• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The mechanism of flapping propulsion of an underwater glider*

    2016-12-06 08:15:47YongchengLI李永成DingyiPAN潘定一ZhengMA馬崢

    Yong-cheng LI (李永成), Ding-yi PAN (潘定一), Zheng MA (馬崢)

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    The mechanism of flapping propulsion of an underwater glider*

    Yong-cheng LI (李永成)1, Ding-yi PAN (潘定一)2, Zheng MA (馬崢)1

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    To develop a bionic maneuverable propulsion system to be applied in a small underwater vehicle, a new conceptual design of the bionic propulsion is applied to the traditional underwater glider. The numerical simulation focuses on the autonomous underwater glider (AUG)'s flapping propulsion at Re=200 by solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method. The systematic analysis of the effect of different motion parameters on the propulsive efficiency of the AUG is carried out, including the hydrofoil's heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency. The results obtained in this study can provide some physical insights into the propulsive mechanisms in the flapping -based locomotion.

    autonomous underwater glider, flapping propulsion, immersed boundary method

    The autonomous underwater glider (AUG) is a new type of underwater vehicles and it is driven by its own buoyancy. Compared with the traditional underwater vehicle, it has the advantages of low noise, low energy consumption, and long range[1].

    Despite these advantages, some problems regarding the AUG should be given serious consideration. One of the most crucial problems is the “drift”. For collecting intense data, the gliding speed of the AUG has to be relatively low, which is only about 0.5 knot(0.25 m/s). Under such a low speed, the movement of the AUG would be easily influenced by the ocean current, and it is not easy to continually follow the initially determined route.

    In order to solve this problem, a conceptual design of the bionic propulsion method is adopted for the design of the AUG. In this paper, the bionic propulsion of a newly designed underwater glider is investigated by numerically solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method to reveal the effect of hydrofoil's motion parameters on the propulsive efficiency, including the heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency and to have an improved understanding of physical mechanisms of the flapping-based locomotion adopted by swimming animals.

    As shown in Fig.1, the computational model is composed of the hull and the hydrofoils. The total length of the model is 1.200 m, where the middle part is a cylinder of 0.250 m in diameter and 0.625 m in length. The front part is a semi-ellipsoid of 0.175 m in semi-major axis, and the rear part is also a semi-ellipsoid of 0.400 m in semi-major axis. The hydrofoil is in the NACA0015 profile with a span length of 0.300 m and a chord length of 0.300 m, which is chosen as the characteristic length C.

    Fig.1 Schematic diagram of the computational model

    The bionic propulsion method is introduced into the design of the AUG, and and the hydrofoil's flapping is used to increase the AUG's advancing speed. The hydrofoil's motion is the combination of the heaving motion along the Y axis and the pitching motion around the Z axis, both directions of motion are sinusoidal, with a phase lag in the same motion cycle. The equations of the heave motion and the pitch motion are, respectively:

    where0h is the heaving amplitude,0θ the pitching amplitude, f the flapping frequency and0ψ the phase lag. As a result of the hydrofoil's flapping, the underwater glider can move quickly. The schematic diagram of the movement is shown in Fig.2.

    Fig.2 Schematic diagram of the motion process

    The surrounding water around the AUG is considered as incompressible and viscous, and the Navier-Stokes equations of fluid motion is employed as[2,3]

    where u is the velocity vector, p is the pressure,Re is the Reynolds number, which can be calculated as Re=U0L/ν with U0and L being the characteristic velocity and length scales, and f is the additional body force. To discretize the Navier-Stokes equations for numerical solutions, the Crank-Nicolson scheme is used for viscous terms and the Adams-Bashforth scheme is applied for other terms in Eq.(3). In addition, the finite difference projection method is used to obtain the velocity and pressure fields. For simplification, the Reynlods number in the current study is chosen as 200, without any additional turbulent model to be applied.

    The immersed boundary (IB) method is applied to capture the flapping motion of the hydrofoil.The additional body force f of the IB method near the moving boundary is modified according to the “direct forcing” approach[2], in which the body force can be derived as

    It is worth mentioning that unlike other bionic propulsion studies, this paper focuses on the practical application, to maintain a balance between the hull's average resistance and the hydrofoil's average thrust. Thus a glider can maintain a constant moving speed. The formula of balance is defined as

    where D represents the drag experienced by the hull,F(xiàn) represents the thrust generated by the hydrofoils,and T is a motion period.

    We here present some typical results on the bionic propulsion of the underwater glider. Based on the measurements and the modeling of the animal locomotion,the governing parameters used in this study are chosen as follows: the flapping frequency f=0.3Hz-1.0Hz, the phase lag between heaving and pitching ψ0=30o-110o, the heaving amplitude=0.05C-0.5C, the pitching amplitude θ=30oand the moving velocity V =0.5m/s-1.2m/s.

    In order to characterize the propulsive efficiency of the underwater glider, the ratio of the kinetic energy of the body and the input work is usually employed[3,4]and defined as

    where T is a movement period, and P the input power, which represents the energy required by the AUG to overcome the fluid force in the unit time and it consists of two parts, which arewhere1P is the power required by the hull to overcome the fluid resistance,2P is the power required by the hydrofoils to overcome the fluid dynamics, V is the average advancing speed, ()Lt is the vertical force acted on the hydrofoils and ()Mt is the torque around the Z axis.

    Figure 3 shows the propulsive efficiency η versus the phase lag with the fixed pitching amplitude θ=30oand the flapping frequency f=0.6Hz .

    Fig.3 Propulsive efficiency versus phase lag

    It is seen from Fig.3 that the propulsive efficiency for each moving velocity increases to its maximum and then decreases with0ψ, the best phase lag increases constantly while the highest propulsive efficiency sees a slight change with the increase of the moving velocity. When the phase lag is aroundo90, the maximum value of the propulsive efficiency is obtained. So, in the following calculation, the phase lag is set aso90.

    Figure 4 shows the curve of the propulsive efficiency versus the pitching amplitude and the moving velocity with the fixed flapping frequency f=0.6Hz and the phase lago90.

    Fig.4 Propulsive efficiency versus pitching amplitude and moving velocity

    As shown in Fig.4, similarly, the propulsive efficiency increases to its maximum and then gradually decreases with the increase of θ at several moving velocities. Furthermore, with the increase of the moving velocity, the highest propulsive efficiency experiences a sharp decline while the pitching amplitude corresponding to the maximum propulsive efficiency shows a slight change, abouto30. So it is recommended that the pitching amplitude is chosen aso30.

    Figure 5 shows the propulsive efficiency versus the heaving amplitude and the moving velocity with the fixed pitching amplitude θ=30oand the phase lag ψ0=90o.

    Fig.5 Propulsive efficiency versus heaving amplitude and moving velocity

    As shown in Fig.5, there exists a certain heaving amplitude leading to the highest propulsive efficiency for a specified moving velocity and the best heaving amplitude increases constantly with the increase of the moving velocity while the corresponding propulsive efficiency shows a gradual decrease, which means that to obtain a high moving velocity means a sacrifice of the propulsive efficiency, and therefore the loss of the long range and the high duration.

    Figure 6 shows the propulsive efficiency versus flapping frequency and the moving velocity with the fixed pitching angle 30oand the phase lag 90o.

    Fig.6 Propulsive efficiency versus flapping frequency and moving velocity

    As can be seen from Fig.6, at different moving velocities, the propulsive efficiency increases to itsmaximum and then gradually decreases with the increase of the flapping frequency. Besides that, the best flapping frequency increases constantly with the increase of the moving velocity while the maximum propulsive efficiency in the corresponding case decreases with the increase of the moving velocity.

    Fig.7 (Color online) Instantaneous vortex structures for =f0.4 Hz, 0.6 Hz and 1.0 Hz

    The propulsive behaviors of the flapping propulsion are closely associated with the vortex structures around the hydrofoils. In order to explain the above phenomenon, the vortex structures are obtained for three flapping frequencies =f0.4 Hz, 0.6 Hz and 1.0 Hz with V =1.2m/s , θ=30oand ψ0=90o. The instantaneous vortex structures are shown in Fig.7.

    As shown in Figs.7(a)-7(c) for f=0.6Hz , the leading-edge vortex first moves along the upper surface of the hydrofoil to the trailing edge and falls off while a new leading-edge vortex emerges on the leading edge of the hydrofoil. The shedding leading-edge vortex is then connected with the tip vortices, lying in the two sides of the flapping hydrofoil, and is eventually closed with the trailing edge leading to vortex loops in the tail flow field. This phenomenon is consistent with the experimental observations of Von Ellenrieder[5,6].

    In the case of f=0.4Hz , Figs.7(d)-(7f) show that the shedding vortices in the upper and lower surfaces of the hydrofoil separate from each other in the tail flow field, therefore, there is no vortex loop exists. In the case of a higher frequency f=1.0Hz ,F(xiàn)igs.7(g)-7(i) show that the vortices in the upper and lower surfaces of the hydrofoil separate earlier and they are overlapping with each other, so it is more difficult to form a vortex loop. Since the energy required for the propulsion is mainly derived from the vortex loop, so that may explain the results we have obtained above.

    References

    [1]CHEN Ya-jun, CHEN Hong-xun and Ma zheng Hydrodynamic analyses of typical underwater gliders[J]. Journal of Hydrodynamics, 2015, 27(4): 556-561

    [2]HUA R. N., ZHU L. and LU X. Y. Locomotion of a flapping flexible plate[J].Physics of Fluids, 2003, 25(12): 121901.

    [3]SHAO Xue-ming, PAN Ding-yi and DENG Jian et al. Numerical studies on the propulsive and wake structure of finite-span flapping hydrofoils with different aspect ratios[J]. Journal of Hydrodynamics, 2010, 22(2): 147-154.

    [4]PAN D., DENG J. and SHAO X. et al. On the propulsive performance of tandem flapping hydrofoils with a modified immersed boundary method[J]. International Journal of Computational Method, 2016, 13: 1650025.

    [5]Von ELLENRIEDER K., PARKER K. and SORIA J. Flow structures behind a heaving and pitching finite-span wing[J]. Journal of Fluid Mechanics, 2003, 490: 129-138.

    [6]TANG Chao, LU Xi-yun. Self-propulsion of a threedimensional flapping flexible plate[J]. Journal of Hydrodynamics, 2016, 28(1): 1-9.

    (August 18, 2016, Revised September 10, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279184).

    Biography: Yong-cheng LI (1992-), Male, Master Candidate

    Ding-yi PAN,

    E-mail: dpan@zju.edu.cn

    www.自偷自拍.com| 又紧又爽又黄一区二区| 午夜免费成人在线视频| 国产精品一区二区三区四区久久| 99国产精品一区二区蜜桃av| 国产成人欧美在线观看| 亚洲中文日韩欧美视频| 国产一级毛片七仙女欲春2| 婷婷六月久久综合丁香| 亚洲精华国产精华精| 女警被强在线播放| 成人一区二区视频在线观看| 中文亚洲av片在线观看爽| 亚洲片人在线观看| 少妇裸体淫交视频免费看高清| 一本一本综合久久| 一级毛片女人18水好多| 国产99白浆流出| 一进一出好大好爽视频| 久久久久九九精品影院| 久久人妻av系列| 色综合婷婷激情| 在线观看66精品国产| 国语自产精品视频在线第100页| 亚洲午夜理论影院| 精品99又大又爽又粗少妇毛片 | 叶爱在线成人免费视频播放| 国产成年人精品一区二区| 啦啦啦免费观看视频1| 国产精品久久久av美女十八| 久久久久亚洲av毛片大全| 国产精品久久久久久久电影 | 亚洲成av人片在线播放无| 欧美黄色淫秽网站| 日本免费a在线| 露出奶头的视频| 精品国产乱码久久久久久男人| 香蕉丝袜av| 亚洲欧美日韩卡通动漫| 欧美zozozo另类| 香蕉丝袜av| 久久天躁狠狠躁夜夜2o2o| 十八禁人妻一区二区| 免费观看的影片在线观看| 欧美日韩一级在线毛片| 午夜精品久久久久久毛片777| 热99re8久久精品国产| xxxwww97欧美| 激情在线观看视频在线高清| 国产精品香港三级国产av潘金莲| 91av网站免费观看| 成熟少妇高潮喷水视频| 日本成人三级电影网站| 国产高清视频在线观看网站| 久久九九热精品免费| 国产av一区在线观看免费| 亚洲午夜精品一区,二区,三区| 无遮挡黄片免费观看| 国产精品爽爽va在线观看网站| 精品熟女少妇八av免费久了| 天堂av国产一区二区熟女人妻| 日韩欧美 国产精品| 国产精品一区二区三区四区久久| 别揉我奶头~嗯~啊~动态视频| 伦理电影免费视频| 999久久久精品免费观看国产| 一进一出好大好爽视频| 成人性生交大片免费视频hd| 亚洲欧美日韩高清在线视频| 日韩人妻高清精品专区| 琪琪午夜伦伦电影理论片6080| 免费看十八禁软件| 国产综合懂色| 午夜福利高清视频| 国内毛片毛片毛片毛片毛片| www国产在线视频色| 国产精品99久久久久久久久| 精华霜和精华液先用哪个| 搡老妇女老女人老熟妇| 久久伊人香网站| 亚洲专区国产一区二区| 国产高清视频在线观看网站| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 国产一区二区激情短视频| 日韩有码中文字幕| 成人永久免费在线观看视频| 国产真人三级小视频在线观看| 99国产综合亚洲精品| 十八禁人妻一区二区| 精品一区二区三区av网在线观看| 一区二区三区高清视频在线| 九九热线精品视视频播放| 桃色一区二区三区在线观看| 99国产精品一区二区三区| 五月伊人婷婷丁香| 嫁个100分男人电影在线观看| 两个人看的免费小视频| 亚洲av成人不卡在线观看播放网| 香蕉丝袜av| 色综合欧美亚洲国产小说| 成人国产综合亚洲| 国产欧美日韩精品亚洲av| 狂野欧美白嫩少妇大欣赏| 国产激情欧美一区二区| 亚洲国产精品sss在线观看| 亚洲精品中文字幕一二三四区| 色综合欧美亚洲国产小说| 免费av不卡在线播放| 香蕉av资源在线| 男人的好看免费观看在线视频| 国产高清三级在线| 国产99白浆流出| 欧美一区二区国产精品久久精品| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 亚洲av成人av| 午夜激情欧美在线| 无限看片的www在线观看| 精华霜和精华液先用哪个| 久久精品91无色码中文字幕| 天堂网av新在线| 成人国产一区最新在线观看| 少妇裸体淫交视频免费看高清| 精品久久久久久成人av| 免费在线观看影片大全网站| 精品久久久久久久毛片微露脸| 成年免费大片在线观看| 亚洲成人免费电影在线观看| 亚洲av日韩精品久久久久久密| 国产视频内射| 曰老女人黄片| 91麻豆精品激情在线观看国产| av女优亚洲男人天堂 | 亚洲七黄色美女视频| 成年女人毛片免费观看观看9| 又黄又爽又免费观看的视频| 丰满人妻一区二区三区视频av | 久久草成人影院| 欧美日韩精品网址| 国产精品九九99| 久久久国产成人精品二区| 婷婷亚洲欧美| 麻豆国产97在线/欧美| 亚洲欧美激情综合另类| 亚洲专区国产一区二区| 听说在线观看完整版免费高清| 亚洲精品456在线播放app | 亚洲国产色片| 网址你懂的国产日韩在线| 黄片小视频在线播放| 麻豆成人午夜福利视频| 精品福利观看| 美女黄网站色视频| 欧美色欧美亚洲另类二区| 欧美日韩瑟瑟在线播放| 久久精品影院6| 亚洲欧美激情综合另类| 欧美三级亚洲精品| 亚洲av电影在线进入| 狂野欧美激情性xxxx| 免费av不卡在线播放| 九色成人免费人妻av| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清| 久久久水蜜桃国产精品网| 在线看三级毛片| 曰老女人黄片| 亚洲狠狠婷婷综合久久图片| 99热这里只有精品一区 | 国产精品久久视频播放| 免费在线观看日本一区| 久久欧美精品欧美久久欧美| 91久久精品国产一区二区成人 | 又黄又粗又硬又大视频| 日本精品一区二区三区蜜桃| 欧美色欧美亚洲另类二区| 一二三四在线观看免费中文在| 麻豆国产97在线/欧美| 老司机午夜福利在线观看视频| 亚洲欧美精品综合一区二区三区| 成年女人永久免费观看视频| 精品日产1卡2卡| 亚洲国产高清在线一区二区三| 亚洲狠狠婷婷综合久久图片| 国产人伦9x9x在线观看| 97人妻精品一区二区三区麻豆| 中国美女看黄片| 波多野结衣巨乳人妻| 国产精品久久久av美女十八| 亚洲国产欧美一区二区综合| 夜夜躁狠狠躁天天躁| 亚洲乱码一区二区免费版| 欧美黑人巨大hd| 成人一区二区视频在线观看| 精品国产三级普通话版| 两人在一起打扑克的视频| 黄色日韩在线| 最近视频中文字幕2019在线8| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 欧美性猛交╳xxx乱大交人| 日韩欧美国产在线观看| 精华霜和精华液先用哪个| 在线观看午夜福利视频| 亚洲专区字幕在线| 99在线人妻在线中文字幕| 成人亚洲精品av一区二区| 欧美日韩精品网址| 我要搜黄色片| 一级毛片高清免费大全| 国产欧美日韩一区二区三| bbb黄色大片| 白带黄色成豆腐渣| 欧美性猛交╳xxx乱大交人| 欧美大码av| 精品人妻1区二区| 中国美女看黄片| 在线观看舔阴道视频| 久久99热这里只有精品18| 很黄的视频免费| 一区二区三区激情视频| 观看美女的网站| 久久热在线av| 午夜a级毛片| 亚洲人成电影免费在线| 国产视频一区二区在线看| or卡值多少钱| 一级毛片精品| 丰满人妻一区二区三区视频av | 最近最新中文字幕大全电影3| 久久欧美精品欧美久久欧美| 亚洲成av人片免费观看| 国产精品乱码一区二三区的特点| 亚洲精品粉嫩美女一区| 亚洲欧洲精品一区二区精品久久久| 男人舔奶头视频| 国模一区二区三区四区视频 | a级毛片在线看网站| 一区二区三区国产精品乱码| 18禁国产床啪视频网站| 亚洲男人的天堂狠狠| 日韩欧美 国产精品| 亚洲国产欧美一区二区综合| 欧美乱色亚洲激情| 欧美性猛交黑人性爽| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久,| 久久久色成人| 三级男女做爰猛烈吃奶摸视频| a级毛片a级免费在线| 伦理电影免费视频| 国产野战对白在线观看| 国产欧美日韩一区二区精品| 网址你懂的国产日韩在线| 最近视频中文字幕2019在线8| 国产精品一区二区免费欧美| 国产不卡一卡二| 一进一出抽搐动态| 12—13女人毛片做爰片一| 免费搜索国产男女视频| 老司机深夜福利视频在线观看| 十八禁网站免费在线| 欧美极品一区二区三区四区| 村上凉子中文字幕在线| aaaaa片日本免费| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 亚洲av片天天在线观看| 久久精品综合一区二区三区| 欧美一级a爱片免费观看看| 国产真人三级小视频在线观看| 一进一出抽搐动态| 欧美日韩黄片免| a级毛片在线看网站| 特级一级黄色大片| 久久精品综合一区二区三区| 啦啦啦观看免费观看视频高清| 国产精品香港三级国产av潘金莲| 性欧美人与动物交配| 国产高潮美女av| 午夜福利在线观看吧| 老司机深夜福利视频在线观看| 久久精品综合一区二区三区| 中文字幕久久专区| 在线免费观看的www视频| 欧美一级毛片孕妇| 日本与韩国留学比较| 1024手机看黄色片| 欧美日韩综合久久久久久 | 久久精品国产综合久久久| 亚洲精品色激情综合| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 美女 人体艺术 gogo| 久久精品91蜜桃| 日韩av在线大香蕉| 99国产精品一区二区三区| 国产精品爽爽va在线观看网站| 一级毛片女人18水好多| 一二三四社区在线视频社区8| 国内久久婷婷六月综合欲色啪| 美女免费视频网站| 亚洲一区高清亚洲精品| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 国内精品美女久久久久久| 免费看十八禁软件| 女同久久另类99精品国产91| 国产精品久久久久久人妻精品电影| 黄色丝袜av网址大全| 午夜视频精品福利| 嫁个100分男人电影在线观看| 精品久久久久久久人妻蜜臀av| 欧美av亚洲av综合av国产av| 女警被强在线播放| 国产精品综合久久久久久久免费| 一本一本综合久久| 麻豆久久精品国产亚洲av| 国产精品 国内视频| 亚洲自偷自拍图片 自拍| 视频区欧美日本亚洲| 久久久久久久久免费视频了| 色综合亚洲欧美另类图片| 亚洲av电影不卡..在线观看| 91av网一区二区| 中文字幕精品亚洲无线码一区| 不卡一级毛片| 毛片女人毛片| 身体一侧抽搐| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区精品视频观看| cao死你这个sao货| 亚洲专区字幕在线| а√天堂www在线а√下载| 午夜日韩欧美国产| 黄色视频,在线免费观看| 久久久久久久久中文| 亚洲国产欧美人成| 亚洲av片天天在线观看| 成在线人永久免费视频| 亚洲av片天天在线观看| 俄罗斯特黄特色一大片| 无限看片的www在线观看| 欧美性猛交╳xxx乱大交人| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 国产伦精品一区二区三区四那| 岛国视频午夜一区免费看| 最近最新中文字幕大全电影3| 他把我摸到了高潮在线观看| 国产 一区 欧美 日韩| 香蕉av资源在线| 亚洲欧洲精品一区二区精品久久久| 久久精品国产亚洲av香蕉五月| 国产精品久久电影中文字幕| 久久久成人免费电影| 99热这里只有精品一区 | 免费在线观看亚洲国产| 神马国产精品三级电影在线观看| 在线免费观看不下载黄p国产 | 一卡2卡三卡四卡精品乱码亚洲| 村上凉子中文字幕在线| 婷婷丁香在线五月| 一a级毛片在线观看| 18禁黄网站禁片午夜丰满| www日本在线高清视频| 免费观看人在逋| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 国产精品九九99| 亚洲av中文字字幕乱码综合| 国产亚洲欧美在线一区二区| 中文字幕av在线有码专区| 十八禁网站免费在线| 国产探花在线观看一区二区| 哪里可以看免费的av片| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 中文资源天堂在线| 狠狠狠狠99中文字幕| 99国产精品一区二区三区| 狠狠狠狠99中文字幕| 又黄又爽又免费观看的视频| 麻豆av在线久日| 国产亚洲av高清不卡| 桃红色精品国产亚洲av| 国产一区二区三区视频了| 99在线视频只有这里精品首页| 亚洲专区国产一区二区| 青草久久国产| 午夜福利在线观看免费完整高清在 | 国产人伦9x9x在线观看| 午夜福利18| 麻豆国产av国片精品| 日韩欧美在线乱码| 久久精品影院6| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 在线观看免费午夜福利视频| h日本视频在线播放| 岛国视频午夜一区免费看| 女人被狂操c到高潮| 亚洲18禁久久av| 欧美中文日本在线观看视频| 日本黄大片高清| 99久久无色码亚洲精品果冻| 一区二区三区国产精品乱码| 精品乱码久久久久久99久播| 久久久国产成人精品二区| 12—13女人毛片做爰片一| 国模一区二区三区四区视频 | 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 久久婷婷人人爽人人干人人爱| xxxwww97欧美| 国产一级毛片七仙女欲春2| 免费人成视频x8x8入口观看| 中文资源天堂在线| 欧美黄色片欧美黄色片| 黄色丝袜av网址大全| 久久久久久久久久黄片| 一级毛片高清免费大全| 在线观看美女被高潮喷水网站 | 日本在线视频免费播放| 日本精品一区二区三区蜜桃| 人人妻人人看人人澡| 淫秽高清视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品91无色码中文字幕| 悠悠久久av| 99热6这里只有精品| 少妇人妻一区二区三区视频| 午夜成年电影在线免费观看| 久久久久久久久久黄片| 免费观看精品视频网站| 欧美一区二区国产精品久久精品| 亚洲一区二区三区不卡视频| 国产精品久久久久久人妻精品电影| 久久99热这里只有精品18| 国产乱人视频| 欧美日韩中文字幕国产精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 黄色 视频免费看| 亚洲熟妇中文字幕五十中出| 操出白浆在线播放| 成人欧美大片| 国产精品久久久久久精品电影| 国产麻豆成人av免费视频| 熟妇人妻久久中文字幕3abv| 美女黄网站色视频| 人妻久久中文字幕网| 午夜福利在线观看免费完整高清在 | 亚洲精品乱码久久久v下载方式 | 欧美日韩一级在线毛片| 无遮挡黄片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 十八禁网站免费在线| netflix在线观看网站| 一夜夜www| 韩国av一区二区三区四区| 免费人成视频x8x8入口观看| 熟女电影av网| 18美女黄网站色大片免费观看| 日韩精品中文字幕看吧| 99久久无色码亚洲精品果冻| av天堂中文字幕网| av视频在线观看入口| 日本熟妇午夜| 十八禁人妻一区二区| 大型黄色视频在线免费观看| 色av中文字幕| 深夜精品福利| 在线观看舔阴道视频| 免费搜索国产男女视频| 两个人的视频大全免费| 少妇的丰满在线观看| www日本黄色视频网| 久久国产精品人妻蜜桃| 舔av片在线| 成人高潮视频无遮挡免费网站| 中国美女看黄片| 999久久久国产精品视频| 久久久久国产一级毛片高清牌| 宅男免费午夜| 人人妻人人看人人澡| 亚洲国产精品成人综合色| 亚洲一区二区三区色噜噜| 两人在一起打扑克的视频| 久久婷婷人人爽人人干人人爱| 99精品在免费线老司机午夜| 少妇裸体淫交视频免费看高清| 黑人巨大精品欧美一区二区mp4| 国产美女午夜福利| 亚洲片人在线观看| 美女被艹到高潮喷水动态| 51午夜福利影视在线观看| 久久精品91蜜桃| av片东京热男人的天堂| 国产精品一及| 在线观看舔阴道视频| 中国美女看黄片| www.自偷自拍.com| 日本在线视频免费播放| 久久久国产精品麻豆| 亚洲色图av天堂| 后天国语完整版免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久午夜综合久久蜜桃| 露出奶头的视频| 国产精品98久久久久久宅男小说| 国产精品美女特级片免费视频播放器 | 一本一本综合久久| 美女大奶头视频| 99热这里只有是精品50| 国产黄色小视频在线观看| 欧美三级亚洲精品| 首页视频小说图片口味搜索| 88av欧美| 久久精品亚洲精品国产色婷小说| 18禁裸乳无遮挡免费网站照片| 国产精品影院久久| 法律面前人人平等表现在哪些方面| 国产午夜精品久久久久久| 99国产精品一区二区三区| 欧美成狂野欧美在线观看| 最好的美女福利视频网| 九色国产91popny在线| 国产一区二区三区在线臀色熟女| 黑人巨大精品欧美一区二区mp4| 亚洲人成伊人成综合网2020| 久久婷婷人人爽人人干人人爱| 99国产精品99久久久久| 色播亚洲综合网| 亚洲专区中文字幕在线| 国产精品永久免费网站| 舔av片在线| 亚洲熟女毛片儿| 免费在线观看成人毛片| 99久久精品热视频| 亚洲成av人片在线播放无| 国产成人影院久久av| 99国产极品粉嫩在线观看| 欧美大码av| 制服丝袜大香蕉在线| 亚洲一区二区三区色噜噜| 婷婷丁香在线五月| 亚洲精品国产精品久久久不卡| 久久久久国产精品人妻aⅴ院| 成人av在线播放网站| 日韩 欧美 亚洲 中文字幕| 成人欧美大片| 中国美女看黄片| 免费看a级黄色片| 亚洲人成网站高清观看| 制服丝袜大香蕉在线| 老汉色∧v一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 成年女人永久免费观看视频| 亚洲专区国产一区二区| 国产视频内射| 亚洲18禁久久av| 色老头精品视频在线观看| bbb黄色大片| 91麻豆精品激情在线观看国产| 成人永久免费在线观看视频| 1024手机看黄色片| 精品国产三级普通话版| netflix在线观看网站| 免费观看的影片在线观看| 欧美在线黄色| 中文字幕高清在线视频| 中国美女看黄片| 亚洲成人精品中文字幕电影| 两个人看的免费小视频| 岛国在线免费视频观看| 日韩免费av在线播放| 国产高清videossex| 免费看美女性在线毛片视频| 人妻夜夜爽99麻豆av| 日韩欧美在线二视频| 国产精品精品国产色婷婷| 不卡一级毛片| 法律面前人人平等表现在哪些方面| 精品久久久久久久毛片微露脸| 欧美三级亚洲精品| 欧美另类亚洲清纯唯美| 亚洲狠狠婷婷综合久久图片| 国产午夜福利久久久久久| 亚洲avbb在线观看| 久久久久久大精品| 亚洲 欧美 日韩 在线 免费| 欧美极品一区二区三区四区| 久久久久久国产a免费观看| 国产精品亚洲一级av第二区| 精品久久蜜臀av无| 国产黄a三级三级三级人| 三级男女做爰猛烈吃奶摸视频| 国产成人欧美在线观看| 亚洲国产欧美人成| 日韩中文字幕欧美一区二区| 午夜福利成人在线免费观看| 久久久国产精品麻豆| 动漫黄色视频在线观看| 中出人妻视频一区二区| 国产午夜精品久久久久久| 床上黄色一级片| 一二三四在线观看免费中文在| 首页视频小说图片口味搜索| 麻豆国产97在线/欧美| 熟女电影av网| 欧美极品一区二区三区四区| 黄色视频,在线免费观看|