• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ellipticity-dependent ionization yield for noble atoms?

    2019-08-16 01:20:26HristinaDelibasiandVioletaPetrovi
    Chinese Physics B 2019年8期

    Hristina Delibaˇsi′c and Violeta Petrovi′c

    Faculty of Science,University of Kragujevac,Radoja Domanovi′ca 12,34000 Kragujevac,Serbia

    Keywords: elliptical polarization,ponderomotive potential,Stark effect,Gaussian laser pulse

    1. Introduction

    Photoionization is a fundamental physical process that occurs when an atom or molecule absorbs light of sufficient energy to cause an electron to leave it and create a positive ion. Consequently, there has been intensive research activity in both experimental and theoretical physics[1,2]to understand the detailed photoionization dynamics of atoms and molecules that are exposed to an external laser field. As a result, many theories were defined as the theoretical framework of these processes.[3,4]

    The first theory was developed by Keldysh who, in order to describe the ionization dynamics of atoms by intense electromagnetic fields,introduced a quasistatic tunneling picture in his paper in 1965.[3]Following the calculation of the tunneling ionization rate for the ground state of hydrogen in a static electric field by Landau.[5]Keldysh extended the theory to the ionization by strong electromagnetic fields. In the original derivation,he introduced the dimensionless parameter(known as Keldysh),which is defined as the ratio between the frequency of laser light ω and the frequency of electron tunneling through the potential barrier formed by Coulomb potential and electric fieldwhere Ipis the unperturbed ionization potential and F is the amplitude of the electric field. Here and throughout the paper,all equations are given in atomic units(a.u.,e=me=ˉh=1)[6]unless otherwise stated.

    As one of its central results,Keldysh theory showed that multiphoton ionization and electron tunneling are,in fact,two pathways that dominate photoionization in the strong-field regime. The ionization process in which tunneling or multiphoton regime takes place is determined by the Keldysh parameter γ. For γ ?1 multiphoton ionization is the dominant process, while for γ ?1, the tunneling is the dominant process. Yudin and Ivanov,[7]and Ivanov et al.[8]suggested that the intermediate range of the Keldysh parameter, γ ~1, corresponds to the nonadiabatic tunneling regime. Additionally,according to Reiss[9]the regime when γ ~1 at λ =800 nm ionization in a strong laser field can be successfully described as a tunneling process.

    Over the last few years, the behavior of atoms in elliptically polarized laser fields has attracted increasing attention and still involves a wide range of topics to be studied.[10]To shed more light on atomic ionization in an elliptically polarized field, it is necessary to extend the quasistatic tunneling theory. During the last decade,when the extension of the quasistatic tunneling picture is appropriate and which kind of extensions are valid have been extensively studied.[11,12]

    The theoretical approach to the tunneling problem is based on a single-active-electron approximation which is based on the assumption that only one electron is involved in the ionization process. The Ammosov-Delone-Krainov(ADK) theory[4]is one of the most widely used theories in this area, which has been experimentally verified many times.[13,14]The physical idea of this theory is based on the assumption that ionization occurs within a period of only a fraction of an optical cycle so that the laser field can be regarded as quasistatic.

    Due to its simplicity,the ADK theory is commonly used in practical applications even in the intermediate range of the Keldysh parameter γ. According to this theory, the exponential growth of ionization rate,W ∝exp■2(2Ip)3/2/3F■, is determined primarily by the field strength F and the ionization potential Ip, and, therefore, here we focus on the ionization rate behavior when the ionization potential is modified by the ponderomotive potential[15]and the Stark shift.[16]The main goal of this paper is to investigate the applicability of the ADK theory by implying a nonadiabatic effect during a tunneling ionization process for an elliptical polarization with γ ~1.To achieve this,we perform a comparative study between experimental data[17]and modified ionization yield for the case of singly ionized noble-gas atoms. Furthermore, to eliminate disagreement between theory and experiment, we consider a Gaussian-shaped laser pulse[18]and analyze the behavior of the ionization yield.

    This paper is structured as follows. An introduction part is followed by Section 2,theoretical framework,where we define an expression for the ionization yield for elliptical polarization of the laser field with corrected ionization potential and temporal profile.In Section 3,results and discussion,we apply the obtained formula on noble-gas atoms and compare them with experimental data. Our conclusions are summarized in Section 4.

    2. Theoretical framework

    In the tunneling regime, for a linearly polarized laser field, the ADK ionization rate is characterized by the following expression:[19,20]

    where the first term

    relates to the instantaneous laser field|F(t)|,while the second term

    depends on the initial transverse momentum p⊥. Both terms of w0(t)and w⊥(p⊥)are related to the ionization potential Ip.We have chosen the dependence of the ionization rate on the transverse momentum spread along the field direction because even for small ellipticity, the shape of the transverse momentum distribution changes notably.[21]Recently, Arissian and his coworkers[22]showed consistency in the transverse momenta with the ADK theory.

    The electric field of the ionizing laser pulse in the (x,y)plane can be described within the dipole approximation as[23]

    where ε is the ellipticity of the laser radiation and f(t)is the pulse envelope, f(t)=sin2(ωt/N)(N is the number of optical cycles in the pulse)with a maximum of f(0)=1. The value of ellipticity varies in the range 0 ≤ ε ≤1;and for ε =0,the wave is linearly polarized, while for ε =±1, it is circularly polarized.

    The non-adiabatic theory was initially developed based on Perelomov, Popov, and Terent’ev (PPT) theory.[24]Based on this theory, approaching the nonadiabatic regime with the intermediate range of the Keldysh parameter γ ~1, Mur et al.[25]and, more recently, Geng et al.[26]proposed the presence of a transverse momentum in elliptically polarized laser field as: p⊥=εF[(sinh(τ0)/τ0)-1]/ω.[26]Here, τ0represents the complex time which is determined from the following equation: τ0=-iωt0, where t0is the purely imaginary time.[26]In the nonadiabatic tunneling regime irradiated with femtosecond laser pulses,this inline equation can be rewritten as an asymptotic transverse momentum p⊥~ εF/ω.[27]This can be achieved by using the imaginary time method[28,29]and definition of the hyperbolic sinus function sinh(ix) =i sin(x),[30]as well as small angle approximation sin(x)≈x,x ?1.[30]Inserting an asymptotic transverse momentum p⊥,and Eq.(2)into Eq.(1)and using some simple mathematical manipulations,wADK(t)is then given by[23]

    Experiments have clearly shown that the results of this equation are in very good agreement with the experimental findings.[31]Equation (3) explicitly indicates that the ionization rate wADK(ε) decreases exponentially as the strength of the laser field F, ellipticity ε, and ionization potential Ipincrease. The fact that wADK(ε)depends sensitively on the ionization potential Ipmotivates us to check how modification of the ionization potential changes the ionization rate.

    The intense laser field influences the electron’s binding potential,perturbs it and makes it higher than the unperturbed value. There are at least two reasons for this increase: the ponderomotive potential and the Stark effect.[31]The ponderomotive potential is represented as the average oscillation kinetic energy of a free electron in the electric field of the laser with strength F, and for an elliptically polarized laser field it is given by the formula: Up=[F2(1+ε2)]/4ω2.[32]The ponderomotive potential causes a shift of atomic energies to the continuum. Thus, the resulting ionization potential is given as a sum of unperturbed and ponderomotive potential,Ip→Ip+Up.[33]Also,the energy levels of an atom are altered in the laser field and this effect is known as the Stark effect.This displacement of the energy level is determined by the expression, Ist=αpF2/2+γhF4/24,[16]where αpis the dipole polarizability and γhis the dipole hyperpolarizability. The val-ues of polarizability αpand hyperpolarizability γhfor different atoms and ions can be found in Refs.[16],[34],and[35].

    Having both effects in mind, we can write the corrected ionization potentialin the following form:[36]

    To analyze how the ionization rate wADK(ε) is affected by the corrected ionization potential,we substitute the unperturbed ionization potential Ipwith the shifted one,correct the effective ionization potentialin Eq.(3)and obtain the following expression:

    One of the most important points about the ionization rate is the laser beam shape because no matter how fast the ionization process occurs,it is dependent on the laser field strength.In theoretical studies, the main purpose of changing parameters such as envelope f(t), amplitude F, and frequency of the laser field ω,is to examine how they influence the ionization rate.[37]On the other hand,the purpose of beam shaping in the experimental environment is to wipe off fluorescence around the laser beam, decrease pulse distortion, and fabricate all kinds of figures.[38]Additionally,the change of a beam shape in the experimental environment may provide evidence for explaining a future theory.There are many different shapes and here we want to discuss how the choice of some particular shape influences the rate.

    We consider the case of a Gaussian shape which resembles an experimental laser pulse in a reasonable manner. The temporal distribution of this laser beam shape can be represented in the following form:[18]

    where t0=Nπ/ω (N denotes the number of optical cycles in the pulse)and σ2=t20/4ln(20). The modulation of the generally assumed laser beam shape F with the Gaussian shaped laser beam FG(t) in Eq. (5) allows us to compare our results with experimental data.[17]We incorporate the laser beam shape FG(t)in the formula for the ionization rate wADK,corr(ε)and obtain

    where the part with temporal distribution of this laser beam shape FG(t) can be expanded into a power series (exp[-x]≈1-x+···),and written in the following form:

    The fact that the ion yield is more often measured in experiments motivates us to calculate the appropriate ionization yield based on the obtained rate(Eq.(7)). To achieve this,we use the following expression:[39]

    First,we calculate the ionization yield based on Eq.(8)without any corrections of the ionization potential. Substituting Eq.(5)into Eq.(8)provides the following equation:

    To solve the integral,we use the Gauss error function:[40]

    As expected,the integral in Eq.(9)simplifies and the final result is

    Next, we substitute Eq. (4) into Eq. (8) to determine the ionization yield YUp(ε), when the ponderomotive potential Upis included. Now,the resulting yield is given by

    We repeat the procedure and additionally use a Gamma function,,arriving at the following result:

    Finally, we calculate the ionization yield YUp,Ist(ε) when the resulting ionization potential Ieffpis fully corrected (based on Eq.(7))

    The calculation of the temporal integral in Eq. (13) is performed in a similar manner. Consequently,we obtain

    Equations (10), (12), and (14) present the formulas for the ionization yield. Regarding the initial formula(Eq.(1))it can be seen that the exponential dependence is kept,but the timedependent laser field FG(t) and corrected ionization potentialprovide us an additional possibility to analyze the behavior of the ionization yield for an elliptical field polarization.Our theoretical analysis shows that Y(ε),YUp(ε),and YUp,Ist(ε)are very sensitive to the change of frequency ω and laser field strength F. A minimal change of these parameters strongly affects the ionization yield.

    3. Results and discussion

    In this section,the results of a theoretical investigation of the modified ionization yield have been presented and compared with experimental results (taken from Ref. [17]). We consider the cases of singly ionized noble atoms, argon (Ar),krypton(Kr),and xenon(Xe),which are the most commonly used targets in strong-field studies. This is accomplished by considering a λ =800 nm elliptically polarized laser pulse.The number of optical cycles in the pulse is chosen to match the experiment[17]and it is fixed to the value N =33 with a duration of τ =30 fs. The field intensities I have been varied within the range of 0.8×1014W/cm2-3.0×1014W/cm2.These parameters limit the value of Keldysh parameter in the range which is characteristic for tunnel ionization. The ellipticity varies in the range of ε(0,1). We assume the Gaussian beam profile with a step by step,included fully corrected ionization potential. The effect of the magnetic component can be neglected in the considered intensity range.[41]

    We plot the ionization yield as a function of ellipticity ε(two-dimensional(2D)graph),and as a function of both ellipticity ε and field intensity I (three-dimensional (3D) graph).To analyze the influence of the ponderomotive and Stark shift effects on the ionization yield, we include them sequentially(step by step)based on Eqs.(10),(12),and(14). In Fig.1,for Xe atom,we display a comparative review of the yields Y(ε),YUp(ε), and YUp,Ist(ε) with the unperturbated, with the ponderomotive, and fully corrected ionization potential, respectively.

    Fig. 1. Comparative review of the ionization yield Y(ε), YUp(ε), and YUp,Ist(ε)for Xe atom as a function of ellipticity ε(0,1),when the laser intensity:(a)is fixed to the value I=1.1×1014 W/cm2,and(b)varies within the range I=0.8×1014 W/cm2-3.0×1014 W/cm2.

    At first glance,it is noticeable that all curves from Fig.1 approach to the ellipticity axis with similar asymptotic slopes.The curve which includes the influence of the ponderomotive potential (the dashed line in Fig. 1(a)) has almost the same“flow”as the curve with uncorrected ionization potential Y(ε)(the solid line in Fig.1(a)).Our results suggest that for ε >0.4,inclusion of the mentioned effect causes a decrease in yield and also a shift through the lower ellipticities. This is completely in accordance with the fact that the influence of the ponderomotive potential grows in a nearly circularly polarized laser field.[41]Meanwhile, as the ellipticity increases, significant deviation of the curve with the fully corrected ionization potential YUp,Ist(ε) occurs (the dotted line in Fig. 1(a)). One can observe that this curve is shifted vertically downward for laser ellipticity below 0.2. This shift could be due to the effect of the influence of the incorporated corrected ionization potential, which is completely in accordance with theoretical predictions.[42]Now,it can be noted that the ground state shift caused by the ponderomotive and the Stark effects cannot be neglected.We find that the shape of the curves is in accordance with Refs.[17]and[43].

    To obtain a more complete analysis, in Fig. 2 we give a comparative review of the ionization yield without any correction Y(ε), with included correction of the ponderomotive potential YUp(ε),and with fully corrected ionization potential YUp,Ist(ε), for Ar, Kr, and Xe atoms. We plot the ionization yield based on Eqs.(10),(12),and(14)as a function of ellipticity ε.

    Fig.2. Comparative review of the ionization yield as a function of ellipticity ε(0,1)of: (a)Y(ε),(b)YUp(ε),and(c)YUp,Ist(ε),when the laser intensity is fxied to the value: I=3×1014 W/cm2. The following notation is used for all the three panels: solid line is for Xe atom,dashed line is for Kr atom,and dotted line is for Ar atom.

    From Fig.2,it can be seen that the ionization yield curves decrease from Xeto Ar atoms. This order is completely expected since based on Eqs.(10),(12),and(14),the ionization yield decreases exponentially(for fixed values of the field intensity) much more quickly for an atom with higher ionization potential Ip,dipole polarizability αp,and dipole hyperpolarizability γh. It should be noted that the values of the unperturbed ionization potential Ipof Ar atom (Ip=0.579 a.u.)and Xe atom (Ip=0.445 a.u.) differ by more than an order(0.134 a.u.),while for the Kr atom this parameter value lies in between Ar and Xe atoms(Ip=0.514 a.u.). Additionally,the dipole polarizability αpand hyperpolarizability γhhave different values for the corresponding noble atoms: αp~11 and γh~1170 for Ar atom, and αp~16.8 and γh~2600 for Kr atom, and αp~27.1 and γh~6888 and for Xe atom.[40]A closer inspection of our results shows that for a fixed laser intensity, the ellipticity dependence of ionization yields is more pronounced for atoms with a higher ionization potential Ip,dipole polarizability αp,and dipole hyperpolarizability γh,which agrees with experimental and theoretical findings.[44,45]Consequently, it appears natural that the Ar ionization yield curves are more strongly influenced than Kr and Xe ionization yield curves.

    Some experimental results[17,46,47]are available for noble gases and our theoretically obtained results can be compared with them.

    A comparison between experimental data (taken from Ref. [17]) and the analytically obtained curve given by Eqs. (10) and (14) for the case of Ar and Xe atoms is shown in Fig.3. The intensity and laser frequency used in the figure are chosen for the purpose of comparison with the experiment given in Ref.[17]. It is found that as the ellipticity increases,the ratio of both ionization yield curves Y(ε) and YUp,Ist(ε)decreases rapidly and this feature is in good agreement with Refs. [46]and [47]. The case of ε =0 corresponds to linear polarization and for this value,the experimentally obtained ionization yield Y(ε)exptis nearly the same as the theoretically obtained Y(ε)and YUp,Ist(ε). In some definite range of ε, the ionization yield curves decrease monotonically until a minimum is obtained when ε =1.0,which corresponds to circular polarization.

    Based on Figs.3(a)and 3(b),it is obvious that for ε >0.2,the ionization yield curve which corresponds to the case of unperturbated ionization potential Y(ε)deviates slightly but noticeably from the experimentally measured ion yield Y(ε)exptand the yield with perturbated ionization potential YUp,Ist(ε).As seen in Fig. 3, a good agreement between the experimental measurements Y(ε)exptand our calculations YUp,Ist(ε) can be accomplished. This result indicates that the ionization potential corrected by the ponderomotive and Stark shift clearly plays a role in achieving better agreement with experimental results. Similar conclusions regarding the comparison between experiments and theories can be drawn for other noble gases and different values of the laser field intensity I.

    Fig.3. Ionization yields as a function of ellipticity ε(0,1)for: (a)Ar atom,when the laser intensity is fixed to the value: I=0.8×1014 W/cm2;(b)Xe atom,when the laser intensity is fixed to the value: I=0.5×1014 W/cm2.

    4. Conclusion and perspectives

    In summary, we have theoretically investigated the photoionization of noble-gas atoms in an elliptically polarized laser field by including the perturbated ionization potential.We observed the ionization yield and compared it with the experimental findings. Our results show that the ionization yields decrease as the ellipticity increases, and the drop becomes more dramatic for an atom with a higher ionization potential Ip, dipole polarizability αp, and dipole hyperpolarizability γh. As demonstrated by our work,the inclusion of the perturbated ionization potential in the standard ADK formula improves agreement with experimental results. To conclude,the presented theory provides an accurate and efficient theoretical model for calculating the ionization yields of noble atoms.The described model can be extended to other atoms with ease and the work is in progress,which can further test the validity of the presented model.

    日本免费a在线| 久久精品国产99精品国产亚洲性色 | 亚洲av电影在线进入| 搡老岳熟女国产| 怎么达到女性高潮| 欧美成人性av电影在线观看| cao死你这个sao货| 久久中文字幕人妻熟女| 美女高潮到喷水免费观看| www.999成人在线观看| 亚洲熟妇中文字幕五十中出 | 高清在线国产一区| 夜夜夜夜夜久久久久| 精品日产1卡2卡| 精品久久久久久成人av| 最新在线观看一区二区三区| 桃色一区二区三区在线观看| 中出人妻视频一区二区| bbb黄色大片| 欧美丝袜亚洲另类 | 国产精品久久视频播放| www.精华液| 欧美 亚洲 国产 日韩一| 亚洲少妇的诱惑av| 免费女性裸体啪啪无遮挡网站| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频 | 日韩三级视频一区二区三区| 久久这里只有精品19| 免费一级毛片在线播放高清视频 | 成人亚洲精品一区在线观看| 男人操女人黄网站| 中文字幕高清在线视频| 亚洲一区中文字幕在线| av视频免费观看在线观看| 国产成人精品久久二区二区91| 欧美黄色淫秽网站| 一边摸一边抽搐一进一出视频| 在线视频色国产色| 俄罗斯特黄特色一大片| 欧美一级毛片孕妇| 无限看片的www在线观看| 欧美+亚洲+日韩+国产| 在线观看免费视频网站a站| 亚洲成人精品中文字幕电影 | 精品一品国产午夜福利视频| 91字幕亚洲| 一a级毛片在线观看| 大陆偷拍与自拍| 一级片免费观看大全| 麻豆av在线久日| 别揉我奶头~嗯~啊~动态视频| www国产在线视频色| 日韩高清综合在线| а√天堂www在线а√下载| 日韩人妻精品一区2区三区| 交换朋友夫妻互换小说| 欧美日韩视频精品一区| 十分钟在线观看高清视频www| 国产高清videossex| 国产99久久九九免费精品| 不卡av一区二区三区| 国产精品亚洲一级av第二区| 日韩免费av在线播放| 亚洲精品在线观看二区| 国产一卡二卡三卡精品| 亚洲精品国产精品久久久不卡| 男女之事视频高清在线观看| 成人手机av| 老司机福利观看| 99国产精品99久久久久| 一边摸一边抽搐一进一出视频| 一区二区三区激情视频| 欧美日本亚洲视频在线播放| 国产免费av片在线观看野外av| 亚洲中文av在线| 免费搜索国产男女视频| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久免费视频了| 亚洲精品成人av观看孕妇| 天天影视国产精品| 国产精品av久久久久免费| 亚洲伊人色综图| 黄片播放在线免费| 黄色a级毛片大全视频| 丁香六月欧美| 看黄色毛片网站| 91九色精品人成在线观看| 少妇粗大呻吟视频| 新久久久久国产一级毛片| 人人妻,人人澡人人爽秒播| 校园春色视频在线观看| 亚洲黑人精品在线| 桃红色精品国产亚洲av| 亚洲久久久国产精品| 日韩av在线大香蕉| 女人精品久久久久毛片| x7x7x7水蜜桃| 精品国产乱子伦一区二区三区| 九色亚洲精品在线播放| 国产又色又爽无遮挡免费看| 日日干狠狠操夜夜爽| 久久久久国内视频| 校园春色视频在线观看| 两人在一起打扑克的视频| 亚洲一区高清亚洲精品| 欧美久久黑人一区二区| 国产亚洲欧美在线一区二区| 欧美激情极品国产一区二区三区| 99国产精品免费福利视频| 日韩欧美免费精品| 三级毛片av免费| 精品无人区乱码1区二区| 欧美中文日本在线观看视频| 国产成人免费无遮挡视频| 亚洲中文日韩欧美视频| 亚洲成av片中文字幕在线观看| 免费高清在线观看日韩| 性色av乱码一区二区三区2| 黄片大片在线免费观看| 法律面前人人平等表现在哪些方面| 91老司机精品| 国产伦一二天堂av在线观看| 亚洲专区字幕在线| 久久久久久久久免费视频了| 国产极品粉嫩免费观看在线| www.999成人在线观看| 亚洲av电影在线进入| 后天国语完整版免费观看| 可以免费在线观看a视频的电影网站| 日日爽夜夜爽网站| 亚洲五月色婷婷综合| 99国产极品粉嫩在线观看| 色综合站精品国产| 欧美色视频一区免费| 成人18禁在线播放| 午夜成年电影在线免费观看| 91九色精品人成在线观看| 久久香蕉精品热| 亚洲成人精品中文字幕电影 | 村上凉子中文字幕在线| 国产精品二区激情视频| 中亚洲国语对白在线视频| 国产av一区在线观看免费| 国产精品乱码一区二三区的特点 | 欧美av亚洲av综合av国产av| 午夜免费观看网址| 一夜夜www| 在线观看免费午夜福利视频| 怎么达到女性高潮| 激情视频va一区二区三区| 最好的美女福利视频网| 午夜福利免费观看在线| 欧美人与性动交α欧美精品济南到| 最新美女视频免费是黄的| 不卡av一区二区三区| 美女午夜性视频免费| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 久久 成人 亚洲| 亚洲欧美激情在线| 99久久久亚洲精品蜜臀av| a级片在线免费高清观看视频| 中文字幕人妻丝袜制服| 在线观看午夜福利视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜久久久在线观看| 黄色成人免费大全| 久久国产精品男人的天堂亚洲| 久久中文字幕一级| 中文字幕人妻熟女乱码| 丰满人妻熟妇乱又伦精品不卡| 曰老女人黄片| 色在线成人网| 亚洲性夜色夜夜综合| 国产成人影院久久av| 一级片'在线观看视频| 久久青草综合色| 97人妻天天添夜夜摸| 纯流量卡能插随身wifi吗| 一进一出抽搐gif免费好疼 | 色综合欧美亚洲国产小说| 91精品国产国语对白视频| 悠悠久久av| 日韩欧美一区二区三区在线观看| 性色av乱码一区二区三区2| 国产色视频综合| 午夜免费鲁丝| 欧美日韩av久久| 亚洲伊人色综图| 在线观看免费视频网站a站| 成在线人永久免费视频| 亚洲自偷自拍图片 自拍| 丰满迷人的少妇在线观看| 亚洲av五月六月丁香网| 日韩精品免费视频一区二区三区| 午夜福利在线免费观看网站| 日本wwww免费看| 亚洲一区二区三区不卡视频| 欧美精品亚洲一区二区| 每晚都被弄得嗷嗷叫到高潮| 婷婷六月久久综合丁香| 欧美日本中文国产一区发布| 久久亚洲真实| 中文字幕色久视频| 国产亚洲精品一区二区www| 日韩成人在线观看一区二区三区| 国产欧美日韩精品亚洲av| 最近最新免费中文字幕在线| 精品一区二区三区av网在线观看| 亚洲熟女毛片儿| av视频免费观看在线观看| 国产一区二区激情短视频| 18禁美女被吸乳视频| 欧美丝袜亚洲另类 | 亚洲国产精品一区二区三区在线| 男人操女人黄网站| 久久青草综合色| 国产一区二区三区视频了| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 性欧美人与动物交配| 美女福利国产在线| 欧美日韩黄片免| 国产91精品成人一区二区三区| 麻豆av在线久日| 正在播放国产对白刺激| 亚洲av五月六月丁香网| 日韩欧美一区视频在线观看| 狠狠狠狠99中文字幕| 亚洲一区高清亚洲精品| 色婷婷久久久亚洲欧美| 悠悠久久av| 国产一区二区在线av高清观看| 99热国产这里只有精品6| av天堂久久9| 亚洲 欧美 日韩 在线 免费| 在线观看一区二区三区| 18禁国产床啪视频网站| 久久精品91无色码中文字幕| av片东京热男人的天堂| 91大片在线观看| 亚洲欧美激情在线| 宅男免费午夜| 久久久国产成人免费| 久久 成人 亚洲| 亚洲伊人色综图| 五月开心婷婷网| 黄色片一级片一级黄色片| 色综合婷婷激情| 亚洲精品在线观看二区| 久久中文字幕人妻熟女| 中出人妻视频一区二区| 老司机亚洲免费影院| 久久久久亚洲av毛片大全| 亚洲av第一区精品v没综合| 人妻久久中文字幕网| 国产精品一区二区免费欧美| 丝袜美足系列| 国产野战对白在线观看| 欧美日韩亚洲综合一区二区三区_| 91麻豆av在线| www日本在线高清视频| 自线自在国产av| 欧美日韩乱码在线| 成人三级做爰电影| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区| 国产精品美女特级片免费视频播放器 | 91成人精品电影| 69av精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱视频在线免费观看| 另类亚洲欧美激情| 久久午夜亚洲精品久久| 精品日产1卡2卡| 激情在线观看视频在线高清| 久久精品国产亚洲av香蕉五月| 99精品久久久久人妻精品| netflix在线观看网站| 新久久久久国产一级毛片| 成年人黄色毛片网站| 看片在线看免费视频| 精品人妻1区二区| 十八禁人妻一区二区| 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 亚洲国产毛片av蜜桃av| 免费在线观看黄色视频的| 在线观看免费视频日本深夜| 久久亚洲真实| 欧美日韩av久久| 免费观看人在逋| 丁香六月欧美| 国产午夜精品久久久久久| 伦理电影免费视频| 国产精品久久久av美女十八| 亚洲欧美激情综合另类| 久久久久亚洲av毛片大全| 一级作爱视频免费观看| 成人av一区二区三区在线看| 国产av又大| 亚洲欧美日韩另类电影网站| 视频在线观看一区二区三区| 成年版毛片免费区| 亚洲av熟女| 一级毛片精品| 国产亚洲欧美在线一区二区| 麻豆一二三区av精品| 中文字幕人妻丝袜一区二区| 夜夜躁狠狠躁天天躁| 午夜福利一区二区在线看| 精品午夜福利视频在线观看一区| 巨乳人妻的诱惑在线观看| 精品一区二区三区四区五区乱码| 天天躁夜夜躁狠狠躁躁| 国产国语露脸激情在线看| 少妇 在线观看| 久久99一区二区三区| 看片在线看免费视频| 亚洲精品美女久久久久99蜜臀| 久久午夜综合久久蜜桃| 80岁老熟妇乱子伦牲交| 国产av一区在线观看免费| 日韩精品免费视频一区二区三区| 熟女少妇亚洲综合色aaa.| 人人妻,人人澡人人爽秒播| 久99久视频精品免费| 精品一区二区三区视频在线观看免费 | 99久久综合精品五月天人人| 免费少妇av软件| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 精品一区二区三区四区五区乱码| 国产av在哪里看| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| av超薄肉色丝袜交足视频| 不卡av一区二区三区| 国产有黄有色有爽视频| 国产亚洲精品一区二区www| 亚洲狠狠婷婷综合久久图片| 搡老熟女国产l中国老女人| 午夜福利在线免费观看网站| 国产熟女xx| 一个人免费在线观看的高清视频| 久久 成人 亚洲| 在线天堂中文资源库| 夜夜躁狠狠躁天天躁| 精品乱码久久久久久99久播| 久久人人爽av亚洲精品天堂| 黄片小视频在线播放| 久久久久精品国产欧美久久久| 亚洲黑人精品在线| 一级a爱视频在线免费观看| av网站免费在线观看视频| 热99国产精品久久久久久7| 中文字幕另类日韩欧美亚洲嫩草| 国产成+人综合+亚洲专区| 久久中文字幕人妻熟女| 精品高清国产在线一区| 久久久精品欧美日韩精品| 亚洲中文日韩欧美视频| 99国产综合亚洲精品| 丝袜美足系列| 少妇裸体淫交视频免费看高清 | 女生性感内裤真人,穿戴方法视频| xxxhd国产人妻xxx| 国产亚洲欧美在线一区二区| 亚洲欧美一区二区三区久久| 在线天堂中文资源库| 久久青草综合色| 久久久水蜜桃国产精品网| svipshipincom国产片| av视频免费观看在线观看| 丰满人妻熟妇乱又伦精品不卡| 两个人免费观看高清视频| 国内久久婷婷六月综合欲色啪| 精品人妻在线不人妻| 午夜成年电影在线免费观看| 国产91精品成人一区二区三区| 91大片在线观看| 午夜福利,免费看| 淫妇啪啪啪对白视频| 人人妻人人爽人人添夜夜欢视频| av国产精品久久久久影院| 国产午夜精品久久久久久| 在线观看免费高清a一片| 亚洲中文av在线| 啦啦啦在线免费观看视频4| 美女高潮到喷水免费观看| 人人澡人人妻人| 一级a爱片免费观看的视频| 97超级碰碰碰精品色视频在线观看| 男女午夜视频在线观看| 久久久久久亚洲精品国产蜜桃av| 美女大奶头视频| 婷婷丁香在线五月| 少妇被粗大的猛进出69影院| 久久国产精品人妻蜜桃| 天堂√8在线中文| 亚洲色图综合在线观看| 欧美黄色片欧美黄色片| 看片在线看免费视频| 黑丝袜美女国产一区| 无限看片的www在线观看| 99精国产麻豆久久婷婷| 亚洲va日本ⅴa欧美va伊人久久| 亚洲人成77777在线视频| 香蕉久久夜色| 久久亚洲真实| 妹子高潮喷水视频| 黄色片一级片一级黄色片| 日本五十路高清| 久久久久久亚洲精品国产蜜桃av| 亚洲片人在线观看| 国产成人av激情在线播放| 亚洲精品粉嫩美女一区| 咕卡用的链子| 人成视频在线观看免费观看| 黄网站色视频无遮挡免费观看| 一区二区三区精品91| 悠悠久久av| 精品国产一区二区久久| 美女大奶头视频| 多毛熟女@视频| 午夜福利,免费看| 日日爽夜夜爽网站| 欧美日韩乱码在线| 久久国产精品影院| 久久午夜亚洲精品久久| 99国产极品粉嫩在线观看| 久久久久国产一级毛片高清牌| 欧美黑人精品巨大| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩精品久久久久久密| 好看av亚洲va欧美ⅴa在| 久久99一区二区三区| 亚洲欧美日韩另类电影网站| 中文字幕人妻熟女乱码| 欧美av亚洲av综合av国产av| 精品福利观看| 这个男人来自地球电影免费观看| 午夜视频精品福利| www国产在线视频色| 一区二区日韩欧美中文字幕| 日韩大尺度精品在线看网址 | 热99re8久久精品国产| 亚洲精品在线观看二区| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 亚洲av成人一区二区三| 大型av网站在线播放| 亚洲欧美激情在线| 精品国产一区二区久久| avwww免费| 黄片播放在线免费| 俄罗斯特黄特色一大片| 黄色成人免费大全| 免费在线观看黄色视频的| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品一区二区在线不卡| 五月开心婷婷网| 超碰成人久久| 一区二区三区精品91| 91字幕亚洲| 久久草成人影院| 美女午夜性视频免费| 国产日韩一区二区三区精品不卡| 午夜福利在线免费观看网站| 777久久人妻少妇嫩草av网站| 制服诱惑二区| 亚洲成人精品中文字幕电影 | 国产真人三级小视频在线观看| 欧美大码av| 久久精品人人爽人人爽视色| 9热在线视频观看99| 青草久久国产| 男女午夜视频在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美黑人欧美精品刺激| 亚洲国产欧美网| 亚洲av熟女| 久久久久久免费高清国产稀缺| 日本一区二区免费在线视频| 一a级毛片在线观看| 我的亚洲天堂| 午夜亚洲福利在线播放| 亚洲人成网站在线播放欧美日韩| 很黄的视频免费| 亚洲片人在线观看| 久久久久久久久免费视频了| 国内毛片毛片毛片毛片毛片| 一边摸一边做爽爽视频免费| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品sss在线观看 | 80岁老熟妇乱子伦牲交| 真人做人爱边吃奶动态| 久久亚洲真实| 大型黄色视频在线免费观看| 可以免费在线观看a视频的电影网站| 宅男免费午夜| 好看av亚洲va欧美ⅴa在| 久久精品成人免费网站| 亚洲精品在线观看二区| 亚洲欧洲精品一区二区精品久久久| 色综合站精品国产| av免费在线观看网站| 18禁裸乳无遮挡免费网站照片 | 一本综合久久免费| a级毛片在线看网站| 精品电影一区二区在线| 精品久久蜜臀av无| 一二三四社区在线视频社区8| 亚洲自偷自拍图片 自拍| 大香蕉久久成人网| 国产精品影院久久| 国产高清videossex| 一个人免费在线观看的高清视频| 在线观看66精品国产| 热99re8久久精品国产| 欧美黑人精品巨大| 热re99久久国产66热| 最近最新免费中文字幕在线| 999久久久国产精品视频| 免费久久久久久久精品成人欧美视频| 欧美黄色片欧美黄色片| 国产精品久久久久成人av| 两性夫妻黄色片| 亚洲成人精品中文字幕电影 | 男女下面进入的视频免费午夜 | 免费在线观看亚洲国产| 欧美午夜高清在线| netflix在线观看网站| 又大又爽又粗| 国产男靠女视频免费网站| 久久午夜综合久久蜜桃| 欧美激情高清一区二区三区| 超碰97精品在线观看| 老司机午夜福利在线观看视频| 18禁国产床啪视频网站| 亚洲专区字幕在线| 男人操女人黄网站| 一a级毛片在线观看| 国产成人免费无遮挡视频| 一级片免费观看大全| 黑人巨大精品欧美一区二区蜜桃| 国产片内射在线| 成在线人永久免费视频| 免费在线观看黄色视频的| 在线观看免费视频网站a站| 一级毛片高清免费大全| a级毛片在线看网站| 人人妻,人人澡人人爽秒播| 欧美大码av| 免费观看人在逋| 身体一侧抽搐| 亚洲成a人片在线一区二区| 91麻豆精品激情在线观看国产 | 亚洲人成电影观看| 亚洲国产精品sss在线观看 | 国产精品香港三级国产av潘金莲| 麻豆一二三区av精品| 久久精品成人免费网站| 久久国产乱子伦精品免费另类| 9色porny在线观看| 天堂中文最新版在线下载| 身体一侧抽搐| 欧美中文综合在线视频| 在线天堂中文资源库| 国产精品1区2区在线观看.| 热99re8久久精品国产| 国产免费av片在线观看野外av| 欧美乱码精品一区二区三区| 在线观看免费日韩欧美大片| 欧美在线黄色| 久久青草综合色| 亚洲精华国产精华精| 黑人巨大精品欧美一区二区蜜桃| 久久人妻av系列| 高清黄色对白视频在线免费看| 免费日韩欧美在线观看| 国产黄色免费在线视频| 老司机靠b影院| 久久久国产成人精品二区 | 久久影院123| 国产精品爽爽va在线观看网站 | 在线观看午夜福利视频| 18禁观看日本| 精品国产一区二区久久| 精品国产一区二区三区四区第35| 国产片内射在线| 国产三级黄色录像| 不卡av一区二区三区| 十八禁人妻一区二区| 嫩草影视91久久| 婷婷丁香在线五月| 宅男免费午夜| 热re99久久国产66热| 大型av网站在线播放| 精品国产亚洲在线| 国产国语露脸激情在线看| 免费少妇av软件| 久久人妻av系列| 国产一区二区三区在线臀色熟女 | 大陆偷拍与自拍| 午夜激情av网站| 后天国语完整版免费观看| 男女午夜视频在线观看| 国内久久婷婷六月综合欲色啪| 亚洲精品美女久久av网站| 韩国av一区二区三区四区| 最近最新免费中文字幕在线| 老熟妇仑乱视频hdxx|