the MSC are evidently larger at =Re500 and 6 000, and along the spanwise direction of the MSC, they show a distinctvariation (see Fig.4). These will lead to the development of well organized 3-D free shear layers with a periodic repetition along the spanwise direction for the MSC. It also implies that the mean drag coefficients of the MSC will be smaller than those of the SSC.

    Fig.3 (Color online) Normalized instantaneous spanwise vorticity behind the MSC by PIV

    Fig.4 (Color online) Normalized mean streamwise velocity behind the MSC by PIV

    Figure 5 shows the instantaneous wake structures of the SSC or the MSC in the -xy plane at =Re100,500, 6 000 and 22 000, obtained by the numerical simulations. These computational results are in excellent agreement with the present experimental PIV measurements (refer to Fig.3) and previous published numerical results obtained by Sohankar et al.[1]and Saha et al.[2]. They indicate that the present numerical schemes are applicable for both the low and high Reynolds number regimes. As shown in Fig.5, the wake structure characteristics are clearly illustrated by the vorticity distribution around and behind the SSC and MSC. Around both the SSC and the MSC, the flow separation occurs at the leading edge at all cases of the Reynolds numbers, with a periodic shedding of vortices, dominating the near wake of the stay-cable. However, for the MSC, at all cases of the Reynolds numbers, because of the variations of the modified leadingedge along the spanwise direction, the free shear layers in the streamwise direction extend behind both the nodal section and the saddle section, while in the transverse direction, they extend only behind the nodal section of the MSC. This is the cause of the free shearlayer instability from the MSC at a further downstream position, and the 3-D free shear layers with a periodic repetition along the spanwise direction are well organized and become more stable at the near wake behind the MSC. On the other hand, with the increase of the Reynolds number, the free shear layers roll up into vortices more rapidly and increase the turbulent nature of the vortices for both the SSC and the MSC. However,with the same Reynolds number, vortices roll up at a further downstream position for the MSC as comparedwith the SSC. It suggests that the mean drag and the lift fluctuation coefficients of the MSC will be greatly reduced over such wide range of Reynolds numbers than those of the SSC.

    Fig.5 (Color online) Instantaneous wake structures of the SSC or the MSC in the -xy plane

    Fig.6 (Color online) Instantaneous 3-D wake structures of the SSC and the MSC

    Fig.7 Time history of force coefficients of the SSC and the MSC

    Figure 6 shows the instantaneous 3-D wake structures of the SSC and the MSC at =Re100, 500, and 6 000. For the MSC, the 3-D wake features are enhanced distinctly due to the effect of the wavy surface. The significant spanwise flow moves from the saddle section toward the nodal section. It means that the near wake structures are modified by this kind of wavy surface. The 3-D free shear layers are larger and more stable than those from the SSC. The formation of dislocations in the wake of the MSC reduces the mean drag coefficient and the rms lift coefficient.

    3.2Force characteristics

    Figure 7 shows the time history of the force coefficients for both the SSC and the MSC. From the drag force component of the MSC, a significant drag reduction and lift fluctuation suppression can be seen as compared with the SSC at all Reynolds numbers. For the SSC at Re=500, the mean drag coefficient=2/ρDH), the rms fluctuating lift coefficient'=2'/ρDH), and the Strouhal number(St=fsD/U∞) obtained by the present numerical results are 1.956, 1.05, and 0.141, respectively. Here, FDis the total mean drag force, F' is the rms. lift force andsf is the vortex shedding frequency obtained by the fast fourier transform (FFT) of the time history of the fluctuating lift. For the MSC, the values ofDC,LC' and St are 1.646, 0.012 and 0.095,respectively. That is to say, the drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% with a lower shedding frequency are observed as compared with the SSC at Re=500. With the increase of the Reynolds number, the advantageous features of the MSC gradually are alleviated but still exist. These results show that the MSC with such a wavy surface is good for the control of the FIV.

    3.3Pressure distributions

    Figure 8 shows the variation curves of the mean pressure coefficient on the peripheral of the SSC and the MSC, that is, on Faces 01, 12, 23 and 30. Our LES calculations are similar to those obtained in previous researches. For all Reynolds numbers, and for both the SSC and the MSC, the profiles ofpC on Face 01 are symmetric with respect to the stagnation point, where the maximumpC of 1.1 occurs. The minimumpC(the separation point) occurs at the vertices 0 and 1. ThepC curves on Faces 12 and 30 are similar because of the symmetry. But for the profiles ofpC on Faces 12, 23 and 30, the values for the MSC are larger than those for the SSC, especially at =Re500 and6 000. From the above discussions, we conclude that a MSC with a smaller pressure difference can lead to a significant drag reduction.

    Fig.8 Variation curves of mean pressure coefficient on the peripheral of the SSC and the MSC

    4. Conclusions

    This paper presents a study of 3-D flow past a MSC for =Re100, 500, 6 000 and 22 000 by using PIV measurements and 3-D numerical simulations. The following observations are made:

    The present numerical results for the SSC show a good agreement with the present PIV experimental results and the previous published numerical results. It means that the present simulation model is validated.

    For the MSC, the mean drag coefficient reduction and the fluctuating lift suppression are observed for all Reynolds numbers of 100, 500, 6 000 and 22 000 as compared with that of the SSC. It is mainly due to the existence of well organized transverse vortices along the spanwise direction, which stabilize and elongate the free shear layers from the leading edge and these free shear layers roll up into vortices at a further downstream position. A drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% are observed as compared with the SSC at =Re 500.

    As the Reynolds number increases, the advantageous of the flow control and the drag reduction for the MSC are gradually alleviated but still exist.

    It implies that the optimum wavy surface is a good choice for the drag reduction and the fluctuating suppression for the MSC under both the laminar and turbulent flow conditions.

    References

    [1]SOHANKAR A., NORBERG C. and DAVIDSON L. Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997, 69-71: 189-201.

    [2]SAHA A. K., BISWAS G. and MURALIDHAR K. Threedimensional study of flow past a square cylinder at low Reynolds numbers[J]. International Journal Heat and Fluid Flow, 2003, 24(1):54-66.

    [3]SEN S., MITTAL S. and BISWAS G. Flow past a square cylinder at low Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 2011, 67(10): 1160-1174.

    [4]ZHANG Wei, DAI Yu-man. Numerical study of flow around three equispaced square cylinders at low reynolds number[J]. Journal of Mechanical Engineering, 2015,51(12): 185-191(in Chinese).

    [5]YOUNIS B. A., ABRISHAMCHI A. Three-dimensional turbulent vortex shedding from a surface-mounted square cylinder: Predictions with large-eddy simulations and URANS[J]. Journal of Fluids Engineering, 2014, 136(6): 060907.

    [6]MELIGA P., BOUJO E. and PUJALS G. et al. Sensitivity of aerodynamic forces in laminar and turbulent flow past a square cylinder[J]. Physics of Fluids, 2014, 26(10): 104101.

    [7]LEONTINI J. S., JACONO D. L. and SHERIDAN J.Fluid-structure interaction of a square cylinder at different angles of attack[J]. Journal of Fluid Mechanics, 2014,747: 688-721

    [8]FU Ying-nan, ZHAO Xi-zeng and WANG Xing-gang. Three dimensional numerical simulation of flow past a square cylinder using CFX[J]. Chinese Journal of Hydrodynamics, 2015, 30(4): 382-389(in Chinese).

    [9]SAMANI M., BERGSTROM D. J. Effect of a wall on the wake dynamics of an infinite square cylinder[J]. International Journal of Heat and Fluid Flow, 2015, 55(10): 158-166.

    [10] De STEFANO G., VASILYEV O. V. Wavelet-based adaptive simulations of three-dimensional flow past a square cylinder[J]. Journal of Fluid Mechanics, 2014, 748: 433-456.

    [11] LUO Yuehao, WANG Liguo and GREEN Lork et al. Advances of drag-reducing surface technologies in turbulence based on boundary layer control[J]. Journal of Hydrodynamics, 2015, 27(4): 473-487.

    [12] BEARMAN P. W., OWEN J. C. Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines[J]. Journal of Fluids and Structures, 1998, 12(1): 123-130.

    [13] DAREKAR R. M., SHERWIN S. J. Flow past a bluff body with a wavy stagnation face[J]. Journal of Fluids and Structures, 2001, 15(3-4): 587-596.

    [14] LAM K., LIN Y. F. Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2009, 620: 195-220.

    [15] MALEKZADEH S., SOHANKAR A. Reduction of fluid forces and heat transfer on a square cylinder in a laminar flow regime using a control plate[J]. International Journal of Heat and Fluid Flow, 2012, 34(4): 15-27.

    [16] ABOGRAIS A. S., ALSHAYJI A. E. Reduction of fluid forces on a square cylinder in a laminar flow using passive control methods[C]. The Proceedings of the 2013 COMSOL Conference. Boston, USA, 2013, 157-163.

    [17] HUANG R. F., HSU C. M. and CHIU P. C. Flow behavior around a square cylinder subject to modulation of a planar jet issued from upstream surface[J]. Journal of Fluids and Structures, 2014, 51(11): 362-383.

    [18] CARASSALE L., FREDA A. and MARRè-BRUNENGHI M. Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners[J]. Journal of Fluids and Structures, 2014, 44(1): 195-204.

    [19] RASHIDI S., BOVAND M. and ESFAHANI J. A. et al. Control of wake structure behind a square cylinder by Magnetohydrodynamics[J]. Journal of Fluids Engineering, 2015, 17(1): 35-67.

    [20] ZOU Lin, LIN Yu-feng. Force reduction of flow around a sinusoidal wavy cylinder[J]. Journal of Hydrodynamics,2009, 21(3): 326-335.

    E-mail: whut517@126.com

    (December 12, 2015, Revised January 5, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11172220, 51275372).

    Biography: Shun-cheng SHEN (1959-), Male, Master,Associate Professor

    Lin ZOU, E-mail: l.zou@163.com

    女人久久www免费人成看片| 国产成人精品一,二区| 99热6这里只有精品| 在线 av 中文字幕| 春色校园在线视频观看| 国产综合精华液| 综合色丁香网| 最近中文字幕高清免费大全6| 亚洲精品国产成人久久av| 亚洲欧洲国产日韩| 精品人妻视频免费看| 亚洲精品亚洲一区二区| 精品一品国产午夜福利视频| 国产免费又黄又爽又色| 亚洲第一av免费看| 免费看不卡的av| 亚洲,欧美,日韩| 精品国产一区二区三区久久久樱花 | 高清不卡的av网站| av国产精品久久久久影院| 又大又黄又爽视频免费| 精品午夜福利在线看| www.色视频.com| 免费播放大片免费观看视频在线观看| 色婷婷av一区二区三区视频| 一区二区三区精品91| 街头女战士在线观看网站| 久久久成人免费电影| 国产精品爽爽va在线观看网站| 美女内射精品一级片tv| 亚洲精品第二区| 一二三四中文在线观看免费高清| 国产精品爽爽va在线观看网站| 嫩草影院新地址| 在线观看免费高清a一片| 91久久精品国产一区二区成人| 18禁在线播放成人免费| 亚洲精品国产色婷婷电影| 黑人猛操日本美女一级片| 国产精品欧美亚洲77777| 十分钟在线观看高清视频www | 夫妻性生交免费视频一级片| 你懂的网址亚洲精品在线观看| 制服丝袜香蕉在线| 22中文网久久字幕| 亚洲熟女精品中文字幕| 国产精品人妻久久久影院| 丰满乱子伦码专区| 亚洲国产欧美人成| 深爱激情五月婷婷| 丝袜脚勾引网站| 日本欧美视频一区| 成人免费观看视频高清| 亚洲精华国产精华液的使用体验| 免费黄网站久久成人精品| 一本久久精品| 在线 av 中文字幕| 亚洲精品中文字幕在线视频 | 亚洲欧洲日产国产| 我要看日韩黄色一级片| 天堂8中文在线网| 六月丁香七月| 日韩 亚洲 欧美在线| 久久精品久久久久久久性| 高清毛片免费看| 久久毛片免费看一区二区三区| 亚洲成色77777| 全区人妻精品视频| 亚洲精品aⅴ在线观看| 看免费成人av毛片| 亚洲成色77777| 免费av不卡在线播放| 精品酒店卫生间| 久久国产精品大桥未久av | 国产免费福利视频在线观看| 22中文网久久字幕| 中文字幕av成人在线电影| 国产一区二区在线观看日韩| 成人国产麻豆网| 一级毛片 在线播放| 久久人人爽人人爽人人片va| 91久久精品国产一区二区成人| 少妇 在线观看| 国产精品成人在线| 九九久久精品国产亚洲av麻豆| 亚州av有码| 少妇猛男粗大的猛烈进出视频| 国产黄色视频一区二区在线观看| 免费黄网站久久成人精品| 内地一区二区视频在线| 久久精品国产a三级三级三级| 国产精品麻豆人妻色哟哟久久| 成人午夜精彩视频在线观看| 精品一区二区三卡| 久热这里只有精品99| 伦精品一区二区三区| 欧美日韩综合久久久久久| 哪个播放器可以免费观看大片| 日韩三级伦理在线观看| 久久韩国三级中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲美女搞黄在线观看| 大又大粗又爽又黄少妇毛片口| 午夜免费男女啪啪视频观看| 九草在线视频观看| 亚洲国产日韩一区二区| 欧美三级亚洲精品| 日日啪夜夜撸| 男女下面进入的视频免费午夜| 又大又黄又爽视频免费| 七月丁香在线播放| 一边亲一边摸免费视频| 久久久久人妻精品一区果冻| 精品少妇久久久久久888优播| 毛片女人毛片| 免费看av在线观看网站| 精品一品国产午夜福利视频| 久久久久国产网址| 久久久午夜欧美精品| 一个人看的www免费观看视频| 直男gayav资源| 亚洲精华国产精华液的使用体验| freevideosex欧美| 91久久精品国产一区二区三区| 国产片特级美女逼逼视频| 中文字幕人妻熟人妻熟丝袜美| 97超碰精品成人国产| 亚洲av二区三区四区| 99久久精品一区二区三区| 久久久久国产网址| 夫妻性生交免费视频一级片| 亚洲精品亚洲一区二区| 少妇丰满av| 久久久国产一区二区| 成人漫画全彩无遮挡| 亚洲精品国产av成人精品| 三级国产精品片| 国产 一区 欧美 日韩| 在线播放无遮挡| h日本视频在线播放| 日韩av不卡免费在线播放| 少妇丰满av| 九色成人免费人妻av| 亚洲色图综合在线观看| 狂野欧美白嫩少妇大欣赏| 国产高清三级在线| 永久网站在线| 超碰av人人做人人爽久久| 高清毛片免费看| 男女免费视频国产| 在线观看国产h片| 天堂俺去俺来也www色官网| 国产高清三级在线| 人人妻人人爽人人添夜夜欢视频 | av不卡在线播放| 国内精品宾馆在线| 97精品久久久久久久久久精品| 欧美 日韩 精品 国产| 免费黄频网站在线观看国产| 色5月婷婷丁香| 国产男女超爽视频在线观看| 午夜福利在线在线| 欧美日韩精品成人综合77777| www.色视频.com| 91久久精品国产一区二区三区| 好男人视频免费观看在线| 黄色视频在线播放观看不卡| 狠狠精品人妻久久久久久综合| kizo精华| 久久久亚洲精品成人影院| 亚洲精品色激情综合| 久久久久国产精品人妻一区二区| av福利片在线观看| 丰满迷人的少妇在线观看| 亚洲av不卡在线观看| av.在线天堂| 国产高清国产精品国产三级 | 日韩中文字幕视频在线看片 | 日本wwww免费看| 国产老妇伦熟女老妇高清| 欧美人与善性xxx| 99热网站在线观看| 欧美3d第一页| 国产成人精品久久久久久| 国产精品一区二区在线不卡| 亚洲av成人精品一区久久| av在线观看视频网站免费| 六月丁香七月| 99re6热这里在线精品视频| 色吧在线观看| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| videossex国产| 另类亚洲欧美激情| www.色视频.com| 国产精品99久久99久久久不卡 | 亚洲欧洲日产国产| 女人十人毛片免费观看3o分钟| 久久久久国产精品人妻一区二区| 久久久精品免费免费高清| 国产精品一区二区性色av| 国产欧美另类精品又又久久亚洲欧美| 午夜福利视频精品| 亚洲av综合色区一区| 青春草视频在线免费观看| 亚洲无线观看免费| 国产黄片美女视频| 91aial.com中文字幕在线观看| 国产成人精品婷婷| 一级毛片我不卡| a级毛色黄片| av专区在线播放| 久久国产精品大桥未久av | 一区二区av电影网| 丰满迷人的少妇在线观看| 亚洲精品日本国产第一区| 国产日韩欧美亚洲二区| 国产在线免费精品| 观看av在线不卡| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 欧美bdsm另类| 最近2019中文字幕mv第一页| 午夜福利在线观看免费完整高清在| 中国国产av一级| 久久久a久久爽久久v久久| 少妇人妻一区二区三区视频| 少妇人妻精品综合一区二区| 日本黄大片高清| 国产高清有码在线观看视频| 色5月婷婷丁香| 国产一区亚洲一区在线观看| 亚洲图色成人| 欧美日韩视频精品一区| 亚洲国产色片| 99视频精品全部免费 在线| 国产精品精品国产色婷婷| 老女人水多毛片| 欧美日韩在线观看h| 日本欧美国产在线视频| 欧美最新免费一区二区三区| av在线播放精品| 80岁老熟妇乱子伦牲交| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 最新中文字幕久久久久| 久久久久性生活片| 久久热精品热| 中文乱码字字幕精品一区二区三区| 大香蕉久久网| 欧美日韩视频高清一区二区三区二| 欧美一级a爱片免费观看看| 黄片wwwwww| 久久久久国产精品人妻一区二区| 国产精品一区二区性色av| 在线观看免费高清a一片| 亚洲精华国产精华液的使用体验| 精品久久久久久久久av| 亚洲人成网站在线观看播放| 97超视频在线观看视频| av在线app专区| 日本av免费视频播放| 日本欧美国产在线视频| 看十八女毛片水多多多| 在线观看美女被高潮喷水网站| 男人添女人高潮全过程视频| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 国产极品天堂在线| 国产精品一区www在线观看| 黄色日韩在线| 超碰av人人做人人爽久久| 一级毛片aaaaaa免费看小| 久久久久久伊人网av| 蜜桃亚洲精品一区二区三区| 久久久午夜欧美精品| 男人和女人高潮做爰伦理| 看十八女毛片水多多多| 高清不卡的av网站| 亚洲国产日韩一区二区| 久久人人爽人人爽人人片va| 国产日韩欧美在线精品| 亚州av有码| 高清毛片免费看| 黄片无遮挡物在线观看| 久久人人爽人人片av| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 日韩国内少妇激情av| 日韩强制内射视频| 久久久精品免费免费高清| 久久久久视频综合| 精品亚洲成a人片在线观看 | av视频免费观看在线观看| 日日撸夜夜添| 国产乱人偷精品视频| 国产 一区精品| 狂野欧美白嫩少妇大欣赏| 亚洲欧美一区二区三区黑人 | 老师上课跳d突然被开到最大视频| 免费观看a级毛片全部| 午夜激情福利司机影院| 亚洲精品乱码久久久久久按摩| 2021少妇久久久久久久久久久| 国产精品一区二区在线观看99| 久久99热这里只频精品6学生| 欧美高清成人免费视频www| 大片电影免费在线观看免费| 国产成人a区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| 亚洲激情五月婷婷啪啪| 国产精品成人在线| 欧美精品亚洲一区二区| 日韩人妻高清精品专区| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 午夜福利视频精品| 黄色日韩在线| 99久久综合免费| 看免费成人av毛片| 一二三四中文在线观看免费高清| 国产成人精品福利久久| 卡戴珊不雅视频在线播放| 亚洲在久久综合| 我要看日韩黄色一级片| 久久av网站| 97在线视频观看| 欧美成人午夜免费资源| 国产爱豆传媒在线观看| 丰满迷人的少妇在线观看| 内地一区二区视频在线| 久久国产精品大桥未久av | 国产精品人妻久久久影院| 国产老妇伦熟女老妇高清| 中文资源天堂在线| 街头女战士在线观看网站| 免费大片18禁| 欧美极品一区二区三区四区| 国产成人精品久久久久久| 国产精品人妻久久久影院| 亚洲成人一二三区av| 欧美高清成人免费视频www| 日韩伦理黄色片| 久久国产亚洲av麻豆专区| 美女中出高潮动态图| av在线观看视频网站免费| av卡一久久| 中文字幕久久专区| 日本av免费视频播放| 麻豆乱淫一区二区| 亚洲精品,欧美精品| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 亚洲四区av| 欧美xxⅹ黑人| 下体分泌物呈黄色| 精品人妻偷拍中文字幕| 丝袜脚勾引网站| 中文天堂在线官网| 在线免费观看不下载黄p国产| 在线观看av片永久免费下载| 黄色视频在线播放观看不卡| 午夜福利高清视频| av女优亚洲男人天堂| 寂寞人妻少妇视频99o| 婷婷色综合www| 全区人妻精品视频| 在线 av 中文字幕| 91午夜精品亚洲一区二区三区| 亚洲欧美一区二区三区国产| 蜜臀久久99精品久久宅男| 久久精品国产亚洲网站| 91aial.com中文字幕在线观看| 日本黄色片子视频| 精华霜和精华液先用哪个| 极品教师在线视频| 男女下面进入的视频免费午夜| 久久久久久人妻| 草草在线视频免费看| av线在线观看网站| 一级毛片 在线播放| 老女人水多毛片| 免费不卡的大黄色大毛片视频在线观看| 一个人免费看片子| 国产男人的电影天堂91| 成人一区二区视频在线观看| 久久ye,这里只有精品| 中国美白少妇内射xxxbb| 我要看日韩黄色一级片| 国产伦理片在线播放av一区| 亚洲色图综合在线观看| 国产高清不卡午夜福利| 在现免费观看毛片| 日韩一本色道免费dvd| 99热6这里只有精品| 蜜臀久久99精品久久宅男| 国产69精品久久久久777片| 欧美日韩视频精品一区| 欧美成人午夜免费资源| 一本色道久久久久久精品综合| 最近最新中文字幕大全电影3| 日韩中文字幕视频在线看片 | 亚洲精品久久午夜乱码| 岛国毛片在线播放| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人 | 欧美高清成人免费视频www| 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 看十八女毛片水多多多| 免费观看的影片在线观看| 成人毛片60女人毛片免费| 日韩 亚洲 欧美在线| 2022亚洲国产成人精品| 国产精品伦人一区二区| 精品久久久久久电影网| 亚洲人成网站高清观看| 97在线视频观看| 人人妻人人看人人澡| 激情 狠狠 欧美| 亚洲久久久国产精品| 亚洲,一卡二卡三卡| 亚洲经典国产精华液单| 亚洲欧美清纯卡通| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| 国产 一区精品| 亚洲美女搞黄在线观看| 777米奇影视久久| 国产在线男女| 国产综合精华液| 亚洲中文av在线| 一级毛片我不卡| 两个人的视频大全免费| 99热全是精品| 又大又黄又爽视频免费| 在线观看人妻少妇| 欧美少妇被猛烈插入视频| 久久毛片免费看一区二区三区| 国产成人精品婷婷| 国产毛片在线视频| 少妇猛男粗大的猛烈进出视频| 高清午夜精品一区二区三区| 夜夜骑夜夜射夜夜干| 我的老师免费观看完整版| 97精品久久久久久久久久精品| 只有这里有精品99| 国产深夜福利视频在线观看| 国产亚洲欧美精品永久| 熟女av电影| 黄色怎么调成土黄色| 成人亚洲精品一区在线观看 | 国产精品不卡视频一区二区| 91精品国产国语对白视频| 夜夜看夜夜爽夜夜摸| 熟女人妻精品中文字幕| 免费观看a级毛片全部| 国产乱人偷精品视频| 国产亚洲欧美精品永久| 伦精品一区二区三区| 嫩草影院入口| 成人毛片a级毛片在线播放| 建设人人有责人人尽责人人享有的 | av一本久久久久| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 亚洲精品一二三| 香蕉精品网在线| 久久久久精品久久久久真实原创| 亚洲第一av免费看| 欧美一区二区亚洲| 国产高清不卡午夜福利| 乱系列少妇在线播放| 久久国产乱子免费精品| 丝袜喷水一区| 久久久久人妻精品一区果冻| 久久女婷五月综合色啪小说| 黄色视频在线播放观看不卡| 日韩中字成人| 夜夜爽夜夜爽视频| 免费大片18禁| 高清午夜精品一区二区三区| 99热全是精品| 亚洲伊人久久精品综合| 精品久久久噜噜| 中国国产av一级| 亚洲成色77777| 久久久久精品性色| 免费观看a级毛片全部| 老女人水多毛片| 国产视频首页在线观看| 看十八女毛片水多多多| a 毛片基地| 婷婷色综合大香蕉| 免费少妇av软件| 久久综合国产亚洲精品| 人体艺术视频欧美日本| 免费在线观看成人毛片| 精品久久久久久电影网| 国产午夜精品一二区理论片| 毛片一级片免费看久久久久| 亚洲av欧美aⅴ国产| 极品教师在线视频| 欧美精品国产亚洲| 国产一区二区三区综合在线观看 | 自拍偷自拍亚洲精品老妇| 亚洲美女搞黄在线观看| 多毛熟女@视频| 久久久久国产网址| 国产片特级美女逼逼视频| 亚洲熟女精品中文字幕| 免费少妇av软件| 少妇裸体淫交视频免费看高清| 欧美区成人在线视频| 久久久色成人| 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 亚洲激情五月婷婷啪啪| 97精品久久久久久久久久精品| 中文字幕av成人在线电影| 99热6这里只有精品| 只有这里有精品99| 久久99热6这里只有精品| 国产黄频视频在线观看| 晚上一个人看的免费电影| 久久精品国产自在天天线| 99热这里只有精品一区| 日韩中字成人| 老熟女久久久| 我的女老师完整版在线观看| 涩涩av久久男人的天堂| 国产精品国产三级国产av玫瑰| 观看免费一级毛片| 亚洲自偷自拍三级| 男女无遮挡免费网站观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久毛片免费看一区二区三区| 舔av片在线| 亚洲久久久国产精品| 久久97久久精品| 夫妻性生交免费视频一级片| 亚洲综合精品二区| 亚洲国产高清在线一区二区三| 亚洲四区av| 久久热精品热| 日本黄色片子视频| 日韩中字成人| 又爽又黄a免费视频| 亚州av有码| 一级毛片aaaaaa免费看小| 国国产精品蜜臀av免费| 欧美日本视频| 国产黄片视频在线免费观看| 亚洲成色77777| 久久久色成人| 男女边摸边吃奶| 国产91av在线免费观看| a级毛片免费高清观看在线播放| .国产精品久久| 韩国av在线不卡| 亚洲一级一片aⅴ在线观看| 国产精品99久久久久久久久| 日本欧美国产在线视频| 久久精品国产自在天天线| 久久久精品免费免费高清| 欧美xxxx黑人xx丫x性爽| 亚洲精品,欧美精品| 久久久久久久亚洲中文字幕| 一区二区三区四区激情视频| 在线观看av片永久免费下载| 极品少妇高潮喷水抽搐| 观看美女的网站| 国产女主播在线喷水免费视频网站| 精品99又大又爽又粗少妇毛片| a级毛片免费高清观看在线播放| 亚洲成人av在线免费| 成年免费大片在线观看| 亚洲国产欧美在线一区| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站 | 如何舔出高潮| 多毛熟女@视频| 最近中文字幕2019免费版| 亚洲成人一二三区av| 一边亲一边摸免费视频| av天堂中文字幕网| 久久久久性生活片| 大码成人一级视频| 成人免费观看视频高清| 三级国产精品片| 欧美精品国产亚洲| 国产精品一区二区在线观看99| 日本黄色片子视频| 一边亲一边摸免费视频| 国产高清不卡午夜福利| 男人狂女人下面高潮的视频| 亚洲欧洲日产国产| 国产有黄有色有爽视频| 极品教师在线视频| 国产视频首页在线观看| 国产免费福利视频在线观看| 亚洲美女搞黄在线观看| 青青草视频在线视频观看| 午夜福利网站1000一区二区三区| 直男gayav资源| 人人妻人人添人人爽欧美一区卜 | 日本一二三区视频观看| 日韩伦理黄色片| 日日摸夜夜添夜夜添av毛片| 国产淫片久久久久久久久| 久久久久久久久大av| 伊人久久精品亚洲午夜| 亚洲欧美日韩另类电影网站 |