• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms?

    2019-08-16 01:20:42ShuSenYang楊樹(shù)森YangHou侯陽(yáng)andLinLiZhu朱林利
    Chinese Physics B 2019年8期
    關(guān)鍵詞:楊樹(shù)

    Shu-Sen Yang(楊樹(shù)森), Yang Hou(侯陽(yáng)), and Lin-Li Zhu(朱林利),?

    1Department of Engineering Mechanics,and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province,Zhejiang University,Hangzhou 310027,China

    2School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212000,China

    Keywords: surface charges,GaN nanofilm,elastic model,phonon properties,thermal conductivity

    1. Introducti on

    Due to the novel properties and wide applications in electronic devices,nanostructured semiconductors have received a great deal of attention in the last decades.[1-4]As the phonon thermal conductivity is one of most important parameters of semiconductor nanostructures, it plays an essential role in investigating the semiconductor nanostructures used in electronic devices to understand the phonon and thermal properties of semiconductor nanostructure comprehensively.[1,5-7]For example, thermoelectric converters require as lower thermal conductivity as possible to improve the thermoelectric conversion efficiency,while nanoelectronic devices require as much higher thermal conductivity as possible for efficient heat dissipation.[8-12]Therefore,the phonon and thermal properties of semiconductor nanostructures have aroused the great interest in the precise design and application of electronic devices.

    So far, a lot of researches have focused on the spatiallyconfined phonon properties in semiconductor nanostructure such as the phonon dispersion relation, phonon group velocity and the phonon density of state, as well as the relationship between the phonon thermal conductivity and the phonon properties.[1,13-16]For example, Majumda[17]proposed that the heat transfer induced by lattice vibration or phonon transport in a dielectric film can be treated as a radiation heat transfer on a microscopic scale,and the phonon thermal transfer in the nanofilm satisfies the blackbody radiation law. Balandin et al.[1,13]proposed the phonon engineering and used the elastic model to characterize the phonon properties in semiconductor nanostructures for controlling the thermal and electric properties in these nanostructures.Besides the elastic continuous model and Boltzmann transport approach,[5,16,18-21]firstprinciples and molecular dynamics simulations have also been used to analyze the lattice thermal conductivity of semiconductor nanostructures.[22-26]

    The surface/interface effects can also play a significant role in investigating the phonon and thermal properties of semiconductor nanostructures, such as the surface/interface phonon scattering effects and surface/interface stress effects.[18,19,21,27-29]For example, Chen[18]used the Boltzmann transport equation to establish the phonon transport model for the superlattice films by considering different phonon interface scattering modes,and the thermal conductivity of the superlattice films was obtained by numerical calculation.Zhu et al.[19,21,28,29]used the elastic model and the Boltzmann transport approach to explore the influences of surface stress and surface phonon scattering on the phonon properties and phonon thermal conductivity in GaN nanofilms.

    The nanostructured components of semiconductor have been widely used in nanoelectronic devices.[3,4,30-33]Most of these nanodevices work in the environment of an elec-tric field,[7,34-38]resulting in the fact that the free charges can appear on the surface of nanostructure. These residual charges can change the surface stress due to the Hellman-Feynman force generated by surface charges, and such an additional surface stress is linearly related to surface charge density.[39-41]The charge-induced surface stress can modify the surface energy, leading to the change of elastic modulus of nanostructures,[42-46]which is related to the phonon properties in semiconductor nanostructure. In this work,we study the influences of surface charges on the phonon properties and thermal properties of GaN nanofilms.

    The rest of this paper is organized as follows. In Subsection 2.1, the elastic modulus of nanofilm with surface charges are expressed, and the elastic model is presented to describe the phonon properties of surface charged-nanofilms.The theoretical expression of the phonon thermal conductivity of nanofilm is given in Subsection 2.2. In Subsection 3.1 quantitatively analyzed is the effect of surface charge density on phonon properties of GaN nanofilms, such as phonon dispersion relation, phonon group velocity and phonon density of states. The contribution of surface charges to the phonon thermal conductivity of GaN nanofilm is further discussed in Subsection 3.2. Finally,some conclusions are drawn from the present study in Section 4.

    2. Theoretical description

    2.1. Elastic model for confined phonons of surface charged nanofilm

    When a nanostructure device actually works in an electric field, it is easy to generate surface charges for the nanostructures.The surface charge density will directly affect the equivalent elastic modulus of the nanostructure. This is because the surface stress varies with the change of the surface charge density,and the elastic properties of the nanostructure are sensitive to the surface stress or surface energy.[47]From the theoretical description of confined phonons by continuous elastic model,the change of elastic modulus will affect the phonon properties. Based on the continuum mechanics, the effective elastic modulus tensor of the surface charged-nanostructure can be expressed as[47]

    Here, Cijkland Cijklmnrepresent the second-order and thirdorder elastic constants of the material, respectively, D0is the thickness of the nanofilm as shown in Fig.1,Tijand Qijklrepresent the surface elastic tensors associated with the surface elastic properties,and Mijklrefers to the flexibility matrix. For the surface charged-nanofilm, the equivalent elastic constants can be expressed as follows:

    Here, the material parameters and the second-order natural elastic modulus constants of GaN are shown in Table 1,where KSandμSrepresent the surface elastic parameters associated with the non-zero term of the second-order elastic modulus of the surface, respectively. The parameter T11is related to the surface stress. When surface charges exist on the surface of nanostructures, surface stress changes with surface charge density linearly,[39-41]namely T11=ζq.Here,ζ is the chargesurface stress coefficient which is generally on the order of 1 V,and q is the surface charge density.

    Fig.1. Schematic drawing of GaN nanofilm with surface charges.

    Table 1. Elastic parameters of GaN used in calculations.

    Since the phonons are related to the vibration of atoms,the elastic model for vibration can be utilized to describe the spatially confined phonons approximately in semiconductor nanostructures.[48-52]Quantization of phonon energy in nanostructures can be achieved based on the elastic model. It has been proved that the elastic model can successfully describe the confined phonons in semiconductor nanostructures.[13,20,53-55]The vibration equation in the elastic model of nanofilm can be expressed as

    The boundary conditions are

    The displacement solution u of Eq.(3)can be given as

    where ω is the phonon frequency, q0is the wave vector, andis the amplitude of the displacement vector. Substituting Eq.(5)into Eq.(3),one can obtain

    where

    Then, three modes for the phonons in surface chargednanofilms can be obtained. For the shear (SH) mode, the eigenequation of vibration and the corresponding boundary conditions are

    For the dilatational (SA) mode and flexural (AS) mode, the eigen equations of vibration and the corresponding boundary conditions are

    2.2. Phonon thermal conductivity of surface chargednanofilm

    After deriving the phonon dispersion relations of surface charged nanofilm in the different modes,the phonon frequency can be numerically calculated by using the finite element method with phonon wave vector q0. Then,the phonon group velocity with a given phonon mode number n can also be achieved numerically

    where,ωnand q0respectively represent the phonon frequency and phonon wave vector for a given phonon mode number n. From the Callway model of a single average-polarized phonon,the average phonon group velocity ˉV associated with the phonon frequency can be derived and given as

    Here, the superscript indicates the corresponding phonon mode type, the subscript n represents a given phonon mode number, and m represents the total phonon branch number.The quasi-two-dimensional phonon density of states for a given phonon mode number can be calculated from the phonon dispersion relation and phonon group velocity existing in the nanofilm,and given as follows:

    Here, H is the thickness of the nanofilm. The total phonon density can be obtained by the superposition of three modes of phonons

    Based on these expressions for phonon dispersion relationship,the phonon average group velocity and the phonon density of state,the phonon thermal conductivity of the surface chargednanofilm can be expressed as[27,55]

    Here, h= ˉh/2π, ˉh is the Planck constant, x=?ωn(q0)/kBT.τ is the total relaxation time, given asin which several scattering mechanisms are involved,including Umklapp scattering rate τU, point-defect scattering rate τM,and acoustic phonon-electron scattering rate.[16,20,29]Since the main objective of this work is to study the influences of surface charges on the phonon and thermal properties in spatially confined nanofilm, it is assumed that the surface of nanofilm is smooth enough to ignore the boundary scattering mechanism in the phonon scattering process. In Eq. (14), κ0is the phonon thermal conductivity of bulk material, and G1is the proportional coefficient with respect to the bulk thermal conductivity of the material κ0.

    3. Simulation results and discussion

    3.1. Phonon properties of surface charged-GaN nanofilm

    As mentioned above,we use the finite difference method to calculate the phonon dispersion relationships of surface charged-GaN nanofilm under different modes. Here, the surface charge densities are taken as-10 C/m2,0,and 10 C/m2.The other parameters in scattering time are adopted from the literature.[48-51]For simplicity, the SH mode is taken for example to explore the influences of surface charges on the phonon properties and thermal properties of GaN nanofilms.Figure 2 shows the phonon dispersion relationship of nanofilm under different surface charge densities for the SH mode. It can be seen intuitively from the figure that when the phonon energy is the cutoff energy(q0=0),the surface charges have no contribution to the phonon energy. As the phonon wave vector increases,the influence of surface charge becomes more and more significant. It can also be found from Fig. 2 that the negative surface charge causes the slope of each curve to increase, while the positive surface charge makes the slope decrease. In other words, negative surface charges increase the phonon energy, while positive surface charges reduce the phonon energy.

    Fig.2. Variations of phonon energy with surface charge density for SH mode in GaN nanofilms with different surface charge densities.

    After the phonon dispersion relationship is determined,the phonon average group velocity can be calculated based on Eqs.(10)and(11). Figure 3 shows the phonon average group velocity of GaN nanofilm for SH mode as a function of phonon energy at different surface charge densities. When the phonon energy is small,the phonon average group velocity is roughly equivalent to the phonon group velocity.As the phonon energy increases, the phonon group velocity begins to oscillate continuously. Interestingly,the oscillation behavior of the phonon average group velocity has no change in the presence of surface charges. However, the surface charge has a significant effect on the phonon average group velocity of phonons. That is, the negative surface charges increase the velocity and the positive surface charges reduce the velocity.

    Fig. 3. Plots of phonon average group velocity versus phonon energy for SH mode in GaN nanofilms with different surface charge densities.

    Figure 4 displays the phonon density of states for SH mode varying with phonon energy for three different surface charge densities. It can be found that as the phonon energy increases, the phonon density of states also increases stepwise,and then begins to fall after reaching the peak value. In addition, it can also be found that the surface charge density can significantly change the phonon density of states. That is,the positive surface charges increase the density of states and the negative surface charges reduce the phonon density of state.

    Fig. 4. Variations of phonon density of states with phonon energy for SH mode in GaN nanofilms with different surface charge densities.

    3.2. Phonon thermal conductivity of surface charged nanofilm

    When the phonon dispersion relations and phonon group velocities are achieved, one can calculate the various scattering rates under different surface/interface stresses, including Umklapp scattering rate, point-defect scattering rate, and phonon-electron scattering rate, which are shown in Fig. 5.Obviously,the Umklaap scattering rate is dominant for the low phonon,which is significantly higher than the other two scattering rates. The point-defect scattering becomes dominant with the increase of frequency. One can also find that the surface charges can change the point-defect scattering rate and phonon-electron scattering rate, but the Umklaap scattering rate is almost independent of the surface charges.

    Fig. 5. Variations of scattering ratewith phonon frequency in GaN nanofilms with different surface charge densities.

    According to the expression of phonon thermal conductivity in Eq.(14),the effect of surface charges on the phonon thermal conductivity of GaN nanofilm can be investigated quantitatively through combing the phonon average group velocity, phonon density of state, and scattering rates obtained above. Firstly, the variations of phonon thermal conductivity of GaN nanofilm with temperature for three different surface charge densities are plotted in Fig.6. It can be seen from the figure that for each surface charge density,as temperature increases the phonon thermal conductivity is first enhanced and then reaches the maximum value. With further increasing the temperature,the thermal conductivity decreases. One can also find that the negative surface charges enhance the temperature dependence of phonon thermal conductivity while the positive surface charges weaken the sensitivity of temperature to the thermal conductivity. In addition,the influence of surface charges on the phonon thermal conductivity of GaN nanofilm turns weaker for the higher temperature.

    Fig.6. Plots of phonon thermal conductivity versus temperature for SH mode in GaN naonfilms with different surface charge densities.

    Figure 7 shows the variations of phonon thermal conductivity with the thickness of GaN nanofilm for three different surface charge densities. As can be seen from the figure,the negative charges increase the phonon thermal conductivity and the positive charges reduce the phonon thermal conductivity. It is interesting to notice that when the surface of the nanofilm presents negative charges with a density of 10 C/m2,the phonon thermal conductivity is first enhanced with increasing the thickness of nanofilm, and then begins to decrease slightly and eventually tends to be flat.It is because the surface charge-related elastic modulus of nanofilm is size-dependent,and the negative charges also weaken the size effect on elastic modulus.[43,44]For the smaller thickness of nanofilm, the surface charges weaken the size dependence of elastic modulus more significantly than that of thermal conductivity. In the case of positive surface charges, the phonon thermal conductivity of GaN nanofilm is improved gradually with increasing the thickness of nanofilm and then the curve tends to be flat.Such a size effect of phonon thermal conductivity of nanofilm comes from the quantum confinement effect of phonons in nanofilm. One can also note that the positive surface charges make the size effect of thermal conductivity more significant,while the negative surface charges weaken the size effect of conductivity.

    Fig. 7. Plots of phonon thermal conductivity versus thickness for SH mode in GaN nanoflims with different surface charge densities.

    Figure 8 shows the variations of phonon thermal conductivity with surface charge density for three different thickness values. It can be noted that when the surface charge density changes from a positive value to a negative value,the phonon thermal conductivity increases monotonically for each thickness value. It can be clearly found that the positive surface charges reduce the phonon thermal conductivity and the negative surface charges increase the phonon thermal conductivity.Meanwhile,when the surface of the nanofilm presents the negative charges with the density greater than 3 C/m2,the phonon thermal conductivity decreases slightly as the thickness of the nanofilm increases.When the surface charge density is greater than-3 C/m2,the phonon thermal conductivity increases with the increase of the thickness of the nano-film,which is consistent with the results obtained in Fig.6. It can be seen that the negative surface charges make much less contribution to the thermal conductivity than the positive surface charges.

    Fig.8. Variations of phonon thermal conductivity with surface charge density for SH mode in GaN nanofilms with different thickness values.

    4. Conclusions

    In this work,the effects of surface charges on the phonon and thermal properties have been investigated theoretically.The surface charges modify the elastic constants in nanostructures,leading to the change of phonon properties of semiconductor nanofilms. The elastic model is used to describe the phonon properties of surface charged-GaN nanofilms. Then,the phonon dispersion relation,the phonon average group velocity,and the phonon density of states for the surface charged-GaN nanofilms are simulated. Finally, the effects of surface charges on the phonon thermal conductivity of GaN nanofilms with different temperatures and film thickness values are analyzed. The numerical results demonstrate that when the surface charges can significantly modify the phonon properties and phonon thermal conductivity, these surface charges can also change the temperature and size dependence of the phonon thermal conductivity. This work will be helpful in adjusting and controlling the phonon properties and thermal conductivity in nanostructured components and nanodevices by changing the surface charges.

    猜你喜歡
    楊樹(shù)
    漫畫(huà)
    跟蹤導(dǎo)練(五)
    楊樹(shù)“四大一深”栽植新技術(shù)
    楊樹(shù)嫁接換代品種改良選擇及接穗采集處理
    口算本失蹤記
    楊樹(shù)山漫畫(huà)作品欣賞
    喜劇世界(2017年10期)2017-06-01 12:39:29
    楊樹(shù)山漫畫(huà)作品欣賞
    喜劇世界(2017年9期)2017-06-01 12:39:19
    霧霾來(lái)襲
    喜劇世界(2017年4期)2017-03-08 13:00:56
    高跟鞋
    特別文摘(2016年24期)2016-12-29 20:10:14
    Optimization of the carrier tracking loop for GPS high dynamic receivers
    久久久精品欧美日韩精品| 少妇的逼好多水| 国模一区二区三区四区视频| 99久久成人亚洲精品观看| 丰满人妻一区二区三区视频av| 一边摸一边抽搐一进一小说| 天美传媒精品一区二区| 免费黄网站久久成人精品| 2022亚洲国产成人精品| 又爽又黄a免费视频| 一夜夜www| 男女做爰动态图高潮gif福利片| 三级经典国产精品| 狂野欧美白嫩少妇大欣赏| 成年版毛片免费区| 禁无遮挡网站| 亚洲精品日韩在线中文字幕 | 国产精品一区二区三区四区久久| 伦理电影大哥的女人| 精品久久久久久成人av| 免费观看人在逋| 国产亚洲5aaaaa淫片| 欧美性猛交╳xxx乱大交人| 一个人看视频在线观看www免费| 亚洲欧美成人综合另类久久久 | 五月玫瑰六月丁香| 老熟妇乱子伦视频在线观看| 国产成人freesex在线| 亚洲欧美精品自产自拍| 亚洲av免费在线观看| 卡戴珊不雅视频在线播放| 日韩一区二区三区影片| 欧美高清成人免费视频www| 午夜福利在线观看免费完整高清在 | 免费av不卡在线播放| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 夜夜夜夜夜久久久久| 婷婷色av中文字幕| 久久精品国产亚洲av香蕉五月| 亚洲三级黄色毛片| 亚洲18禁久久av| 亚洲在线自拍视频| 亚洲av免费高清在线观看| 亚洲美女视频黄频| 女同久久另类99精品国产91| 联通29元200g的流量卡| 国产高清视频在线观看网站| 亚洲av电影不卡..在线观看| 亚洲精品粉嫩美女一区| 成人漫画全彩无遮挡| 晚上一个人看的免费电影| 色哟哟哟哟哟哟| 国内精品久久久久精免费| 国产av不卡久久| 全区人妻精品视频| kizo精华| 久久久国产成人免费| 禁无遮挡网站| 免费人成在线观看视频色| 中文亚洲av片在线观看爽| 久久精品夜夜夜夜夜久久蜜豆| 综合色丁香网| 欧美成人精品欧美一级黄| 国产伦理片在线播放av一区 | 国产精品,欧美在线| 国产成人a∨麻豆精品| 亚洲欧美精品综合久久99| 国产伦一二天堂av在线观看| 成人三级黄色视频| 91久久精品国产一区二区成人| 男女边吃奶边做爰视频| 最近的中文字幕免费完整| 美女被艹到高潮喷水动态| 日本黄大片高清| 精品一区二区免费观看| 国产成人影院久久av| 九九爱精品视频在线观看| 网址你懂的国产日韩在线| 婷婷六月久久综合丁香| 久久国内精品自在自线图片| 天堂av国产一区二区熟女人妻| 一区二区三区高清视频在线| 舔av片在线| 国产精品一二三区在线看| 国产欧美日韩精品一区二区| 黄片无遮挡物在线观看| 免费人成视频x8x8入口观看| 久久人妻av系列| 亚洲欧美精品自产自拍| 国产精品精品国产色婷婷| 成年免费大片在线观看| 欧美不卡视频在线免费观看| 在线免费观看的www视频| 久久九九热精品免费| 成人一区二区视频在线观看| 国产av在哪里看| 国产视频首页在线观看| 嫩草影院精品99| 九九在线视频观看精品| 亚洲av中文av极速乱| 国产精品无大码| 精品不卡国产一区二区三区| 热99在线观看视频| 日韩成人av中文字幕在线观看| 性插视频无遮挡在线免费观看| videossex国产| 好男人视频免费观看在线| 一本一本综合久久| 99热这里只有是精品在线观看| 九九爱精品视频在线观看| 欧美变态另类bdsm刘玥| 网址你懂的国产日韩在线| 欧美一级a爱片免费观看看| 毛片一级片免费看久久久久| 精品99又大又爽又粗少妇毛片| 日本在线视频免费播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品合色在线| 成人毛片60女人毛片免费| 国产精品,欧美在线| 免费人成视频x8x8入口观看| 秋霞在线观看毛片| 国产久久久一区二区三区| 三级男女做爰猛烈吃奶摸视频| 99热只有精品国产| 成年免费大片在线观看| 国产熟女欧美一区二区| 亚洲无线在线观看| 1024手机看黄色片| 久久久久久久亚洲中文字幕| 亚洲成人久久性| 少妇被粗大猛烈的视频| 久久午夜亚洲精品久久| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看 | 国产亚洲精品久久久com| 青春草视频在线免费观看| 亚洲精品日韩在线中文字幕 | 中文亚洲av片在线观看爽| 哪里可以看免费的av片| 国产一级毛片在线| 亚洲中文字幕一区二区三区有码在线看| 精品久久国产蜜桃| 精品久久久久久成人av| 日韩精品青青久久久久久| 免费观看人在逋| 国产精品永久免费网站| 成人毛片60女人毛片免费| av在线天堂中文字幕| 欧美极品一区二区三区四区| 中文字幕av成人在线电影| 一夜夜www| av黄色大香蕉| 久久99精品国语久久久| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 色噜噜av男人的天堂激情| 久久九九热精品免费| 免费av观看视频| 日韩中字成人| 亚洲成人久久爱视频| 18+在线观看网站| 国产三级中文精品| 久久国产乱子免费精品| 激情 狠狠 欧美| 色哟哟哟哟哟哟| 身体一侧抽搐| 丰满人妻一区二区三区视频av| 亚洲美女视频黄频| 中国国产av一级| 卡戴珊不雅视频在线播放| 国产在线男女| 特级一级黄色大片| av国产免费在线观看| 国产精品国产三级国产av玫瑰| www.色视频.com| 午夜精品在线福利| 欧美激情国产日韩精品一区| 哪里可以看免费的av片| 亚洲国产精品国产精品| 欧美又色又爽又黄视频| 最后的刺客免费高清国语| 国产在线男女| 国内揄拍国产精品人妻在线| 中文字幕精品亚洲无线码一区| 国产成人freesex在线| 亚洲一级一片aⅴ在线观看| 一区二区三区免费毛片| 国产精品美女特级片免费视频播放器| 国内精品久久久久精免费| 九草在线视频观看| 亚洲在久久综合| 看非洲黑人一级黄片| 亚洲av免费高清在线观看| 伦精品一区二区三区| 国产私拍福利视频在线观看| 99热精品在线国产| 国产一区二区三区av在线 | 岛国毛片在线播放| 青春草亚洲视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲国产高清在线一区二区三| 欧美性感艳星| 亚洲欧美日韩高清在线视频| 日韩人妻高清精品专区| 一边摸一边抽搐一进一小说| 91精品一卡2卡3卡4卡| 国产高清激情床上av| 国产黄色视频一区二区在线观看 | 日产精品乱码卡一卡2卡三| 日本免费a在线| 好男人视频免费观看在线| 人人妻人人看人人澡| 日本熟妇午夜| 男女啪啪激烈高潮av片| a级毛片a级免费在线| 一区二区三区免费毛片| 国产在线精品亚洲第一网站| 欧美精品一区二区大全| 麻豆国产97在线/欧美| 最近2019中文字幕mv第一页| 最近最新中文字幕大全电影3| 看十八女毛片水多多多| 免费不卡的大黄色大毛片视频在线观看 | 一区二区三区四区激情视频 | 高清日韩中文字幕在线| 亚洲成人久久爱视频| 特级一级黄色大片| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 在线播放国产精品三级| 国产伦一二天堂av在线观看| 国产真实伦视频高清在线观看| 舔av片在线| 成熟少妇高潮喷水视频| 网址你懂的国产日韩在线| 亚洲av男天堂| 老司机影院成人| 成人欧美大片| 日日啪夜夜撸| 美女xxoo啪啪120秒动态图| 成人亚洲精品av一区二区| 欧美潮喷喷水| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 欧美性猛交黑人性爽| 欧美3d第一页| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美成人综合另类久久久 | 秋霞在线观看毛片| 亚洲无线观看免费| 精品国产三级普通话版| 午夜免费激情av| 国产精品电影一区二区三区| 国产亚洲5aaaaa淫片| 免费搜索国产男女视频| 久久久a久久爽久久v久久| 久久久久久九九精品二区国产| 一级毛片久久久久久久久女| 中出人妻视频一区二区| 国产亚洲精品久久久久久毛片| a级毛片a级免费在线| 久99久视频精品免费| 中文资源天堂在线| 久久精品国产清高在天天线| 久99久视频精品免费| 白带黄色成豆腐渣| 久久中文看片网| 51国产日韩欧美| 不卡视频在线观看欧美| 免费不卡的大黄色大毛片视频在线观看 | 亚洲丝袜综合中文字幕| 日本成人三级电影网站| 丝袜美腿在线中文| 久久久久久久久久成人| 最近视频中文字幕2019在线8| 老师上课跳d突然被开到最大视频| 国产真实伦视频高清在线观看| 国产精品一区www在线观看| 精品不卡国产一区二区三区| 99国产精品一区二区蜜桃av| 日韩,欧美,国产一区二区三区 | 精品无人区乱码1区二区| 亚洲第一区二区三区不卡| 亚洲av熟女| 97超碰精品成人国产| 精品午夜福利在线看| 亚洲美女搞黄在线观看| 色噜噜av男人的天堂激情| 国产视频内射| av在线观看视频网站免费| 成人av在线播放网站| 美女脱内裤让男人舔精品视频 | 国产午夜精品论理片| 亚洲av成人av| 99久久人妻综合| 国产精品无大码| 禁无遮挡网站| 免费一级毛片在线播放高清视频| 一本久久精品| 99热这里只有是精品在线观看| 精品少妇黑人巨大在线播放 | 欧美高清成人免费视频www| 久久99蜜桃精品久久| 亚洲欧美中文字幕日韩二区| 99久久久亚洲精品蜜臀av| 男人的好看免费观看在线视频| 婷婷亚洲欧美| 少妇猛男粗大的猛烈进出视频 | 午夜免费激情av| 国产黄片美女视频| 99久久无色码亚洲精品果冻| 国产探花极品一区二区| 综合色av麻豆| 赤兔流量卡办理| 一边亲一边摸免费视频| 精品久久久噜噜| 91麻豆精品激情在线观看国产| 亚洲久久久久久中文字幕| 村上凉子中文字幕在线| a级毛色黄片| 91午夜精品亚洲一区二区三区| 欧美色视频一区免费| 一级黄色大片毛片| 亚洲五月天丁香| 欧美不卡视频在线免费观看| 国产精品久久久久久av不卡| 成年版毛片免费区| 国产精品久久视频播放| 国产高清不卡午夜福利| 午夜免费激情av| 国产老妇女一区| 久久午夜福利片| 白带黄色成豆腐渣| 日韩制服骚丝袜av| 免费黄网站久久成人精品| 欧美日韩精品成人综合77777| 干丝袜人妻中文字幕| av天堂在线播放| 能在线免费观看的黄片| 天天躁夜夜躁狠狠久久av| 国产真实乱freesex| av在线蜜桃| 午夜精品在线福利| 91久久精品电影网| 国产精品一区www在线观看| av在线蜜桃| 老司机影院成人| 日本黄大片高清| 午夜精品在线福利| 日韩欧美 国产精品| 国产片特级美女逼逼视频| 亚洲第一区二区三区不卡| 男插女下体视频免费在线播放| 欧美区成人在线视频| 美女内射精品一级片tv| 亚洲中文字幕日韩| 国产亚洲av嫩草精品影院| 成人亚洲欧美一区二区av| 中国美女看黄片| 小说图片视频综合网站| 久久九九热精品免费| 成年女人看的毛片在线观看| 麻豆成人午夜福利视频| 国产三级中文精品| 日本黄色片子视频| 精品人妻视频免费看| 亚洲成a人片在线一区二区| 2022亚洲国产成人精品| 久久精品国产99精品国产亚洲性色| 国产极品天堂在线| 久久草成人影院| 哪个播放器可以免费观看大片| 中出人妻视频一区二区| 久久这里只有精品中国| 久久久a久久爽久久v久久| 亚州av有码| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 波多野结衣巨乳人妻| 亚洲无线在线观看| 久久久久久久久久成人| 校园人妻丝袜中文字幕| 国语自产精品视频在线第100页| 69av精品久久久久久| 国产毛片a区久久久久| 欧美zozozo另类| 少妇高潮的动态图| 国产成人影院久久av| 欧美三级亚洲精品| 在线免费十八禁| 国产爱豆传媒在线观看| 夜夜夜夜夜久久久久| 久久国产乱子免费精品| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 色尼玛亚洲综合影院| av免费在线看不卡| 99久久人妻综合| 深夜a级毛片| 又粗又硬又长又爽又黄的视频 | 欧美成人一区二区免费高清观看| av专区在线播放| 国产一区二区在线观看日韩| 日本黄色片子视频| 亚洲精品自拍成人| 美女cb高潮喷水在线观看| kizo精华| 久久久久久久久久黄片| 成人二区视频| 欧美精品一区二区大全| 18禁裸乳无遮挡免费网站照片| 日韩国内少妇激情av| 国产成人精品婷婷| 欧美高清性xxxxhd video| av天堂在线播放| 成人性生交大片免费视频hd| 欧美三级亚洲精品| 亚洲人与动物交配视频| 成人三级黄色视频| 精品人妻一区二区三区麻豆| 免费不卡的大黄色大毛片视频在线观看 | 日韩高清综合在线| 1000部很黄的大片| 久久99热6这里只有精品| 亚洲精品日韩av片在线观看| 国产91av在线免费观看| 国产高清激情床上av| 国产大屁股一区二区在线视频| 99热只有精品国产| 中文字幕av在线有码专区| 97超视频在线观看视频| 联通29元200g的流量卡| 免费大片18禁| 免费无遮挡裸体视频| 一本久久中文字幕| 亚洲精品亚洲一区二区| 一级av片app| 九九久久精品国产亚洲av麻豆| 国产综合懂色| 久久久精品94久久精品| 久久久久国产网址| 日韩欧美精品免费久久| 欧美精品一区二区大全| 免费看日本二区| 菩萨蛮人人尽说江南好唐韦庄 | 精品少妇黑人巨大在线播放 | 国产综合懂色| 丰满乱子伦码专区| 国产精品乱码一区二三区的特点| 18禁裸乳无遮挡免费网站照片| 欧美精品一区二区大全| 婷婷色av中文字幕| 我的女老师完整版在线观看| 少妇的逼水好多| 国产黄片视频在线免费观看| 全区人妻精品视频| 99热6这里只有精品| 日本与韩国留学比较| 国产精品久久电影中文字幕| 黑人高潮一二区| 国产精品人妻久久久久久| 成人午夜高清在线视频| 免费观看在线日韩| 国产精品一二三区在线看| 久久精品久久久久久噜噜老黄 | 悠悠久久av| 色视频www国产| 男女下面进入的视频免费午夜| 在线天堂最新版资源| 卡戴珊不雅视频在线播放| 精品熟女少妇av免费看| 非洲黑人性xxxx精品又粗又长| www日本黄色视频网| 老女人水多毛片| 国产一区二区在线av高清观看| 伦精品一区二区三区| 国模一区二区三区四区视频| ponron亚洲| 又爽又黄无遮挡网站| 久久久久久久久大av| 国产伦精品一区二区三区四那| 少妇裸体淫交视频免费看高清| 国产精品1区2区在线观看.| 男人的好看免费观看在线视频| 女同久久另类99精品国产91| 欧美成人a在线观看| 黄色配什么色好看| 狠狠狠狠99中文字幕| 国产精品99久久久久久久久| 欧美性猛交╳xxx乱大交人| 亚洲无线观看免费| 国产黄色小视频在线观看| 九草在线视频观看| 久久韩国三级中文字幕| 国产白丝娇喘喷水9色精品| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久久免费av| 性插视频无遮挡在线免费观看| 99久久九九国产精品国产免费| 波多野结衣高清作品| 99riav亚洲国产免费| 日韩高清综合在线| 一区二区三区高清视频在线| 人妻系列 视频| 日本五十路高清| 又爽又黄无遮挡网站| 日韩中字成人| 99热这里只有精品一区| 久久这里只有精品中国| 中文在线观看免费www的网站| 国产精品女同一区二区软件| 看片在线看免费视频| 美女国产视频在线观看| 久久久久网色| 国内少妇人妻偷人精品xxx网站| 久久人人爽人人片av| 中文欧美无线码| 中文字幕制服av| 日韩制服骚丝袜av| 啦啦啦观看免费观看视频高清| 成人特级av手机在线观看| 国产伦在线观看视频一区| 卡戴珊不雅视频在线播放| www.av在线官网国产| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在 | 久久精品综合一区二区三区| 麻豆一二三区av精品| 99九九线精品视频在线观看视频| 天天一区二区日本电影三级| 好男人视频免费观看在线| av.在线天堂| 国产精品美女特级片免费视频播放器| 最好的美女福利视频网| 亚洲精品456在线播放app| 婷婷色综合大香蕉| 中文字幕免费在线视频6| 久久精品国产清高在天天线| 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| 欧美潮喷喷水| 乱人视频在线观看| 欧美人与善性xxx| 欧美激情在线99| 日本成人三级电影网站| 毛片女人毛片| 久久精品人妻少妇| 99热6这里只有精品| 村上凉子中文字幕在线| 特大巨黑吊av在线直播| 日韩欧美一区二区三区在线观看| 如何舔出高潮| 美女国产视频在线观看| 欧美最黄视频在线播放免费| 欧美一区二区国产精品久久精品| 成人永久免费在线观看视频| 狠狠狠狠99中文字幕| 国产精品一区二区在线观看99 | 久久鲁丝午夜福利片| 男女视频在线观看网站免费| 在线观看66精品国产| 好男人在线观看高清免费视频| 人妻夜夜爽99麻豆av| 最近2019中文字幕mv第一页| 国产乱人视频| 亚洲人与动物交配视频| 亚洲自拍偷在线| 欧美高清性xxxxhd video| 97超视频在线观看视频| 国产精品野战在线观看| 一级毛片久久久久久久久女| 白带黄色成豆腐渣| 禁无遮挡网站| 91aial.com中文字幕在线观看| 国产成人a区在线观看| 女人十人毛片免费观看3o分钟| 亚洲一区二区三区色噜噜| 午夜激情福利司机影院| 99久久九九国产精品国产免费| 看非洲黑人一级黄片| 精品99又大又爽又粗少妇毛片| 成人国产麻豆网| 久久精品国产亚洲av天美| 26uuu在线亚洲综合色| 别揉我奶头 嗯啊视频| 91av网一区二区| 欧洲精品卡2卡3卡4卡5卡区| 久久久成人免费电影| 丝袜喷水一区| a级毛片a级免费在线| 九草在线视频观看| 亚洲精品国产av成人精品| 中文字幕av成人在线电影| 久久精品国产99精品国产亚洲性色| 国产伦精品一区二区三区视频9| av黄色大香蕉| 国国产精品蜜臀av免费| 伦理电影大哥的女人| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| 国产综合懂色| 青春草亚洲视频在线观看| 亚洲一区二区三区色噜噜| 亚洲图色成人| 日韩成人av中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲天堂国产精品一区在线| 精品免费久久久久久久清纯| 在线天堂最新版资源| 欧美xxxx性猛交bbbb| 午夜a级毛片| 精品人妻一区二区三区麻豆| 国产一区二区亚洲精品在线观看|