• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures?

    2019-08-16 01:20:36JunZhou周俊JianShuoZhang張建爍GuoYuXian冼國(guó)裕QiQi齊琦ShangZhiGu顧尚志ChengMinShen申承民ZhaoHuaCheng成昭華ShengTaiHe何聲太andHaiTaoYang楊海濤
    Chinese Physics B 2019年8期
    關(guān)鍵詞:周俊尚志海濤

    Jun Zhou(周俊), Jian-Shuo Zhang(張建爍), Guo-Yu Xian(冼國(guó)裕), Qi Qi(齊琦), Shang-Zhi Gu(顧尚志),Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭華), Sheng-Tai He(何聲太), and Hai-Tao Yang(楊海濤),?

    1School of Material Science and Engineering,Tianjin Polytechnic University,Tianjin 300387,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: Au-ZnO,SERS,finite-difference time-domain,mechanism

    1. Introduction

    Metal-semiconductor heterogenous nanostructures have aroused significant interest, both in fundamental light-matter interaction mechanism and in technological applications(e.g.,single-molecule detection, photocatalysis, and optoelectronic devices)because of their tunable properties by controlling the composition and unique morphology.[1-3]Among those heterogeneous nanostructures, Au-ZnO nanostructures are always an outstanding focus due to the fascinating light response effect from the strong surface plasmon resonance of Au and wide-band of ZnO.For example,the ultra-violet(UV)photo response of Au coated ZnO nanorods with a diameter of 100 nm has shown that the photosensitivity increases 10 times.[4]ZnO thin film incorporated with the Au nano-islands shows that both the PL and the photoconductivity increase by an order of magnitude.[5]Recently, the controlled design and preparation of colloidal Janus nanostructures have received considerable attention because they can greatly influence the chemical or physical properties due to the special asymmetry and directionality within a single unit.[6]Typically, Au-ZnO nanopyramids reported by Li et al. demonstrated better photocatalytic efficiency than pure ZnO nanocrystals.[7]Meanwhile, Au-ZnO nanoflowers reported by Peng et al. showed the higher catalytic efficiency than pure ZnO nanocrystals and other hybrid nanostructures for the photodegradation of rhodamine B.[8,9]Our previous work showed that each Au-ZnO nanoparticle with a break shell has enhanced optic absorption properties and an obvious SERS effect due to the plasmainduced hot electron transfer process.[10]At present,the major avenue toward bicomponent inorganic Janus nanostructures relies on the control of growth or the attachment of a second nanostructure onto a primary one via (i) heterogeneous nucleation,(ii)asymmetric modification at liquid/liquid interface,or(iii)non-epitaxial deposition on the surface of the first nanostructure and subsequent thermal dewetting into a single domain. The heterogeneous nucleation in organic solvent has become an effective and widely used method due to the asprepared nanostructures with good crystallinity, monodispersity in size, and good control of the morphology. However,most of colloidal inorganic Janus nanostructures have been prepared by a tedious and time-consuming two-step growth method, with pre-synthesized seeds added.[11]The shapecontrolled synthesis of the Janus nanostructures via a more facile way is still a challenge because of the complexity of the hybrid system and growth mechanism. Thus,a well-designed and controlled synthesis of Au-ZnO Janus nanostructures with diverse morphologies is of great importance, not only for developing a general method of preparing metal-semiconductor Janus nanostructures but also for investigating the structureproperty-function mechanism.[12]

    In this work, we prepare Au-ZnO Janus nanostructures with matchstick-like,branched,and dumbbell-like morpholo-gies through a facile one-pot colloid synthesis method. The growth mechanism of the Au-ZnO Janus nanostructures is investigated by designing a serial of experiments with different reaction parameters. We explain the red-shift and broadening phenomena in the surface plasma resonance of different Janus nanostructures based on the Mie’s theory and hotelectron transfer effect. Moreover, the electric field distributions of these Au-ZnO Janus nanostructures are investigated by finite-difference-time-domain (FDTD) simulations, which could benefit the studies of SERS enhancement mechanism.These results can greatly promote the application of functional metal-semiconductor Janus nanostructures by the controlled design of diverse asymmetry architectures.

    2. Experiment

    2.1. Materials and methods

    Gold (III) chloride hydrate (99.99% trace metals basis,Beijing Chemical Factory), zinc acetate dihydrate (99.99%trace metals basis,Alfa Aesar),benzyl alcohol(99%,Alfa Aesar), octadecene (90%, Alfa Aesar), oleylamine (90%, Alfa Aesar),were straightly used without further purification prior to being used.

    2.2. Synthesis of matchstick-like Au-ZnO Janus nanostructure

    Matchstick-like Au-ZnO hybrid nanostructure was obtained by mixing 20-mg gold (III) chloride hydrate, 110-mg zinc acetate dihydrate, 4.18-g benzyl alcohol, 1.578-g octadecene,and 3-g oleylamine in a three-neck flask. Then,the mixture was heated to 120°C slowly and kept at this temperature for a short time. The color of the mixture could change from yellow to brown. After that, the solution was further heated to 180°C quickly and maintained at this temperature for 30 min. When the reaction was finished, the flask was cooled to room temperature naturally and the product was collected by centrifugation with ethanol and hexane.Finally,Au-ZnO Janus nanostructure was dissolved in hexane and stored at room temperature.

    2.3. Synthesis of branched Au-ZnO Janus nanostructure

    Branched Au-ZnO Janus nanostructure was synthesized under the similar conditions except for the adding of octadecene and the reaction temperature that was changed from 180°C to 200°C.The remaining procedures were exactly the same as those for synthesizing the matchstick-like nanostructure.

    2.4. Synthesis of dumbbell-like Au-ZnO hybrid nanostructure

    Dumbbell-like Au-ZnO Janus nanostructure was synthesized by changing the temperature from 180°C to 160°C.The other procedures were exactly the same as those for synthesizing the matchstick-like nanostructure.

    2.5. Characterization

    Powder x-ray diffraction (XRD) data were collected on a D2 PHASER x-ray diffractometer (Cu Kα radiation, λ =0.154 nm)at 40 kV and 30 mA.The morphologies and structures of the samples were investigated by transmission electron microscopy (TEM, JEM-2100F with operation voltage 200 kV).UV-visible spectra were recorded with a Varian Cary 5000 ultraviolet-visible spectrophotometer.

    3. Finite-difference time domain (FDTD) simulations

    The FDTD simulations(Lumerical Solutions Ltd.) were carried out to elucidate the electric field distributions of Au-ZnO Janus nanostructures. The simulation zone consisted of periodic boundary conditions along the x, y, and z axes, and then perfectly matched layers(PML)were selected in the simulation zone to prevent the reflected electromagnetic waves from being reintroduced. A normal incident plane wave with a wavelength of 532 nm was used since it was the closest to the absorption peak of Au nanoparticles. To obtain accurate results and maximum field enhancement resolution,the mesh override region was set to be 2 nm, the size of Yee cell was 0.5 nm, the overall simulation time was 10000 fs which was long enough to ensure calculation convergence, and the geometric size was 300 nm×300 nm×300 nm. Furthermore, the surrounding medium was set to be air and the refractive index of ZnO was set to be 2.1.

    4. Results and discussion

    The synthesis of bicomponent Janus nanostructures requires an even higher degree of synthetic control than that of single-component nanostructures. To create bicomponent Janus nanostructures, it is crucial to suppress homogeneous nucleation of the second component as competitive reaction to heterogeneous nucleation on the preformed or in situ formed seeds. Thus, the ratio of seed to the second component precursor,and the adhesive Gibbs free energy at the interface between the seed and the overgrown particle are the key factors for the controlled synthesis of bicomponent Janus nanostructures.

    Figure 1 shows the representative low-resolution TEM images of Au-ZnO Janus nanostructures with different precursor ratios of zinc acetate to gold chloride. Without Au precursors, ZnO nanostructures exhibit a shape like citrus chirocarpus and the longest side can achieve nearly 80.0 nm as shown in Fig. 1(a). After adding the Au precursors, the zinc acetate will process a heterogeneous nucleation on the surfaces of Au nanoparticles as seeds and form the welldispersive matchstick-like Au-ZnO Janus nanostructure as show in Figs.1(b)-1(d). All of the samples exhibit a uniform matchstick-like morphology consisting of single Au nanoparticles with a diameter of 8.0 nm. It should be noted that the diameter of Au nanoparticles is still around 8.0 nm when we keep the reaction for longer duration at different temperatures.This indicates that the concentration of Au precursors is low enough for the seeding growth. As the precursor ratios of zinc acetate to gold chloride decreasing from 3 to 1, the diameters of ZnO nanorods become smaller and the aspect ratio(length/diameter)increases from 1.9 to 5.1 gradually,while the sizes of Au nanoparticles are nearly the same. With the increase of the potion of Au precursor,the growth concentration of Zn ions around each Au seed decreases due to the increasing of the number of Au nanoparticles for the heterogeneous nucleation,which results in the fact that the ZnO nanorods have a prior growth direction because the thermal dynamics, other than the chemical dynamics,dominates the growth process.

    Figure 2 shows the as-prepared Au-ZnO Janus nanostructures for different duration at 180°C. When the duration is 15 min, 20 min, and 40 min, the average lengths of ZnO nanorods are 23.4 nm, 38.1 nm, and 38.7 nm, respectively.Correspondingly,the aspect ratios of ZnO nanorods are 3.1,to 3.8, and 4.9, respectively. It should be noted that the average length and aspect ratio of ZnO nanorods reach the maximum values of 46.0 nm and 5.1 in the duration of 30 min as shown in Fig.1(d). This indicates that the atoms of ZnO at the end of nanorod may diffuse towards the center due to the long heating time after the Zn precursors have been exhausted about in 30 min.

    Fig.1. Transmission electron microscopy(TEM)images of Au-ZnO Janus nanostructures prepared (a) without gold chloride and with different molar ratios of hydrate zinc acetate to gold chloride: (b)3,(c)2,and(d)1.

    Fig.2. TEM images of Au-ZnO Janus nanostructures prepared at 180 °C for different durations: (a)15 min,(b)20 min,and(c)40 min.

    Figure 3 shows the TEM images of Au-ZnO Janus nanostructures synthesized at the same reaction parameters except for different temperatures. When the temperature increases from 160°C to 180°C, the Janus nanostructure will change from dumbbell-like into matchstick-like nanostructure with a parallel self-assembly tendency due to a uniform morphology and a good dispersion. At 200°C,branched Au-ZnO nanostructure is formed in which each one consists of a pure Au nanoparticle and two or three branched ZnO nanorods. Adjusting the temperature from 205°C to 215°C,the number of ZnO nanorods in branched nanostructures presents an increasing tendency as shown in the Figs. 3(e) and 3(f). The maximum number is five, which is popular in the case of 215°C.Meanwhile,the average length of branched ZnO nanorods also increases with the reaction temperature increasing. The higher reaction temperature usually supplies higher adhesive Gibbs free energy at the interface of Au-ZnO Janus nanostructure,which allows the nucleation of Zn precursor on the multiple crystalline planes of Au nanoparticles to grow up a complex branched Au-ZnO Janus nanostructure. Meanwhile, as a result of more nucleation sites and the insufficient number of Zn precursors, some insolated Au nanoparticles can be observed(as shown in Fig.3(f)),although the molar mass values of all precursors and surfactants are the same as those at low temperatures.

    Figure 4 shows the high resolution transmission electron microscope (HRTEM) images of dumbbell-like, matchsticklike, and branched Au-ZnO Janus nanostructure. The high resolution transmission electron microscope images indicate that the plane interspace of Au nanoparticles is 0.235 nm which belongs to the (111) plane while the lattice spacing of ZnO nanorods is 0.260 nm which belongs to the(101)plane of wurtzite-type ZnO.These results are well consistent with the d values calculated from the XRD patterns in Fig.5(a). We can hardly tell any obvious lattice defects based on the high resolution transmission electron microscope images,which means that the qualities of all three kinds of Au-ZnO Janus nanoparticles are perfect.

    Fig.3. TEM images of Au-ZnO Janus nanostructures prepared at different temperatures: (a)160 °C,(b)180 °C,(c)200 °C,(d)205 °C,(e)210 °C,and(f)215 °C.

    Fig.4. High resolution transmission electron microscopy(HRTEM)images of different Au-ZnO Janus nanostructures: (a)dumbbell-like,(b)matchstick-like,and(c)branched.

    Figure 5(b) shows the UV-vis spectra of different Au-ZnO Janus nanostructures with pure Au nanoparticles and ZnO nanorods. The pure Au nanoparticles exhibit a strong plasmon absorption at 520 nm that corresponds to its characteristic collectively oscillation frequency.[13]While the absorption peak in dumbbell-like Au-ZnO Janus nanostructure presents a red-shift from 520 nm to 538 nm,which arises from an overall increase of the refractive indices of the dielectric surroundings.[14]If the shape changes from the dumbbell-like into branched and matchstick-like nanostructure,then the plasmon absorptions present a continuous red-shift to 545 nm and 556 nm, respectively. According to the Mie theory, the red-shift of plasmon absorption is ascribed to the decrease of dipole oscillations of the free electrons when the effective local dielectric function around Au nanoparticles increases after the ZnO nanorods have been combined together. Meanwhile,the strong interface interaction in the Au-ZnO Janus nanostructure can lead the plasmon-induced hot electrons to transfer from Au nanoparticles into the valance band of ZnO nanostructure. The transfer causes the conduction band of ZnO to bend downwards, which results in a slightly red-shift of the ground excitonic state of ZnO nanoparticles from 358 nm to 364 nm.[15]Also,the broadening cross-sections of the Au plasmon resonance absorption peaks results from the variation of electron density of Au nanoparticles due to the plasmon-induced hotelectron transfer within the Janus nanostructure. Therefore, the dielectric circumstances and hot-electron transfer have a large influence on the plasmon absorption for different Au-ZnO Janus nanostructures.[16]

    Fig.5. (a)XRD patterns and(b)UV-vis spectra of different Au-ZnO Janus nanostructures.

    Fig.6. Electric field distribution in FDTD simulations for(a)branched and(b)dumbbell-like Au-ZnO Janus nanostructure with incident angle of 0°;(c)model of the matchstick-like Au-ZnO nanostructure and electric field distribution at different angles of incident light: (d)0°,(e)45°,and(f)90°.

    The FDTD method is used to simulate the electromagnetic field distribution around the light-illuminated Au-ZnO Janus nanostructure by solving the Maxwell’s equations.[17]Figure 6 shows the field distribution of matchstick-like,branched, and dumbbell-like Au-ZnO Janus nanostructures.When the Au-ZnO Janus nanostructures are excited by the 532-nm polarized light source,the Au nanoparticles can generate a strong plasmon excitation and electronic field.[18]However,such enhancements have a definite angle-dependent relationship. A distinct hot-spot occurs and exhibits the highest enhancement of the electric field intensity at an incident angle of 90°because of the strongest dipole oscillations of the free electrons. The enhancements at incident angles of 135°and 180°are exactly the same as those at 45°and 0°,respec-tively. The hot-spots induced by the incident light provides an increasing number of hot-electrons at the interface between noble metal and semiconductor nanostructure.[19]Such hotspots will result in a more effective transfer of hot electrons across the Schottky barrier to the conduction band of ZnO nanorod.[20,21]Some literature has reported that these hotspots can greatly improve the efficiency of plasmon-enhanced photocatalytic water splitting by the enhancement of the local electric field.[22-24]Of the three structures, i.e., matchsticklike, branched, and dumbbell-like Au-ZnO Janus nanostructure,the matchstick-like nanostructure has the biggest exposed surface of Au nanoparticles and the longest length of ZnO.The longer ZnO nanorods can provide a longer relaxation path of hot electrons and prevent the hot electrons from damping,which is beneficial for the improvement of transfer efficiency.Meanwhile,the larger surface of Au nanoparticles can generate stronger plasma resonance and more hot electrons entering the semiconductor, thus giving rise to the charge-transfer enhanced SERS effect and photocatalysis required donor electrons.

    5. Conclusions

    In this work,we propose a facile one-pot colloid method of synthesizing the matchstick-like, branched and dumbbelllike Au-ZnO Janus nanostructure through the successive nucleation of Au and ZnO precursors in a continuous heating process. The adhesive Gibbs free energy at the interface is a critical factor for the selective growth of ZnO nanostructures on the Au nanoparticles. Meanwhile,the Mie theory and hot-electron transfer are used to explain the red-shift and the broadening of absorption cross section in the light absorption properties in the UV-vis range. Moreover,we can observe that the electromagnetic fields in these Janus nanostructures exhibit some enhancements because the dielectric media around the noble metal have different morphologies and sizes. Therefore, our experimental results and theoretical simulations are expected to provide a new insight into the growth mechanism of Janus nanoparticles and inspire people to fully utilize these surface plasmon resonance in a variety of areas such as functional photoelectronic devices and highly sensitive SERS materials.

    猜你喜歡
    周俊尚志海濤
    賡續(xù)紅色血脈 傳承紅色基因
    ——追憶夏尚志和中共大賚黨支部
    羅海濤作品
    鄭尚志
    戰(zhàn)高溫 在一線
    工友(2021年7期)2021-07-22 06:01:24
    快樂(lè)闖關(guān)
    周 俊
    專(zhuān)業(yè)忠誠(chéng)測(cè)試不靠譜:愛(ài)情到底用什么來(lái)考驗(yàn)
    通過(guò)反思尋求最優(yōu)解
    尚志
    優(yōu)雅(2015年5期)2015-09-10 07:22:44
    周俊的教育人生
    国产精品久久久人人做人人爽| 制服人妻中文乱码| 久久天躁狠狠躁夜夜2o2o| 国产三级黄色录像| 少妇精品久久久久久久| 亚洲精品在线美女| 日韩免费高清中文字幕av| 高清在线国产一区| 精品一区二区三区四区五区乱码| 亚洲欧美一区二区三区黑人| 亚洲精品美女久久av网站| 在线观看人妻少妇| 亚洲精品中文字幕在线视频| 日韩免费高清中文字幕av| 啦啦啦在线免费观看视频4| 精品欧美一区二区三区在线| 久久天躁狠狠躁夜夜2o2o| 天天添夜夜摸| 亚洲中文av在线| 国产av一区二区精品久久| av线在线观看网站| 久久久久国产精品人妻一区二区| 人妻人人澡人人爽人人| 免费一级毛片在线播放高清视频 | 天天躁日日躁夜夜躁夜夜| 2018国产大陆天天弄谢| 精品国产乱码久久久久久小说| 亚洲激情五月婷婷啪啪| 最近中文字幕2019免费版| 亚洲男人天堂网一区| 免费黄频网站在线观看国产| 自线自在国产av| 黄网站色视频无遮挡免费观看| 国产在视频线精品| 在线观看免费高清a一片| 搡老乐熟女国产| 欧美国产精品一级二级三级| 欧美一级毛片孕妇| 老司机午夜十八禁免费视频| 男人操女人黄网站| 亚洲av欧美aⅴ国产| 少妇裸体淫交视频免费看高清 | 久久性视频一级片| 久久精品成人免费网站| 纵有疾风起免费观看全集完整版| 91av网站免费观看| 欧美激情极品国产一区二区三区| a级片在线免费高清观看视频| 欧美黄色淫秽网站| 亚洲天堂av无毛| 国产亚洲精品久久久久5区| 亚洲中文av在线| 一本一本久久a久久精品综合妖精| 80岁老熟妇乱子伦牲交| 午夜影院在线不卡| 午夜精品国产一区二区电影| 国产精品一二三区在线看| 下体分泌物呈黄色| 欧美精品啪啪一区二区三区 | 精品少妇一区二区三区视频日本电影| 免费在线观看视频国产中文字幕亚洲 | 久久久国产成人免费| 国产色视频综合| a在线观看视频网站| 久久人妻熟女aⅴ| 美女脱内裤让男人舔精品视频| 精品少妇黑人巨大在线播放| 欧美老熟妇乱子伦牲交| 欧美黑人精品巨大| 精品国产一区二区三区四区第35| 男女午夜视频在线观看| 成人av一区二区三区在线看 | 亚洲精华国产精华精| 99国产精品一区二区蜜桃av | 精品国产国语对白av| 少妇猛男粗大的猛烈进出视频| 少妇猛男粗大的猛烈进出视频| 真人做人爱边吃奶动态| 高潮久久久久久久久久久不卡| 精品第一国产精品| 成人影院久久| 伦理电影免费视频| svipshipincom国产片| 男女高潮啪啪啪动态图| 高清av免费在线| 夫妻午夜视频| www.精华液| 久久久久精品国产欧美久久久 | 久久热在线av| 国产高清videossex| 国产日韩一区二区三区精品不卡| 国产男人的电影天堂91| 少妇的丰满在线观看| 日本撒尿小便嘘嘘汇集6| 日本av免费视频播放| 免费高清在线观看视频在线观看| 欧美日韩成人在线一区二区| 18在线观看网站| 日韩人妻精品一区2区三区| 一级,二级,三级黄色视频| 久久精品成人免费网站| 午夜福利在线观看吧| 欧美在线一区亚洲| 成年美女黄网站色视频大全免费| 国产免费福利视频在线观看| 男女之事视频高清在线观看| 国产精品av久久久久免费| 精品国产乱码久久久久久男人| 人人妻人人澡人人爽人人夜夜| 老司机影院毛片| 精品国产一区二区三区久久久樱花| 国产成人精品在线电影| 国产有黄有色有爽视频| 成在线人永久免费视频| 最近中文字幕2019免费版| 91av网站免费观看| 国产精品久久久久久人妻精品电影 | 国产高清视频在线播放一区 | 伊人亚洲综合成人网| 性色av乱码一区二区三区2| 男女免费视频国产| a级毛片在线看网站| 中亚洲国语对白在线视频| 十八禁人妻一区二区| tocl精华| 人人妻人人澡人人看| 女人精品久久久久毛片| 国产成人欧美在线观看 | 蜜桃国产av成人99| 亚洲精品中文字幕在线视频| 欧美亚洲日本最大视频资源| 国产高清视频在线播放一区 | 两性夫妻黄色片| 中文字幕人妻熟女乱码| 视频区图区小说| 免费观看a级毛片全部| 国产成人一区二区三区免费视频网站| 一级片免费观看大全| 国产精品自产拍在线观看55亚洲 | 窝窝影院91人妻| 大片免费播放器 马上看| 91九色精品人成在线观看| 中文字幕精品免费在线观看视频| 精品福利观看| 精品国产超薄肉色丝袜足j| 久久久久久久大尺度免费视频| 亚洲伊人色综图| 涩涩av久久男人的天堂| 国产主播在线观看一区二区| 亚洲成av片中文字幕在线观看| 男女床上黄色一级片免费看| 欧美黄色片欧美黄色片| 亚洲av日韩精品久久久久久密| 99精国产麻豆久久婷婷| 交换朋友夫妻互换小说| 亚洲精品久久久久久婷婷小说| 国产黄频视频在线观看| 如日韩欧美国产精品一区二区三区| 视频区图区小说| 色婷婷av一区二区三区视频| 欧美另类一区| 9色porny在线观看| 夜夜骑夜夜射夜夜干| 久热爱精品视频在线9| 国产精品久久久久久精品古装| 韩国精品一区二区三区| 国产成人系列免费观看| 老汉色av国产亚洲站长工具| 亚洲av电影在线进入| 亚洲av日韩在线播放| 亚洲美女黄色视频免费看| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲国产一区二区在线观看 | 人人妻人人澡人人看| 99热网站在线观看| 美女扒开内裤让男人捅视频| 久久99热这里只频精品6学生| netflix在线观看网站| 国产精品一区二区精品视频观看| 超碰97精品在线观看| 伊人久久大香线蕉亚洲五| 免费黄频网站在线观看国产| 久久精品熟女亚洲av麻豆精品| 亚洲av美国av| 国产伦人伦偷精品视频| 久久久久久久久久久久大奶| 日韩大码丰满熟妇| 国产精品偷伦视频观看了| 亚洲av男天堂| 国产高清videossex| 脱女人内裤的视频| 一本大道久久a久久精品| 九色亚洲精品在线播放| 亚洲专区中文字幕在线| 巨乳人妻的诱惑在线观看| 欧美变态另类bdsm刘玥| 啦啦啦 在线观看视频| 最近中文字幕2019免费版| 亚洲精华国产精华精| 成人黄色视频免费在线看| 免费不卡黄色视频| 国产成人欧美在线观看 | 91成人精品电影| 男女无遮挡免费网站观看| 欧美午夜高清在线| 91成年电影在线观看| 精品免费久久久久久久清纯 | 丰满饥渴人妻一区二区三| 老司机靠b影院| 日韩视频在线欧美| 午夜免费观看性视频| av有码第一页| 精品福利永久在线观看| 大香蕉久久成人网| 操出白浆在线播放| 欧美国产精品一级二级三级| 我的亚洲天堂| 9热在线视频观看99| 欧美 日韩 精品 国产| 少妇精品久久久久久久| 大香蕉久久网| av超薄肉色丝袜交足视频| 中国美女看黄片| 国产男人的电影天堂91| 色播在线永久视频| 黑人巨大精品欧美一区二区mp4| 精品人妻一区二区三区麻豆| 亚洲av美国av| 母亲3免费完整高清在线观看| 国产成人av教育| 国产人伦9x9x在线观看| 欧美 亚洲 国产 日韩一| 悠悠久久av| 国产精品香港三级国产av潘金莲| 国产免费现黄频在线看| 亚洲五月婷婷丁香| 十分钟在线观看高清视频www| 欧美久久黑人一区二区| 一本大道久久a久久精品| 亚洲精品成人av观看孕妇| 一级黄色大片毛片| 欧美日韩av久久| av在线app专区| 人人妻人人爽人人添夜夜欢视频| 香蕉丝袜av| 欧美人与性动交α欧美精品济南到| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 建设人人有责人人尽责人人享有的| 免费少妇av软件| 捣出白浆h1v1| 一级,二级,三级黄色视频| 国产精品亚洲av一区麻豆| 日本av手机在线免费观看| 狂野欧美激情性bbbbbb| 搡老岳熟女国产| www.av在线官网国产| 久久精品成人免费网站| 中文字幕色久视频| 久久国产亚洲av麻豆专区| 丝袜脚勾引网站| 国产精品影院久久| 岛国毛片在线播放| 久久中文字幕一级| 天天操日日干夜夜撸| 亚洲伊人久久精品综合| 久久青草综合色| 老熟妇乱子伦视频在线观看 | 日本精品一区二区三区蜜桃| 欧美xxⅹ黑人| 最黄视频免费看| 国产男女内射视频| 免费日韩欧美在线观看| 韩国精品一区二区三区| 亚洲第一青青草原| 久久久久国内视频| 久久久国产一区二区| 久久国产亚洲av麻豆专区| 婷婷成人精品国产| 久久中文看片网| 亚洲精华国产精华精| 欧美黄色淫秽网站| 在线观看舔阴道视频| 啦啦啦啦在线视频资源| 日韩精品免费视频一区二区三区| 俄罗斯特黄特色一大片| 日韩中文字幕视频在线看片| 国产精品1区2区在线观看. | 性色av乱码一区二区三区2| 视频区图区小说| 免费在线观看日本一区| 国产视频一区二区在线看| 国产又爽黄色视频| 日本a在线网址| 自拍欧美九色日韩亚洲蝌蚪91| 99国产精品一区二区三区| 99久久人妻综合| 亚洲精品美女久久av网站| 青草久久国产| 国产日韩一区二区三区精品不卡| 亚洲精品第二区| 国产主播在线观看一区二区| 51午夜福利影视在线观看| 亚洲av男天堂| 女人爽到高潮嗷嗷叫在线视频| 亚洲全国av大片| 亚洲精品粉嫩美女一区| 亚洲天堂av无毛| 国产一区二区 视频在线| 天堂俺去俺来也www色官网| 1024香蕉在线观看| 电影成人av| 欧美另类亚洲清纯唯美| 老司机亚洲免费影院| 十八禁高潮呻吟视频| 亚洲性夜色夜夜综合| 操美女的视频在线观看| 午夜91福利影院| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频| 久久久久国内视频| 黄片播放在线免费| 免费在线观看影片大全网站| 国产欧美日韩精品亚洲av| av福利片在线| 99国产精品99久久久久| 999久久久国产精品视频| 亚洲国产精品999| 亚洲精品自拍成人| 欧美另类一区| 亚洲三区欧美一区| 18禁国产床啪视频网站| 视频在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久热爱精品视频在线9| 亚洲精品一二三| 国产一区二区三区av在线| 亚洲精品久久午夜乱码| 久久人人97超碰香蕉20202| 99精国产麻豆久久婷婷| 国产成人免费观看mmmm| 一区二区三区乱码不卡18| 日韩制服丝袜自拍偷拍| 久久久国产精品麻豆| 视频区图区小说| 亚洲欧美一区二区三区久久| av在线老鸭窝| 纵有疾风起免费观看全集完整版| www.精华液| a 毛片基地| 人妻 亚洲 视频| 欧美亚洲 丝袜 人妻 在线| 日本av手机在线免费观看| 在线亚洲精品国产二区图片欧美| 人人妻人人爽人人添夜夜欢视频| 18在线观看网站| 国产片内射在线| 国产精品一二三区在线看| 国产在线视频一区二区| 男人操女人黄网站| 淫妇啪啪啪对白视频 | 久久国产精品男人的天堂亚洲| 男女下面插进去视频免费观看| 亚洲欧洲日产国产| 亚洲va日本ⅴa欧美va伊人久久 | 欧美激情 高清一区二区三区| 香蕉国产在线看| 色播在线永久视频| 搡老岳熟女国产| 超色免费av| 中文字幕av电影在线播放| av天堂在线播放| 成年美女黄网站色视频大全免费| 欧美另类一区| 精品国产超薄肉色丝袜足j| 国产精品.久久久| 首页视频小说图片口味搜索| 亚洲国产精品成人久久小说| 国产免费av片在线观看野外av| 亚洲五月婷婷丁香| 淫妇啪啪啪对白视频 | 国产精品国产av在线观看| 亚洲av国产av综合av卡| 淫妇啪啪啪对白视频 | 国产欧美亚洲国产| 99热网站在线观看| av免费在线观看网站| 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| 国产黄频视频在线观看| 大片免费播放器 马上看| 精品亚洲成国产av| 人成视频在线观看免费观看| 中国国产av一级| 亚洲全国av大片| 亚洲欧美精品自产自拍| 国产片内射在线| 午夜精品国产一区二区电影| 狠狠婷婷综合久久久久久88av| 欧美另类亚洲清纯唯美| 亚洲成人免费电影在线观看| 国产欧美亚洲国产| 一本色道久久久久久精品综合| 手机成人av网站| 亚洲第一青青草原| 国产一区二区三区av在线| 搡老熟女国产l中国老女人| 国产在线观看jvid| 午夜福利在线观看吧| 国产精品一区二区在线不卡| 亚洲精品中文字幕在线视频| 老司机影院毛片| 夫妻午夜视频| 少妇粗大呻吟视频| 丝袜美腿诱惑在线| 国产日韩一区二区三区精品不卡| 韩国精品一区二区三区| 99国产综合亚洲精品| 国产亚洲午夜精品一区二区久久| 不卡一级毛片| 欧美日韩亚洲综合一区二区三区_| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 亚洲久久久国产精品| 日韩一卡2卡3卡4卡2021年| 成年人午夜在线观看视频| 在线精品无人区一区二区三| 在线av久久热| 久久久久久免费高清国产稀缺| 免费高清在线观看日韩| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 久久精品国产亚洲av高清一级| 黄色怎么调成土黄色| 国产又爽黄色视频| 成人黄色视频免费在线看| 亚洲精品国产av成人精品| 久久中文看片网| 国产成人av教育| 97精品久久久久久久久久精品| 国产免费现黄频在线看| 欧美国产精品一级二级三级| 精品国产超薄肉色丝袜足j| 女性生殖器流出的白浆| 亚洲国产欧美在线一区| 热re99久久精品国产66热6| 久久国产精品大桥未久av| av一本久久久久| www.自偷自拍.com| 免费看十八禁软件| 欧美日韩国产mv在线观看视频| 宅男免费午夜| 一级毛片精品| 亚洲中文日韩欧美视频| 久久亚洲精品不卡| 国产一区二区在线观看av| 欧美激情久久久久久爽电影 | 亚洲中文日韩欧美视频| 久久亚洲精品不卡| 国产一区二区在线观看av| 丰满饥渴人妻一区二区三| 亚洲欧美精品自产自拍| 国产99久久九九免费精品| h视频一区二区三区| 人人妻人人澡人人看| 麻豆乱淫一区二区| 免费女性裸体啪啪无遮挡网站| 青青草视频在线视频观看| 亚洲第一av免费看| 99精品久久久久人妻精品| 午夜激情av网站| 免费观看人在逋| xxxhd国产人妻xxx| 国产淫语在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰成人久久| 亚洲av美国av| 老司机福利观看| 老汉色∧v一级毛片| 精品福利永久在线观看| 在线观看舔阴道视频| 美女高潮喷水抽搐中文字幕| 熟女少妇亚洲综合色aaa.| 午夜免费成人在线视频| 一区二区三区精品91| 美女国产高潮福利片在线看| 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 国产又色又爽无遮挡免| 中文字幕色久视频| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看吧| 另类精品久久| 久久性视频一级片| 另类精品久久| 一区二区三区精品91| 动漫黄色视频在线观看| 桃红色精品国产亚洲av| 国产亚洲一区二区精品| 久久性视频一级片| 国产成人欧美| 久久香蕉激情| 黑人巨大精品欧美一区二区蜜桃| 极品人妻少妇av视频| 好男人电影高清在线观看| 久久这里只有精品19| 精品亚洲成国产av| 大码成人一级视频| 国产淫语在线视频| 欧美国产精品一级二级三级| av视频免费观看在线观看| 欧美一级毛片孕妇| 国产亚洲精品第一综合不卡| 女警被强在线播放| 久久久精品区二区三区| 久久免费观看电影| 欧美日韩国产mv在线观看视频| 99re6热这里在线精品视频| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡| 午夜精品久久久久久毛片777| 黑人巨大精品欧美一区二区mp4| 高清黄色对白视频在线免费看| 黑人操中国人逼视频| 性高湖久久久久久久久免费观看| 久久久久久久精品精品| 国产av一区二区精品久久| 亚洲第一欧美日韩一区二区三区 | 午夜免费鲁丝| 国产91精品成人一区二区三区 | 可以免费在线观看a视频的电影网站| 老熟妇仑乱视频hdxx| 91国产中文字幕| 日韩 亚洲 欧美在线| 99国产精品一区二区蜜桃av | 黄色视频,在线免费观看| 精品高清国产在线一区| 国产欧美日韩精品亚洲av| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| 成人国产av品久久久| 真人做人爱边吃奶动态| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久| 国产精品香港三级国产av潘金莲| av片东京热男人的天堂| 成人国产一区最新在线观看| 中文字幕人妻熟女乱码| 黄色 视频免费看| 两性夫妻黄色片| 一级黄色大片毛片| 人成视频在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久 | 99精品久久久久人妻精品| 韩国高清视频一区二区三区| 国产黄色免费在线视频| 成年人午夜在线观看视频| 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久 | 国产国语露脸激情在线看| 美女视频免费永久观看网站| 欧美精品一区二区免费开放| 久久人人爽人人片av| 久久久久久久久久久久大奶| 老司机亚洲免费影院| 日本a在线网址| 无限看片的www在线观看| 日韩欧美免费精品| 国产精品久久久久成人av| 日韩欧美免费精品| 在线观看舔阴道视频| 一个人免费在线观看的高清视频 | 欧美 日韩 精品 国产| 久9热在线精品视频| 女人被躁到高潮嗷嗷叫费观| 精品熟女少妇八av免费久了| 国产成人欧美| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 国产一区二区三区av在线| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 欧美日韩亚洲高清精品| 免费在线观看黄色视频的| www.自偷自拍.com| 国产国语露脸激情在线看| 自线自在国产av| 两人在一起打扑克的视频| tube8黄色片| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美视频二区| 国产色视频综合| 精品国产超薄肉色丝袜足j| 中文欧美无线码| 欧美日韩黄片免| 久久九九热精品免费| 久久久久久久大尺度免费视频| 免费观看a级毛片全部| 老司机靠b影院| 亚洲天堂av无毛| 12—13女人毛片做爰片一| 99香蕉大伊视频| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 国产成人欧美| 麻豆国产av国片精品| 午夜视频精品福利| 久久精品久久久久久噜噜老黄| 老汉色∧v一级毛片| av福利片在线| videos熟女内射| 久久久精品94久久精品| 国产一卡二卡三卡精品|