• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of the band gap tuning and doping control in CdSexTe1-x alloy for high efficiency solar cell?

    2019-08-16 01:17:30JingxiuYang楊競秀andSuHuaiWei魏蘇淮
    Chinese Physics B 2019年8期

    Jingxiu Yang(楊競秀) and Su-Huai Wei(魏蘇淮)

    1Department of Materials Science and Engineering,Jilin Jianzhu University,Changchun 130118,China

    2Beijing Computational Science Research Center,Beijing 100193,China

    Keywords: alloy,bowing effect,doping,II-VI semiconductors

    1. Introduction

    CdTe is one of the leading material for low-cost, highefficient, thin film solar cells due to its good optoelectronic property and the easy way to fabricate.[1]Although the power conversion efficiency (PCE) of the CdTe-based solar cell has so far reached to an impressive 22.1%, it is still much below the Shockley-Queisser limit (32%).[2]The current PCE in the world-record solar cell is mainly limited by the small open-circuit voltage (VOC), which is about 0.85 V compared to its band gap of 1.48 V at room temperature, as well as the relatively low short-circuit current (JSC), which reaches about 28 mA/cm2compared to JSC=30 mA/cm2under the Shockley-Queisser limit.[1,3]Currently, most efforts to improve CdTe-based solar cell efficiency have been trying to improve VOCinstead of the JSCbecause of the large deficiency in VOC. Some success has been achieved in increasing VOCby group V doping in CdTe.[4]However, it is still not clear whether such approach can obtain stable p-type absorbers because non-equilibrium doping process has to be used to improve the p-type doping.[5]On the other hand, one may increase the PCE by increasing JSC,which can be easily achieved by reducing the band gap of CdTe to harvest more long-wavelength sunlight. For example, if the band gap is reduced from 1.48 eV to 1.35 eV, the ideal JSCis increased from 30 mA/cm2to ~36 mA/cm2. Because VOCof the current champion CdTe solar cell is still much lower than the band gap,[6,7]mainly due to the low carrier density in p-type CdTe,reducing the band gap of CdTe slightly, especially lowering the conduction band energy,is not expected to cause much decrease of the VOC.

    Band gap tuning through alloying is widely used in semiconductors. Alloying CdTe at cation site could hardly achieve the reduction of the band gap, because the band gap always becomes wider when Cd is substituted by isovalent Zn,[8,9]and it is not desired to try alloying HgTe with CdTe given the toxicity of Hg. Therefore, one can only try to reduce the band gap of CdTe through alloying CdTe at anion site.The band gap of CdS and CdSe is 2.52 eV and 1.74 eV,respectively.[10]Although the band gap of CdS and CdSe are both larger than that of CdTe, alloying CdS or CdSe into CdTe can effectively reduce its band gap due to the large bowing effect.[11]Because the lattice mismatch between CdS and CdTe is large, the solubility of S into CdTe is low, which has been confirmed by previous theoretical and experimental studies.[11-13]Therefore, alloying CdTe with CdSe forming CdTe1-xSexseems to be the best choice to reduce the band gap effectively. Some of the recent experimental studies has already shown that diffusing CdSe into CdTe layer enables the increase of the JSC[2,14-16]However,so far,it is not clear how low the band gap of CdTe1-xSexcould be to maximize the increase of the JSC,although different experimental results regarding the CdTe1-xSexalloys have been reported.[17-21]

    Furthermore, high p-type doping in CdTe is usually required for its solar cell performance, because as a minority carrier device, its electron mobility is much higher than the hole mobility. Although the dominant intrinsic p-type defect in CdTe isVCd,the obtained hole carrier density is too low for a good solar cell because VCdhas high formation energy. Therefore, extrinsic p-type dopants, such as CuCd, is often used in commercial CdTe-based solar cells.[22-24]However, it is also not clear how the formation of CdTe1-xSexalloy affects the doping properties in CdTe.

    In this work, using the first principle hybrid-functional calculations,we find that the minimum of the band gap of the CdSexTe1-xalloy can approach 1.39 eV at about x=0.32,and most of the band gap reduction is through the lowering of the conduction band minimum. Our investigation of the doping property of the alloy reveals that the formation of the impurity CuCdexhibits dramatic bowing effect on the impurity formation energy,which can be utilized to improve the Voc,thus the PCE.The obtained band structure and the defect properties of the CdSexTe1-xalloy suggest that CdSexTe1-xalloy should be a better solar cell absorber than CdTe for the thin film solar cell application.

    2. Computational methods

    The first principle calculation in this work is performed by the VASP code.[25,26]PAW psuedopotentials with an energy cutoff of 350 eV were employed. PBEsol functional[27]with generalized gradient approximation (GGA) exchange correlation is used for the structure optimization of the bulk constitutes and alloys. All the atoms and the lattice vectors were fully relaxed until the force on each atom is less than 0.01 eV/?A. For the defect calculation, the lattice vectors of the optimized alloy are fixed with all the atoms inside the supercell relaxed. To calculate the band structures and the band offsets,we have employed the hybrid functional[28]consists of 32%exact Hartree-Fock exchange mixed with 68%PBE exchange with spin-orbit coupling(SOC)to determine the band gap. This specific functional is chosen so that the calculated band gap of both zinc blende CdTe and CdSe are close to experimental values. Using the proposed functional, the calculated band gaps of zinc blende CdTe and CdSe are 1.52 eV and 1.69 eV,respectively, compared to the experiment values of 1.48 eV and 1.74 eV at room temperature.[10]The calculation of the band offsets of the series of CdSexTe1-xalloys follows the method described in our previous study.[11]

    The CdSexTe1-xalloy is assumed to be random and is mimicked by the special quasirandom structures(SQS)[29]in the cubic supercell of 512 or 64 atoms,when x=0,0.25,0.5,0.75, and 1. The cubic supercell of 512 and 64 atoms are optimized with equivalent k-point sampling of 1×1×1 and 2×2×2,respectively. The averaged atomic correlation functions of the first neighbor pairs,triangles and tetrahedral of the SQS are the same as the perfect random alloys in the 512-atom supercells for all the mentioned concentrations. For the 64-atom supercell, the averaged atomic correlation functions of the first neighbored tetrahedral deviates from the perfect random alloys by 0.06 for x=0.25 and x=0.75 but is accurate enough for this case.The way to calculate the defect formation energy and the transition energy level is the same as stated in the previous work.[30-32]After testing with different functionals and supercells, the calculated formation energies are similar, and the calculated transition energy levels are converged to within 0.03 eV.Therefore, PBEsol functional and 64-atom supercells are adopted for the calculation of the doped alloys to reduce the computational cost.

    3. Results and discussion

    As described above, we have calculated the respective volume and mixing enthalpy ΔHmixof the random CdSexTe1-xalloys with Se composition x=0, 0.25, 0.5, 0.75, and 1 as shown in Figs. 1(a) and 1(b). The obtained lattice constant is 6.55 ?A and 6.13 ?A for pure CdTe and CdSe, respectively,in reasonably good agreement with experiment data.[10]As x increases, the volume of the CdSexTe1-xalloy decrease linearly due to the smaller size of Se, following the Vegard’s rule.[33]The ΔHmixof the random alloy is defined as the energy difference between the CdSexTe1-xalloy and the pure CdSe and CdTe with the corresponding ratio. The calculated ΔHmixcan be described quite well by the quadratic function Ωx(1-x),with the interaction parameter Ω =76.1 meV/f.u.Using the calculated value of Ω,the transition temperature is estimated to be 441 K, which is much lower than the experimental growth temperature,[16]therefore, it is easy to alloy CdSe into CdTe. In addition,the mixing enthalpy for x=0.25 is slightly lower than for x=0.75,reflecting the fact that it is easier to mix Se into CdTe than Te into CdSe.

    The band gaps of the random CdSexTe1-xalloy are conventionally fitted to the equation:

    where b is the bowing coefficient for the band gap. The hybrid functional calculated band gaps as function of the composition x are plotted in Fig.2(a),where the band gap bowing parameter b is found to be 0.725 eV and the band gap minimum is found at x=0.38.Given the slight difference of the calculated and experimental band gaps,the composition for the band gap minimum also slightly varies. Using the calculated bowing parameter b=0.725 and the experimental value of the band gaps at room temperature, the obtained band gap minimum of the random CdSexTe1-xalloy is predicted to be 1.39 eV at x=0.32,in agreement with a recent experiment result.[20]

    Fig. 1. The volume in units ?A3/f.u. (a) and the mixing enthalpy ΔHmix in units meV/f.u. (b)as the function of the composition x for CdSexTe1-x alloys. The red lines in panels(a)and(b)are fitted curves.

    Fig.2.(a)The calculated band gaps as a function of x for CdSexTe1-x alloys,(b)The band alignments of the CdSexTe1-x alloys as a function of x.

    The bowing of the band gaps for CdSexTe1-xalloys is caused by the bowing of both the band edges. As shown in Fig.2(b),the band offsets of the valence band minima(VBMs)and the conduction band minima(CBMs)between pure CdTe(x = 0) and CdSe (x = 1) are estimated to be 0.53 eV and 0.35 eV, respectively, consistent with the previous result.[11]Due to the strong intra valence band and intra conduction band coupling,the VBMs bow upwards and the CBMs bow downwards as x increases from 0 to 1,resulting the minimum band gap occurs at xmin. At this specific concentration, the CBM bows 0.09 eV more than the VBM does. The type-II band alignment between CdTe and CdSexTe1-xsuggests that a gradient CdSexTe1-xcell with Se-rich alloy in the front can help separate photogenerated electrons and holes, thus further improve the cell performance.

    We first investigate the formation of the impurity CuCdin CdSe0.375Te0.625alloy modeled by a 64-atom SQS containing all five type Se4-nTen(n=0-4) nearest neighbor motifs around each Cd atom. The formation energy of CuCdunder Cd-rich condition at each possible site are calculated and plotted in Fig. 3(a). The formation energies of CuCdat charge state 0 and-1 depend mostly on the first neighbored configuration, although the farther neighbor configuration also has some effect,leading to the scattered formation energy within a given first neighbored motif. The averaged formation energies of the defect in different first neighbor motifs are shown in Fig.3(b). It is obvious that the averaged formation energy increases as the number of Se atoms increase in its first neighbor.As more Se atoms surround the impurity in the first neighbor motif, the bonding orbitals of the impurity contains more Se 4p orbitals,which has lower orbital energy[Fig.2(b)],thus,to form CuCdstate, it will cost more energy to create a hole.[34]The formation energy of Cu-1Cd(Fig.3(b)top)follows the trend of its neutral state(Fig.3(b)bottom),indicating the transition energy level ε(0/-1) for CuCdis less sensitive to its local configuration compared to the neutral formation energy. In other word, the CuCddefect is more like a delocalized defect in CdSexTe1-xalloys.

    In alloys, the defect formation energy ΔHf(α, q, s, x) of defect α depends on charge state q, doping site s and the alloy composition x. To statistically investigate the defect property, it is more convenient to introduce an effective formation energy[35]ΔHeff(α,q,x,T),which is x-and T-dependent weighted average of the formation energy as given in Eq.(2),where kBis the Boltzmann constant, and N is the total number of the corresponding defect sites in alloys. To obtain the effective formation energy at charge states 0 and q, we could also define the effective transition energy level εeff(α,0/q,x,T)for defect α,which is the Fermi energy at which defect α at charge state 0 and q has the same effective formation energy as shown in Eq.(3).

    Considering the limit condition for the effective formation energy, equations(2)and(3)can be further deduced. At high temperature limit(T →∞),all the sites has equal weight,thus the effective formation energy ΔHeff(α,q,x,∞)is just the arithmetic average of the formation energies at all sites, so is the effective transition energy level εeff(α,0/q,x,∞).

    On the other hand,at low temperature limit(T →0),only the site with the lowest formation energy at charge q(sq0)is occupied under equilibrium condition,so the effective formation energy ΔHeff(α,q,x,0)is just equal to ΔHf(α,q,sq0,x). The effective transition energy level εeff(α,0/q,x,0),therefore,is the energy difference between ΔHf(α,0,s00,x)and ΔHf(α,q,sq0,x). It is noted that the s00andmay not be at the same site.

    The calculated effective formation energies for the defect CuCdat neutral and -1 states in CdSexTe1-xalloys (x=0,0.25,0.375,0.5,0.75,and 1)at the low temperature limit,the high temperature limit and a finite temperature T =600 K are shown in Figs. 4(a) and 4(b), respectively. It is interesting to see that the effective formation energy for CuCdimpurity exhibits a large bowing, i.e., they are much smaller than that of the composition averaged values in the pure CdTe and the pure CdSe. This is because, in addition to the electronic effect discussed above,the strain effect also plays an important role. The formation of CuCdcauses a compressive strain due to the smaller radius of Cu than Cd,thus the formation energy of CuCdwill be reduced as the local volume surround Cu is reduced.[36]This is the case when Cu is surrounded by Te and CuTe4cluster is compressed in the CdSexTe1-xalloy, so the formation energy of CuCdis much lower in the CdSexTe1-xalloy than in pure CdTe. The formation energy of CuCdalso decreases at the Se rich end when the CuTe4cluster is compressed most. At low temperature limit, Cu only occupy the lowest energy site(CuTe4cluster),so the bowing is the largest at the Se-rich side. At high temperature limit,the substitution occurs equally at all sites, so the effective formation energy change more smoothly as Se concentration increases. The formation of thegenerally follows the trend of Cu0Cdexcept that the bowing foris less dramatic than the bowing for CuCddue to the larger size of theimpurity.

    As expected, the effective transition energy level increases as Se concentration increases in the alloy. It is interesting to see in Fig. 4(c) that at a given composition the effective transition energy level decreases as the temperature increase. This is because at the low temperature,the site with lower formation energy is preferentially occupied, where the impurity energy level for Cu0Cdis usually high to easily creating the hole. Therefore, the transition energy level(0/-1)is relatively high. At the high temperature limit,all the defect sites have nearly equal occupation probability,so the averaged effective transition energy is reduced. However, the variation of the effective transition energy is small at a given composition (~0.04 eV), reflecting that CuCdis a relatively delocalized defect in CdSexTe1-xalloys.

    Fig. 4. The effective formation energies of Cu0Cd (a), Cu-1Cd (b) and the corresponding effective transition energy level (c) in CdSexTe1-x alloys(x=0, 0.25, 0.375, 0.5, 0.75, and 1) at the low temperature limit, the high temperature limit, and a finite temperature T =600 K. The Fermi level in panel(b)is set at 0. (d)The effective formation energy of CuCd as a function of the Fermi energy in the CdSe0.375Te0.625 alloy at the low temperature limit,the high temperature limit,and a finite temperature T =600 K.

    The formation energy of the Cu0Cddefect in the CdSe0.375Te0.625alloy range from 1.31 eV to 1.15 eV at Cd-rich limit with the transition energy level varying from 0.217 eV to 0.254 eV, depending on the synthetic temperature,as shown in Fig.4(d). The insensitivity of the transition energy level and the lower formation energy of CuCdin the CdSe0.375Te0.625alloy suggests Cu doping in the alloy is more effective than that in pure CdTe.

    4. Conclusion and perspectives

    In summary, using first-principles calculations, we show that alloying CdTe with CdSe to form CdSexTe1-xalloys could be an effective approach to increase the PCE of the CdTe based thin film solar cells.The CdSexTe1-xalloy has two merits compared to CdTe: (i) reduced band gap (estimated to be 1.39 eV at x=0.32)to improve long-wavelength light harvest,thus improving JSC,(ii)lower formation energy of the shallow defect CuCdto improve the p-type conductivity, thus the potential to improve the Voc.

    Acknowledgment

    We acknowledge the computational support from the Beijing Computational Science Research Center.

    中文欧美无线码| 乱码一卡2卡4卡精品| 国产精品爽爽va在线观看网站| 免费大片黄手机在线观看| 岛国毛片在线播放| 亚洲国产日韩一区二区| 夜夜爽夜夜爽视频| 男人舔奶头视频| 免费看光身美女| 丝袜喷水一区| 久久久久精品性色| 91久久精品国产一区二区成人| 成人影院久久| 精品久久久久久久久av| 五月玫瑰六月丁香| 午夜激情久久久久久久| 26uuu在线亚洲综合色| 黄色日韩在线| 免费av不卡在线播放| 在线观看av片永久免费下载| 男人舔奶头视频| 亚洲国产av新网站| 啦啦啦在线观看免费高清www| 国国产精品蜜臀av免费| 国产成人免费无遮挡视频| 狂野欧美激情性bbbbbb| 观看免费一级毛片| 成人免费观看视频高清| av.在线天堂| 国产一区二区在线观看日韩| 一级片'在线观看视频| 少妇裸体淫交视频免费看高清| 能在线免费看毛片的网站| 熟女人妻精品中文字幕| 18禁动态无遮挡网站| av视频免费观看在线观看| 国产在线视频一区二区| 午夜福利在线观看免费完整高清在| 久久久午夜欧美精品| 精品国产三级普通话版| 久久久国产一区二区| 中国国产av一级| 一区二区三区乱码不卡18| 国产亚洲一区二区精品| 高清毛片免费看| 联通29元200g的流量卡| 中文资源天堂在线| 大话2 男鬼变身卡| 少妇被粗大猛烈的视频| 亚洲自偷自拍三级| 久久韩国三级中文字幕| 日本一二三区视频观看| 男人狂女人下面高潮的视频| 又黄又爽又刺激的免费视频.| 日韩在线高清观看一区二区三区| 国产欧美亚洲国产| 欧美三级亚洲精品| 日韩中字成人| 大片电影免费在线观看免费| 在线观看国产h片| av在线播放精品| 人人妻人人添人人爽欧美一区卜 | 人人妻人人爽人人添夜夜欢视频 | 久久午夜福利片| 毛片一级片免费看久久久久| 日韩强制内射视频| 五月伊人婷婷丁香| 汤姆久久久久久久影院中文字幕| 这个男人来自地球电影免费观看 | 国产成人一区二区在线| 亚洲电影在线观看av| av在线观看视频网站免费| av在线蜜桃| 99精国产麻豆久久婷婷| 人人妻人人澡人人爽人人夜夜| 久久久久国产网址| 伊人久久精品亚洲午夜| 黄色一级大片看看| 日韩欧美 国产精品| 一级毛片 在线播放| 一级毛片久久久久久久久女| 高清不卡的av网站| 国产精品欧美亚洲77777| 亚洲精品国产成人久久av| 夫妻午夜视频| 成人18禁高潮啪啪吃奶动态图 | 久久精品久久久久久久性| 97超碰精品成人国产| av在线观看视频网站免费| 偷拍熟女少妇极品色| 久久久久国产精品人妻一区二区| 亚洲欧美日韩另类电影网站 | 大香蕉97超碰在线| av在线播放精品| 国产成人a∨麻豆精品| a 毛片基地| 国产精品久久久久久精品古装| 中文在线观看免费www的网站| 日韩成人伦理影院| 精品国产乱码久久久久久小说| 女人十人毛片免费观看3o分钟| 内地一区二区视频在线| av在线蜜桃| 久久久精品94久久精品| 纯流量卡能插随身wifi吗| 大香蕉久久网| 久久久国产一区二区| 国语对白做爰xxxⅹ性视频网站| 久久久久性生活片| 国产无遮挡羞羞视频在线观看| 蜜桃久久精品国产亚洲av| 国产深夜福利视频在线观看| 国产深夜福利视频在线观看| 久久久久久久亚洲中文字幕| 男女无遮挡免费网站观看| 久久久久国产网址| 亚洲av二区三区四区| 亚洲欧美日韩无卡精品| 高清不卡的av网站| 青春草视频在线免费观看| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| 伊人久久国产一区二区| 91午夜精品亚洲一区二区三区| 在线观看国产h片| 国产一级毛片在线| 天堂中文最新版在线下载| 国产亚洲欧美精品永久| 国产精品伦人一区二区| 岛国毛片在线播放| 欧美精品一区二区免费开放| 亚洲综合色惰| 中文精品一卡2卡3卡4更新| 啦啦啦在线观看免费高清www| 国产亚洲最大av| av在线播放精品| 亚洲四区av| 国产欧美日韩一区二区三区在线 | 秋霞在线观看毛片| .国产精品久久| 大码成人一级视频| 免费观看的影片在线观看| 中文字幕免费在线视频6| 成年女人在线观看亚洲视频| 久久这里有精品视频免费| 欧美人与善性xxx| 女人久久www免费人成看片| 你懂的网址亚洲精品在线观看| 久久久午夜欧美精品| 美女国产视频在线观看| 日韩成人av中文字幕在线观看| 男人狂女人下面高潮的视频| 在线看a的网站| 精品一区在线观看国产| 老熟女久久久| 亚洲精品亚洲一区二区| 久久午夜福利片| 一级毛片aaaaaa免费看小| 只有这里有精品99| 国产在视频线精品| 18+在线观看网站| 这个男人来自地球电影免费观看 | 亚洲丝袜综合中文字幕| 在线播放无遮挡| av福利片在线观看| 街头女战士在线观看网站| 18禁在线播放成人免费| 国产爽快片一区二区三区| 成年美女黄网站色视频大全免费 | 亚洲国产av新网站| 一级黄片播放器| 亚洲欧美日韩东京热| 中文字幕免费在线视频6| 成人免费观看视频高清| 观看av在线不卡| 一区二区三区四区激情视频| 国产亚洲av片在线观看秒播厂| 欧美人与善性xxx| 菩萨蛮人人尽说江南好唐韦庄| 高清欧美精品videossex| 老师上课跳d突然被开到最大视频| 黄色配什么色好看| 日本免费在线观看一区| 纵有疾风起免费观看全集完整版| 婷婷色综合大香蕉| 久久久久视频综合| 亚洲,一卡二卡三卡| 在线免费观看不下载黄p国产| 精品99又大又爽又粗少妇毛片| 日日摸夜夜添夜夜添av毛片| 日韩伦理黄色片| 国产精品久久久久成人av| 国产av一区二区精品久久 | av不卡在线播放| 国产精品人妻久久久久久| 久久久久精品久久久久真实原创| 亚洲精品成人av观看孕妇| 国产伦在线观看视频一区| 蜜臀久久99精品久久宅男| 国产精品一区二区性色av| 亚洲精品日韩在线中文字幕| 亚洲伊人久久精品综合| 色哟哟·www| 亚洲婷婷狠狠爱综合网| 亚洲成人一二三区av| 熟女av电影| 男女边摸边吃奶| 啦啦啦视频在线资源免费观看| 国产成人精品一,二区| 免费人妻精品一区二区三区视频| 男人和女人高潮做爰伦理| 亚洲国产精品999| www.色视频.com| 免费黄色在线免费观看| 免费av不卡在线播放| 91久久精品国产一区二区三区| 老熟女久久久| 一区在线观看完整版| av不卡在线播放| 亚洲久久久国产精品| 国产成人91sexporn| 春色校园在线视频观看| 涩涩av久久男人的天堂| 91精品一卡2卡3卡4卡| 久久久久久久久久久免费av| 亚洲一区二区三区欧美精品| 高清日韩中文字幕在线| av国产久精品久网站免费入址| 嘟嘟电影网在线观看| 久久毛片免费看一区二区三区| 边亲边吃奶的免费视频| 精品一区二区免费观看| 国产免费视频播放在线视频| 久久久久久人妻| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 亚洲精华国产精华液的使用体验| 777米奇影视久久| 国产精品久久久久久久久免| 纵有疾风起免费观看全集完整版| 97在线视频观看| 下体分泌物呈黄色| av在线app专区| kizo精华| 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| 日韩强制内射视频| 国产精品国产三级国产专区5o| 夜夜爽夜夜爽视频| 纵有疾风起免费观看全集完整版| 97在线视频观看| 亚洲图色成人| 日韩中字成人| 国产无遮挡羞羞视频在线观看| 欧美激情极品国产一区二区三区 | 久久这里有精品视频免费| 黄色配什么色好看| 欧美精品一区二区免费开放| 综合色丁香网| 青春草国产在线视频| 欧美日本视频| 日本与韩国留学比较| 免费观看的影片在线观看| 免费大片黄手机在线观看| 欧美少妇被猛烈插入视频| 精品亚洲乱码少妇综合久久| 日产精品乱码卡一卡2卡三| 欧美日韩视频高清一区二区三区二| 美女高潮的动态| 人人妻人人看人人澡| 精品国产一区二区三区久久久樱花 | 成年女人在线观看亚洲视频| 永久免费av网站大全| 一本色道久久久久久精品综合| 久久久久网色| 中国美白少妇内射xxxbb| 丰满人妻一区二区三区视频av| 香蕉精品网在线| 久久久亚洲精品成人影院| 国语对白做爰xxxⅹ性视频网站| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| 国产色婷婷99| 中国三级夫妇交换| 亚洲精品456在线播放app| av天堂中文字幕网| 久久久久久伊人网av| 王馨瑶露胸无遮挡在线观看| 美女高潮的动态| 黄色欧美视频在线观看| 人体艺术视频欧美日本| 搡女人真爽免费视频火全软件| 99久久综合免费| 国产久久久一区二区三区| 免费观看av网站的网址| 最近中文字幕高清免费大全6| 国产午夜精品一二区理论片| 2018国产大陆天天弄谢| 一个人免费看片子| 99热网站在线观看| 97在线人人人人妻| 最黄视频免费看| 夜夜骑夜夜射夜夜干| 国产欧美日韩精品一区二区| 亚洲怡红院男人天堂| 久久ye,这里只有精品| 欧美日韩亚洲高清精品| 日本黄色日本黄色录像| 日本午夜av视频| 黑人猛操日本美女一级片| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 亚洲精品aⅴ在线观看| a级毛片免费高清观看在线播放| 久久久久久久大尺度免费视频| av在线观看视频网站免费| 人妻少妇偷人精品九色| 纵有疾风起免费观看全集完整版| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 91aial.com中文字幕在线观看| 中国国产av一级| 97精品久久久久久久久久精品| 亚洲第一av免费看| 精品熟女少妇av免费看| 久久人人爽人人爽人人片va| 建设人人有责人人尽责人人享有的 | 国产精品一二三区在线看| 欧美日韩一区二区视频在线观看视频在线| av卡一久久| 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 国产精品不卡视频一区二区| 99九九线精品视频在线观看视频| tube8黄色片| 街头女战士在线观看网站| 久久6这里有精品| 高清在线视频一区二区三区| 国产男女超爽视频在线观看| 草草在线视频免费看| 亚洲综合精品二区| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| av在线播放精品| 中文字幕人妻熟人妻熟丝袜美| 人妻夜夜爽99麻豆av| 丰满少妇做爰视频| 欧美最新免费一区二区三区| 亚洲国产最新在线播放| 欧美日韩综合久久久久久| 久久国产亚洲av麻豆专区| 看免费成人av毛片| 欧美另类一区| 亚洲图色成人| 国产精品一区二区在线观看99| av又黄又爽大尺度在线免费看| 日本欧美国产在线视频| 亚洲精品一区蜜桃| 久久人妻熟女aⅴ| 国产精品三级大全| 如何舔出高潮| 精品国产露脸久久av麻豆| 亚洲国产欧美人成| 美女高潮的动态| 亚洲精品乱码久久久久久按摩| 国产人妻一区二区三区在| 高清午夜精品一区二区三区| 舔av片在线| av在线老鸭窝| 国产精品偷伦视频观看了| 啦啦啦视频在线资源免费观看| 精品久久久噜噜| 亚洲成人中文字幕在线播放| 女性被躁到高潮视频| 国产成人一区二区在线| 亚洲av成人精品一二三区| 午夜老司机福利剧场| 国产高清三级在线| 永久网站在线| 多毛熟女@视频| 极品教师在线视频| 男的添女的下面高潮视频| 国产黄片视频在线免费观看| 国产亚洲av片在线观看秒播厂| 久久99精品国语久久久| 国产精品熟女久久久久浪| 欧美三级亚洲精品| 卡戴珊不雅视频在线播放| 亚洲av中文字字幕乱码综合| 亚洲天堂av无毛| 最近手机中文字幕大全| 国产 一区 欧美 日韩| 中文字幕av成人在线电影| 国产精品女同一区二区软件| 久久精品国产a三级三级三级| 交换朋友夫妻互换小说| 深爱激情五月婷婷| 中文在线观看免费www的网站| 亚洲美女黄色视频免费看| 在现免费观看毛片| 22中文网久久字幕| 性色avwww在线观看| 人妻一区二区av| 一级毛片 在线播放| 国产成人aa在线观看| 亚洲最大成人中文| 欧美xxⅹ黑人| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 久久久久久久久久人人人人人人| 又粗又硬又长又爽又黄的视频| 国产v大片淫在线免费观看| 永久免费av网站大全| 国模一区二区三区四区视频| 人妻制服诱惑在线中文字幕| 亚洲高清免费不卡视频| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 夜夜看夜夜爽夜夜摸| 男人爽女人下面视频在线观看| 精品人妻偷拍中文字幕| 美女cb高潮喷水在线观看| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 大话2 男鬼变身卡| 春色校园在线视频观看| 成人亚洲精品一区在线观看 | 搡老乐熟女国产| 久久久久久人妻| 午夜福利在线观看免费完整高清在| 丰满迷人的少妇在线观看| 国产乱人偷精品视频| 亚洲精品视频女| 91久久精品国产一区二区成人| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 免费在线观看成人毛片| 中文字幕av成人在线电影| 亚洲四区av| 99视频精品全部免费 在线| 男人和女人高潮做爰伦理| 国产乱人视频| 久热久热在线精品观看| 亚洲综合色惰| 午夜免费观看性视频| 一级二级三级毛片免费看| 亚洲在久久综合| 六月丁香七月| 1000部很黄的大片| 国产视频内射| 草草在线视频免费看| 国产一区有黄有色的免费视频| 如何舔出高潮| 少妇被粗大猛烈的视频| tube8黄色片| 色哟哟·www| 人妻一区二区av| 青春草视频在线免费观看| 国产精品一区二区在线不卡| 大香蕉久久网| 国产精品熟女久久久久浪| 亚洲精品视频女| 美女视频免费永久观看网站| 国产成人91sexporn| 青春草视频在线免费观看| 我要看日韩黄色一级片| h日本视频在线播放| 久久国内精品自在自线图片| 久久精品人妻少妇| 午夜精品国产一区二区电影| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 高清黄色对白视频在线免费看 | av又黄又爽大尺度在线免费看| 色视频www国产| 一级毛片黄色毛片免费观看视频| 久久ye,这里只有精品| 国产 一区 欧美 日韩| 91aial.com中文字幕在线观看| av女优亚洲男人天堂| 欧美日韩综合久久久久久| 天天躁日日操中文字幕| av在线老鸭窝| 日本色播在线视频| 最近2019中文字幕mv第一页| 在线天堂最新版资源| 午夜福利影视在线免费观看| 男人舔奶头视频| 亚洲精品国产av蜜桃| 亚洲自偷自拍三级| 久久毛片免费看一区二区三区| 亚洲,一卡二卡三卡| 免费观看av网站的网址| 国产精品一二三区在线看| 国产精品秋霞免费鲁丝片| 联通29元200g的流量卡| 视频中文字幕在线观看| 日本免费在线观看一区| 建设人人有责人人尽责人人享有的 | 欧美国产精品一级二级三级 | 久久精品国产自在天天线| 伊人久久国产一区二区| 欧美另类一区| 三级经典国产精品| 水蜜桃什么品种好| 久久久久精品久久久久真实原创| 免费人成在线观看视频色| 精品少妇久久久久久888优播| 一级毛片黄色毛片免费观看视频| 久久久久性生活片| 99热网站在线观看| 日韩在线高清观看一区二区三区| 一区二区三区免费毛片| 男人舔奶头视频| 九九爱精品视频在线观看| 啦啦啦在线观看免费高清www| 亚洲三级黄色毛片| 亚洲精品色激情综合| 久久精品国产亚洲av天美| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 精品少妇黑人巨大在线播放| 国产精品av视频在线免费观看| 国产精品一区www在线观看| 国产白丝娇喘喷水9色精品| 成人影院久久| 人人妻人人看人人澡| 国产精品精品国产色婷婷| 亚洲国产精品999| 久久久久久久久大av| 亚洲精品国产av蜜桃| 亚洲精品日韩av片在线观看| 性色av一级| 男的添女的下面高潮视频| 国产美女午夜福利| 91午夜精品亚洲一区二区三区| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 能在线免费看毛片的网站| 久久鲁丝午夜福利片| 激情 狠狠 欧美| h视频一区二区三区| 日韩大片免费观看网站| 日韩电影二区| 日日摸夜夜添夜夜爱| 国产有黄有色有爽视频| 日韩亚洲欧美综合| 纵有疾风起免费观看全集完整版| 亚洲aⅴ乱码一区二区在线播放| 国产高清三级在线| av免费在线看不卡| 亚洲欧美日韩另类电影网站 | 精品国产一区二区三区久久久樱花 | 成人黄色视频免费在线看| 国产亚洲精品久久久com| 国产男女超爽视频在线观看| 久久99热这里只频精品6学生| 成人高潮视频无遮挡免费网站| av不卡在线播放| 免费观看a级毛片全部| 成人综合一区亚洲| 国产高清有码在线观看视频| av网站免费在线观看视频| 高清毛片免费看| 亚洲国产欧美人成| 国产精品99久久久久久久久| 啦啦啦视频在线资源免费观看| 久久久久久久久久成人| 国国产精品蜜臀av免费| 久热这里只有精品99| 国产亚洲91精品色在线| 涩涩av久久男人的天堂| 久久久久久伊人网av| 国产日韩欧美亚洲二区| 亚洲av.av天堂| 在线观看人妻少妇| 日本vs欧美在线观看视频 | 亚洲精品成人av观看孕妇| 欧美bdsm另类| a级一级毛片免费在线观看| 成人无遮挡网站| 国产精品无大码| 免费人成在线观看视频色| 欧美成人a在线观看| 蜜臀久久99精品久久宅男| 欧美 日韩 精品 国产| 亚洲美女视频黄频| videos熟女内射| www.色视频.com| 精品亚洲成国产av| 日韩中文字幕视频在线看片 | 国产精品秋霞免费鲁丝片| 蜜桃久久精品国产亚洲av| 亚洲欧美成人综合另类久久久| 尤物成人国产欧美一区二区三区| 亚洲怡红院男人天堂| 在线观看人妻少妇| 五月玫瑰六月丁香| 国产欧美日韩精品一区二区| av国产精品久久久久影院| 欧美精品人与动牲交sv欧美| av线在线观看网站| 国产精品三级大全| 国产精品99久久久久久久久| av卡一久久| 欧美xxⅹ黑人| 大香蕉97超碰在线| 男的添女的下面高潮视频| 日韩 亚洲 欧美在线| 亚洲av国产av综合av卡| 国产无遮挡羞羞视频在线观看| 欧美日韩在线观看h| 中文字幕制服av| 最近最新中文字幕免费大全7| 在线观看一区二区三区激情|