• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The mechanism of flapping propulsion of an underwater glider*

    2016-12-06 08:15:47YongchengLI李永成DingyiPAN潘定一ZhengMA馬崢

    Yong-cheng LI (李永成), Ding-yi PAN (潘定一), Zheng MA (馬崢)

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    The mechanism of flapping propulsion of an underwater glider*

    Yong-cheng LI (李永成)1, Ding-yi PAN (潘定一)2, Zheng MA (馬崢)1

    1. China Ship Scientific Research Center, Wuxi 214082, China, E-mail:liyongcheng702@163.com

    2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

    To develop a bionic maneuverable propulsion system to be applied in a small underwater vehicle, a new conceptual design of the bionic propulsion is applied to the traditional underwater glider. The numerical simulation focuses on the autonomous underwater glider (AUG)'s flapping propulsion at Re=200 by solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method. The systematic analysis of the effect of different motion parameters on the propulsive efficiency of the AUG is carried out, including the hydrofoil's heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency. The results obtained in this study can provide some physical insights into the propulsive mechanisms in the flapping -based locomotion.

    autonomous underwater glider, flapping propulsion, immersed boundary method

    The autonomous underwater glider (AUG) is a new type of underwater vehicles and it is driven by its own buoyancy. Compared with the traditional underwater vehicle, it has the advantages of low noise, low energy consumption, and long range[1].

    Despite these advantages, some problems regarding the AUG should be given serious consideration. One of the most crucial problems is the “drift”. For collecting intense data, the gliding speed of the AUG has to be relatively low, which is only about 0.5 knot(0.25 m/s). Under such a low speed, the movement of the AUG would be easily influenced by the ocean current, and it is not easy to continually follow the initially determined route.

    In order to solve this problem, a conceptual design of the bionic propulsion method is adopted for the design of the AUG. In this paper, the bionic propulsion of a newly designed underwater glider is investigated by numerically solving the incompressible viscous Navier-Stokes equations coupled with the immersed boundary method to reveal the effect of hydrofoil's motion parameters on the propulsive efficiency, including the heaving amplitude, the pitching amplitude, the phase lag between heaving and pitching and the flapping frequency and to have an improved understanding of physical mechanisms of the flapping-based locomotion adopted by swimming animals.

    As shown in Fig.1, the computational model is composed of the hull and the hydrofoils. The total length of the model is 1.200 m, where the middle part is a cylinder of 0.250 m in diameter and 0.625 m in length. The front part is a semi-ellipsoid of 0.175 m in semi-major axis, and the rear part is also a semi-ellipsoid of 0.400 m in semi-major axis. The hydrofoil is in the NACA0015 profile with a span length of 0.300 m and a chord length of 0.300 m, which is chosen as the characteristic length C.

    Fig.1 Schematic diagram of the computational model

    The bionic propulsion method is introduced into the design of the AUG, and and the hydrofoil's flapping is used to increase the AUG's advancing speed. The hydrofoil's motion is the combination of the heaving motion along the Y axis and the pitching motion around the Z axis, both directions of motion are sinusoidal, with a phase lag in the same motion cycle. The equations of the heave motion and the pitch motion are, respectively:

    where0h is the heaving amplitude,0θ the pitching amplitude, f the flapping frequency and0ψ the phase lag. As a result of the hydrofoil's flapping, the underwater glider can move quickly. The schematic diagram of the movement is shown in Fig.2.

    Fig.2 Schematic diagram of the motion process

    The surrounding water around the AUG is considered as incompressible and viscous, and the Navier-Stokes equations of fluid motion is employed as[2,3]

    where u is the velocity vector, p is the pressure,Re is the Reynolds number, which can be calculated as Re=U0L/ν with U0and L being the characteristic velocity and length scales, and f is the additional body force. To discretize the Navier-Stokes equations for numerical solutions, the Crank-Nicolson scheme is used for viscous terms and the Adams-Bashforth scheme is applied for other terms in Eq.(3). In addition, the finite difference projection method is used to obtain the velocity and pressure fields. For simplification, the Reynlods number in the current study is chosen as 200, without any additional turbulent model to be applied.

    The immersed boundary (IB) method is applied to capture the flapping motion of the hydrofoil.The additional body force f of the IB method near the moving boundary is modified according to the “direct forcing” approach[2], in which the body force can be derived as

    It is worth mentioning that unlike other bionic propulsion studies, this paper focuses on the practical application, to maintain a balance between the hull's average resistance and the hydrofoil's average thrust. Thus a glider can maintain a constant moving speed. The formula of balance is defined as

    where D represents the drag experienced by the hull,F(xiàn) represents the thrust generated by the hydrofoils,and T is a motion period.

    We here present some typical results on the bionic propulsion of the underwater glider. Based on the measurements and the modeling of the animal locomotion,the governing parameters used in this study are chosen as follows: the flapping frequency f=0.3Hz-1.0Hz, the phase lag between heaving and pitching ψ0=30o-110o, the heaving amplitude=0.05C-0.5C, the pitching amplitude θ=30oand the moving velocity V =0.5m/s-1.2m/s.

    In order to characterize the propulsive efficiency of the underwater glider, the ratio of the kinetic energy of the body and the input work is usually employed[3,4]and defined as

    where T is a movement period, and P the input power, which represents the energy required by the AUG to overcome the fluid force in the unit time and it consists of two parts, which arewhere1P is the power required by the hull to overcome the fluid resistance,2P is the power required by the hydrofoils to overcome the fluid dynamics, V is the average advancing speed, ()Lt is the vertical force acted on the hydrofoils and ()Mt is the torque around the Z axis.

    Figure 3 shows the propulsive efficiency η versus the phase lag with the fixed pitching amplitude θ=30oand the flapping frequency f=0.6Hz .

    Fig.3 Propulsive efficiency versus phase lag

    It is seen from Fig.3 that the propulsive efficiency for each moving velocity increases to its maximum and then decreases with0ψ, the best phase lag increases constantly while the highest propulsive efficiency sees a slight change with the increase of the moving velocity. When the phase lag is aroundo90, the maximum value of the propulsive efficiency is obtained. So, in the following calculation, the phase lag is set aso90.

    Figure 4 shows the curve of the propulsive efficiency versus the pitching amplitude and the moving velocity with the fixed flapping frequency f=0.6Hz and the phase lago90.

    Fig.4 Propulsive efficiency versus pitching amplitude and moving velocity

    As shown in Fig.4, similarly, the propulsive efficiency increases to its maximum and then gradually decreases with the increase of θ at several moving velocities. Furthermore, with the increase of the moving velocity, the highest propulsive efficiency experiences a sharp decline while the pitching amplitude corresponding to the maximum propulsive efficiency shows a slight change, abouto30. So it is recommended that the pitching amplitude is chosen aso30.

    Figure 5 shows the propulsive efficiency versus the heaving amplitude and the moving velocity with the fixed pitching amplitude θ=30oand the phase lag ψ0=90o.

    Fig.5 Propulsive efficiency versus heaving amplitude and moving velocity

    As shown in Fig.5, there exists a certain heaving amplitude leading to the highest propulsive efficiency for a specified moving velocity and the best heaving amplitude increases constantly with the increase of the moving velocity while the corresponding propulsive efficiency shows a gradual decrease, which means that to obtain a high moving velocity means a sacrifice of the propulsive efficiency, and therefore the loss of the long range and the high duration.

    Figure 6 shows the propulsive efficiency versus flapping frequency and the moving velocity with the fixed pitching angle 30oand the phase lag 90o.

    Fig.6 Propulsive efficiency versus flapping frequency and moving velocity

    As can be seen from Fig.6, at different moving velocities, the propulsive efficiency increases to itsmaximum and then gradually decreases with the increase of the flapping frequency. Besides that, the best flapping frequency increases constantly with the increase of the moving velocity while the maximum propulsive efficiency in the corresponding case decreases with the increase of the moving velocity.

    Fig.7 (Color online) Instantaneous vortex structures for =f0.4 Hz, 0.6 Hz and 1.0 Hz

    The propulsive behaviors of the flapping propulsion are closely associated with the vortex structures around the hydrofoils. In order to explain the above phenomenon, the vortex structures are obtained for three flapping frequencies =f0.4 Hz, 0.6 Hz and 1.0 Hz with V =1.2m/s , θ=30oand ψ0=90o. The instantaneous vortex structures are shown in Fig.7.

    As shown in Figs.7(a)-7(c) for f=0.6Hz , the leading-edge vortex first moves along the upper surface of the hydrofoil to the trailing edge and falls off while a new leading-edge vortex emerges on the leading edge of the hydrofoil. The shedding leading-edge vortex is then connected with the tip vortices, lying in the two sides of the flapping hydrofoil, and is eventually closed with the trailing edge leading to vortex loops in the tail flow field. This phenomenon is consistent with the experimental observations of Von Ellenrieder[5,6].

    In the case of f=0.4Hz , Figs.7(d)-(7f) show that the shedding vortices in the upper and lower surfaces of the hydrofoil separate from each other in the tail flow field, therefore, there is no vortex loop exists. In the case of a higher frequency f=1.0Hz ,F(xiàn)igs.7(g)-7(i) show that the vortices in the upper and lower surfaces of the hydrofoil separate earlier and they are overlapping with each other, so it is more difficult to form a vortex loop. Since the energy required for the propulsion is mainly derived from the vortex loop, so that may explain the results we have obtained above.

    References

    [1]CHEN Ya-jun, CHEN Hong-xun and Ma zheng Hydrodynamic analyses of typical underwater gliders[J]. Journal of Hydrodynamics, 2015, 27(4): 556-561

    [2]HUA R. N., ZHU L. and LU X. Y. Locomotion of a flapping flexible plate[J].Physics of Fluids, 2003, 25(12): 121901.

    [3]SHAO Xue-ming, PAN Ding-yi and DENG Jian et al. Numerical studies on the propulsive and wake structure of finite-span flapping hydrofoils with different aspect ratios[J]. Journal of Hydrodynamics, 2010, 22(2): 147-154.

    [4]PAN D., DENG J. and SHAO X. et al. On the propulsive performance of tandem flapping hydrofoils with a modified immersed boundary method[J]. International Journal of Computational Method, 2016, 13: 1650025.

    [5]Von ELLENRIEDER K., PARKER K. and SORIA J. Flow structures behind a heaving and pitching finite-span wing[J]. Journal of Fluid Mechanics, 2003, 490: 129-138.

    [6]TANG Chao, LU Xi-yun. Self-propulsion of a threedimensional flapping flexible plate[J]. Journal of Hydrodynamics, 2016, 28(1): 1-9.

    (August 18, 2016, Revised September 10, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279184).

    Biography: Yong-cheng LI (1992-), Male, Master Candidate

    Ding-yi PAN,

    E-mail: dpan@zju.edu.cn

    国产探花极品一区二区| 日韩亚洲欧美综合| 国产成人精品婷婷| 久久国产精品大桥未久av | 最黄视频免费看| 国产永久视频网站| 国产成人精品无人区| 亚洲在久久综合| 国产欧美日韩一区二区三区在线 | 国产永久视频网站| 日韩成人伦理影院| 国产精品国产av在线观看| 99久久精品一区二区三区| 精品少妇内射三级| 国产精品无大码| 国产精品一区二区在线观看99| 中文字幕亚洲精品专区| 久久人人爽人人爽人人片va| 日本色播在线视频| 熟女电影av网| 亚洲国产欧美日韩在线播放 | 内地一区二区视频在线| 亚洲精品中文字幕在线视频 | 丝袜脚勾引网站| 色婷婷久久久亚洲欧美| 亚洲精品国产av成人精品| 午夜福利视频精品| 久久国产亚洲av麻豆专区| 日本色播在线视频| 国产精品久久久久久精品古装| 一本久久精品| 免费不卡的大黄色大毛片视频在线观看| 日韩精品免费视频一区二区三区 | 精品少妇内射三级| av免费观看日本| 寂寞人妻少妇视频99o| 久久鲁丝午夜福利片| 夜夜爽夜夜爽视频| 免费看av在线观看网站| 国产精品久久久久成人av| 最近最新中文字幕免费大全7| 国产永久视频网站| 黑丝袜美女国产一区| xxx大片免费视频| 日本av免费视频播放| 99精国产麻豆久久婷婷| 人妻制服诱惑在线中文字幕| www.av在线官网国产| 国产成人一区二区在线| 国产在线视频一区二区| 黄色一级大片看看| 日韩熟女老妇一区二区性免费视频| 久久久久久久久久成人| 两个人免费观看高清视频 | 街头女战士在线观看网站| 精品久久久久久久久亚洲| 美女国产视频在线观看| 成年人免费黄色播放视频 | videos熟女内射| 一区二区三区免费毛片| 国产亚洲91精品色在线| 亚洲精品日韩av片在线观看| 91精品一卡2卡3卡4卡| 成人二区视频| 国产乱来视频区| 最近中文字幕高清免费大全6| 偷拍熟女少妇极品色| 成人漫画全彩无遮挡| 一级毛片久久久久久久久女| 欧美日韩视频高清一区二区三区二| 国产高清有码在线观看视频| 亚洲色图综合在线观看| av卡一久久| 一本久久精品| 下体分泌物呈黄色| 久久久久网色| 男女边吃奶边做爰视频| 久久久午夜欧美精品| 午夜视频国产福利| 国产亚洲av片在线观看秒播厂| 乱系列少妇在线播放| 69精品国产乱码久久久| 午夜视频国产福利| 亚洲精品一区蜜桃| 嫩草影院新地址| 久久久国产一区二区| 看非洲黑人一级黄片| 自拍偷自拍亚洲精品老妇| 成人毛片a级毛片在线播放| 欧美最新免费一区二区三区| 日韩在线高清观看一区二区三区| av黄色大香蕉| 香蕉精品网在线| 亚洲av免费高清在线观看| 国产免费视频播放在线视频| 久久99热这里只频精品6学生| videossex国产| av国产久精品久网站免费入址| 久久国内精品自在自线图片| 丝袜脚勾引网站| 天堂俺去俺来也www色官网| 久热久热在线精品观看| av.在线天堂| 青春草视频在线免费观看| 精品久久久噜噜| 欧美一级a爱片免费观看看| 亚洲丝袜综合中文字幕| 高清在线视频一区二区三区| 国产一级毛片在线| 99久久人妻综合| 午夜影院在线不卡| 免费看不卡的av| 国产在线免费精品| 国产高清不卡午夜福利| 日本黄大片高清| 亚洲av国产av综合av卡| 亚洲欧美精品专区久久| 精品国产乱码久久久久久小说| av免费在线看不卡| 日韩强制内射视频| 亚洲精品乱码久久久久久按摩| 汤姆久久久久久久影院中文字幕| 欧美人与善性xxx| 亚洲美女搞黄在线观看| 成人二区视频| 亚洲婷婷狠狠爱综合网| 免费久久久久久久精品成人欧美视频 | 免费在线观看成人毛片| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av天美| 国产淫语在线视频| 高清视频免费观看一区二区| 欧美xxⅹ黑人| 欧美精品人与动牲交sv欧美| 国产成人精品福利久久| 两个人的视频大全免费| 只有这里有精品99| 美女大奶头黄色视频| 肉色欧美久久久久久久蜜桃| 亚洲,欧美,日韩| 久久久国产欧美日韩av| 91精品国产九色| 久久人人爽人人爽人人片va| 在线观看av片永久免费下载| 夫妻性生交免费视频一级片| 九草在线视频观看| 99re6热这里在线精品视频| 欧美老熟妇乱子伦牲交| 国产成人一区二区在线| 99re6热这里在线精品视频| 欧美激情国产日韩精品一区| 在线精品无人区一区二区三| 日韩欧美一区视频在线观看 | 五月开心婷婷网| 另类亚洲欧美激情| 免费黄网站久久成人精品| 国产一级毛片在线| 一个人免费看片子| 久久婷婷青草| 日韩熟女老妇一区二区性免费视频| 人妻夜夜爽99麻豆av| 精品国产乱码久久久久久小说| 国产成人精品婷婷| 欧美性感艳星| 人妻人人澡人人爽人人| 成人无遮挡网站| av卡一久久| 午夜福利视频精品| 欧美日韩国产mv在线观看视频| 久久久久网色| 99久久人妻综合| 欧美人与善性xxx| 人人妻人人澡人人爽人人夜夜| 少妇被粗大的猛进出69影院 | 狂野欧美白嫩少妇大欣赏| 精品人妻一区二区三区麻豆| 国产又色又爽无遮挡免| 国产精品一区二区在线观看99| 91午夜精品亚洲一区二区三区| 汤姆久久久久久久影院中文字幕| 色吧在线观看| 国产免费视频播放在线视频| 日本欧美国产在线视频| 久热久热在线精品观看| 久久狼人影院| 成人亚洲欧美一区二区av| 日本-黄色视频高清免费观看| 国产毛片在线视频| 另类亚洲欧美激情| 国产精品不卡视频一区二区| 国产免费又黄又爽又色| 欧美日本中文国产一区发布| 男人添女人高潮全过程视频| 一个人看视频在线观看www免费| 欧美成人午夜免费资源| 狠狠精品人妻久久久久久综合| 热re99久久精品国产66热6| 最近的中文字幕免费完整| 如何舔出高潮| 美女中出高潮动态图| 免费av不卡在线播放| 久久99精品国语久久久| 欧美精品国产亚洲| 国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线观看播放| 国产伦在线观看视频一区| 国产有黄有色有爽视频| 街头女战士在线观看网站| 九九久久精品国产亚洲av麻豆| 亚洲伊人久久精品综合| 国产成人精品婷婷| 有码 亚洲区| 亚洲欧洲日产国产| 极品人妻少妇av视频| 少妇被粗大猛烈的视频| 精品国产一区二区久久| 亚洲美女视频黄频| 中国三级夫妇交换| 有码 亚洲区| 久久久久久久精品精品| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久成人av| 亚洲精品成人av观看孕妇| 欧美日韩亚洲高清精品| 三上悠亚av全集在线观看 | 日韩熟女老妇一区二区性免费视频| 亚洲第一区二区三区不卡| 亚洲激情五月婷婷啪啪| 国产一区二区在线观看av| 搡老乐熟女国产| 韩国高清视频一区二区三区| 新久久久久国产一级毛片| 黄色日韩在线| 国产成人freesex在线| 制服丝袜香蕉在线| 久久精品久久久久久噜噜老黄| 在线观看国产h片| 久久久久精品性色| 国产一区有黄有色的免费视频| 免费看光身美女| 亚洲精品亚洲一区二区| 亚州av有码| 好男人视频免费观看在线| 日韩欧美精品免费久久| 乱系列少妇在线播放| 嘟嘟电影网在线观看| 乱码一卡2卡4卡精品| av有码第一页| 少妇人妻一区二区三区视频| 亚洲自偷自拍三级| 久久青草综合色| 精品一区二区三区视频在线| 99热这里只有是精品50| 亚洲av二区三区四区| 欧美bdsm另类| 午夜免费鲁丝| 午夜激情福利司机影院| 久久精品熟女亚洲av麻豆精品| 你懂的网址亚洲精品在线观看| 久久精品国产自在天天线| av一本久久久久| 亚洲国产精品成人久久小说| 中文字幕人妻熟人妻熟丝袜美| 伦理电影大哥的女人| 伦理电影大哥的女人| av.在线天堂| 久久99一区二区三区| 人人妻人人澡人人看| 日本wwww免费看| 日日摸夜夜添夜夜爱| 国产av国产精品国产| 亚洲精品中文字幕在线视频 | 久久久久久久久久成人| 亚洲,欧美,日韩| 亚洲精品aⅴ在线观看| 精品国产乱码久久久久久小说| 久久久国产一区二区| 精品少妇内射三级| 丰满饥渴人妻一区二区三| 免费少妇av软件| 亚洲成人av在线免费| 69精品国产乱码久久久| 丰满迷人的少妇在线观看| 最近的中文字幕免费完整| 午夜影院在线不卡| 你懂的网址亚洲精品在线观看| 久久久久久久久大av| 美女福利国产在线| 丝瓜视频免费看黄片| 亚洲久久久国产精品| 22中文网久久字幕| 免费播放大片免费观看视频在线观看| 我的女老师完整版在线观看| 91久久精品国产一区二区三区| 91在线精品国自产拍蜜月| 大香蕉97超碰在线| 免费看av在线观看网站| 久久国产精品男人的天堂亚洲 | 2018国产大陆天天弄谢| 国产成人a∨麻豆精品| 啦啦啦啦在线视频资源| 亚洲丝袜综合中文字幕| 免费大片黄手机在线观看| 日韩欧美 国产精品| 欧美亚洲 丝袜 人妻 在线| 国产一区二区在线观看av| 欧美另类一区| 久久人人爽av亚洲精品天堂| 一本一本综合久久| 亚洲第一av免费看| 亚洲av欧美aⅴ国产| 丰满迷人的少妇在线观看| 韩国高清视频一区二区三区| 国产伦在线观看视频一区| 国产精品无大码| 久久99热这里只频精品6学生| 如何舔出高潮| 欧美激情国产日韩精品一区| 精品国产乱码久久久久久小说| 欧美国产精品一级二级三级 | 国产乱人偷精品视频| 中文资源天堂在线| 街头女战士在线观看网站| 免费大片18禁| 国产亚洲一区二区精品| 久久久久久久久久久丰满| 日韩在线高清观看一区二区三区| 91久久精品电影网| 男女边吃奶边做爰视频| 在线免费观看不下载黄p国产| 国产av一区二区精品久久| 男人舔奶头视频| 久久久久人妻精品一区果冻| 色视频www国产| 人妻 亚洲 视频| 汤姆久久久久久久影院中文字幕| 我要看日韩黄色一级片| 久久精品国产亚洲网站| 亚洲精华国产精华液的使用体验| 最新的欧美精品一区二区| 一级,二级,三级黄色视频| 亚洲精品,欧美精品| 一本—道久久a久久精品蜜桃钙片| 久久久精品94久久精品| 日日爽夜夜爽网站| 国产精品国产三级国产专区5o| 蜜桃久久精品国产亚洲av| 99re6热这里在线精品视频| 久久女婷五月综合色啪小说| 色婷婷av一区二区三区视频| 久久久精品94久久精品| 少妇熟女欧美另类| 亚洲三级黄色毛片| 国产精品久久久久久久电影| 亚洲国产欧美在线一区| 少妇熟女欧美另类| 黄色一级大片看看| 七月丁香在线播放| 水蜜桃什么品种好| 人人妻人人爽人人添夜夜欢视频 | 日韩强制内射视频| 成年av动漫网址| 亚洲电影在线观看av| 伦理电影免费视频| 午夜精品国产一区二区电影| 插逼视频在线观看| 噜噜噜噜噜久久久久久91| 青春草国产在线视频| 熟妇人妻不卡中文字幕| 久久av网站| 一级,二级,三级黄色视频| 各种免费的搞黄视频| 国产免费视频播放在线视频| 另类精品久久| 欧美老熟妇乱子伦牲交| 欧美区成人在线视频| 日韩制服骚丝袜av| 精品久久久精品久久久| 丁香六月天网| 精品国产一区二区三区久久久樱花| 精品一区二区免费观看| 啦啦啦视频在线资源免费观看| 精品99又大又爽又粗少妇毛片| 亚洲成色77777| 99久久中文字幕三级久久日本| 欧美 亚洲 国产 日韩一| 黄色欧美视频在线观看| 国产成人精品久久久久久| 大码成人一级视频| 国内精品宾馆在线| 久久久久久久亚洲中文字幕| 国产免费一级a男人的天堂| 啦啦啦在线观看免费高清www| 国产亚洲午夜精品一区二区久久| 男人和女人高潮做爰伦理| 中文字幕久久专区| 亚洲精品,欧美精品| 99久久综合免费| 两个人免费观看高清视频 | 国产亚洲精品久久久com| 丝袜喷水一区| 久久免费观看电影| 日本爱情动作片www.在线观看| 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 少妇猛男粗大的猛烈进出视频| 精品一品国产午夜福利视频| 国产欧美日韩综合在线一区二区 | 亚洲精品久久午夜乱码| 老司机影院成人| 亚洲三级黄色毛片| 高清黄色对白视频在线免费看 | 国产欧美日韩精品一区二区| 哪个播放器可以免费观看大片| 久久综合国产亚洲精品| 天堂俺去俺来也www色官网| 99re6热这里在线精品视频| 一级毛片 在线播放| 狂野欧美激情性bbbbbb| 精品酒店卫生间| 啦啦啦在线观看免费高清www| 一级av片app| 亚洲电影在线观看av| av天堂久久9| 精品亚洲乱码少妇综合久久| 日韩人妻高清精品专区| 久久6这里有精品| 一级毛片aaaaaa免费看小| 69精品国产乱码久久久| 五月天丁香电影| 亚洲久久久国产精品| 777米奇影视久久| 99热这里只有精品一区| 三级经典国产精品| 久久精品国产自在天天线| 日韩精品免费视频一区二区三区 | 国产永久视频网站| 欧美少妇被猛烈插入视频| 亚洲av免费高清在线观看| 日韩成人伦理影院| 国产精品成人在线| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 午夜福利在线观看免费完整高清在| 美女xxoo啪啪120秒动态图| 亚洲精品中文字幕在线视频 | 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 黄色配什么色好看| 又粗又硬又长又爽又黄的视频| 女的被弄到高潮叫床怎么办| 男的添女的下面高潮视频| 久久国产亚洲av麻豆专区| 在线播放无遮挡| 国产成人91sexporn| 亚洲精品中文字幕在线视频 | 亚洲自偷自拍三级| 亚洲国产成人一精品久久久| 国产永久视频网站| 一本久久精品| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看| 亚洲欧洲日产国产| 亚洲激情五月婷婷啪啪| 久久 成人 亚洲| 日韩欧美一区视频在线观看 | 色视频在线一区二区三区| 国产日韩欧美亚洲二区| 国内少妇人妻偷人精品xxx网站| 久久韩国三级中文字幕| 少妇被粗大的猛进出69影院 | 99久久精品国产国产毛片| 欧美激情极品国产一区二区三区 | 午夜免费鲁丝| 内地一区二区视频在线| av.在线天堂| 91精品伊人久久大香线蕉| 少妇被粗大的猛进出69影院 | 久久精品久久精品一区二区三区| 欧美一级a爱片免费观看看| 久久精品久久久久久噜噜老黄| 秋霞在线观看毛片| 国产免费一级a男人的天堂| 六月丁香七月| 麻豆成人av视频| 丰满乱子伦码专区| 国产日韩欧美在线精品| 日本wwww免费看| 久久精品久久久久久久性| 久久免费观看电影| 99久久精品国产国产毛片| 国产精品一区二区三区四区免费观看| 夫妻午夜视频| 一个人免费看片子| 少妇丰满av| 韩国高清视频一区二区三区| 久久免费观看电影| av不卡在线播放| 女人久久www免费人成看片| 免费av中文字幕在线| 中文字幕亚洲精品专区| 全区人妻精品视频| 亚洲欧美日韩卡通动漫| 亚洲国产毛片av蜜桃av| 国产成人精品无人区| 国产综合精华液| 中文在线观看免费www的网站| av福利片在线| 男人爽女人下面视频在线观看| 久久久久久久久久成人| 欧美另类一区| 亚洲人成网站在线观看播放| 日韩三级伦理在线观看| 自线自在国产av| 久久热精品热| 午夜福利视频精品| 国产精品一区二区三区四区免费观看| 91aial.com中文字幕在线观看| 国产精品熟女久久久久浪| 日韩熟女老妇一区二区性免费视频| 青春草亚洲视频在线观看| 国产日韩欧美在线精品| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 国产精品无大码| 天堂俺去俺来也www色官网| 美女大奶头黄色视频| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 日本爱情动作片www.在线观看| 日韩成人伦理影院| 午夜激情久久久久久久| 亚洲国产毛片av蜜桃av| 精品一区二区免费观看| 久久精品国产a三级三级三级| 婷婷色综合大香蕉| 香蕉精品网在线| 一级,二级,三级黄色视频| 大香蕉97超碰在线| 校园人妻丝袜中文字幕| 美女xxoo啪啪120秒动态图| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 亚洲国产色片| av.在线天堂| 国精品久久久久久国模美| 亚洲精品国产av蜜桃| 美女主播在线视频| 丝袜在线中文字幕| 亚洲天堂av无毛| 99热全是精品| 久久久午夜欧美精品| a 毛片基地| 岛国毛片在线播放| 午夜免费鲁丝| 国产在线视频一区二区| 日本爱情动作片www.在线观看| 国产成人freesex在线| 免费观看性生交大片5| 女性生殖器流出的白浆| 久久青草综合色| 亚洲在久久综合| 在线观看国产h片| 国产爽快片一区二区三区| 久久99精品国语久久久| 大香蕉97超碰在线| 成年美女黄网站色视频大全免费 | 涩涩av久久男人的天堂| 在线观看免费日韩欧美大片 | 国产精品99久久99久久久不卡 | 亚洲欧洲精品一区二区精品久久久 | a 毛片基地| 伊人亚洲综合成人网| 日韩 亚洲 欧美在线| 男人舔奶头视频| 国产中年淑女户外野战色| 最新的欧美精品一区二区| 性色av一级| 国产 一区精品| 成人二区视频| 22中文网久久字幕| 99久国产av精品国产电影| 日本黄大片高清| 国产免费视频播放在线视频| 麻豆成人av视频| 免费观看性生交大片5| a级片在线免费高清观看视频| 国产一区亚洲一区在线观看| 99热这里只有是精品50| 精品一区二区免费观看| 三上悠亚av全集在线观看 | 99热全是精品| 精品人妻偷拍中文字幕| 中文字幕精品免费在线观看视频 | av国产精品久久久久影院| 人妻制服诱惑在线中文字幕| 亚洲色图综合在线观看| 久久精品国产亚洲av涩爱| 国精品久久久久久国模美| 亚洲成色77777| 高清欧美精品videossex| 午夜福利网站1000一区二区三区| 欧美日韩av久久| 日日啪夜夜撸| 亚洲精品中文字幕在线视频 | 在线观看免费高清a一片| 久久99一区二区三区| 国产精品一二三区在线看| 观看av在线不卡| 国产高清三级在线| 狂野欧美激情性xxxx在线观看| 国产在线免费精品| 国产在视频线精品| 国产成人精品无人区|