• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin transport in antiferromagnetic insulators?

    2019-08-16 01:17:20ZhiyongQiu邱志勇andDazhiHou侯達之
    Chinese Physics B 2019年8期

    Zhiyong Qiu(邱志勇) and Dazhi Hou(侯達之)

    1Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Materials Science and Engineering,Dalian University of Technology,Dalian 116023,China

    2WPI Advanced Institute for Materials Research,Tohoku University,Sendai 980-8577,Japan

    Keywords: spintronics,spin wave,antiferromagnetics,spin transport

    1. Introduction

    Spintronics emerged from discoveries in spin-dependent electron transport phenomena in solid-state devices. The significant event of spintronics was the discovery of giant magnetoresistance(GMR)independently by Albert Fert et al.[1]and Peter Gr¨unberg et al.;[2]this discovery is also considered the starting point of modem spintronics. Since then,spintronics,a new field of study at the intersection of magnetism,electronics and informatics,has gained considerable research attention in the science community.[3,4]In particular, since the beginning of the 21st century,spintronics has grown to be a separate field of research revolving around the fundamental term‘spin current’, in which transport phenomena of electrical spin and/or spin angular momentum have become central concepts. Extensive studies have been conducted on the use of spin current to replace charge current.[5]

    Developing a pure spin-based device whereby information would be processed by spin rather than by charge,[5]has been a core mission for spintronics. Therefore, generation,modulation, and detection of spin are the three central issues in this mission, for which many approaches and new physics have been proposed, discovered, and discussed.[6]However,obtaining real applicable spin devices is still difficult, and achieving efficient spin modulation is the urgent issue. This study aims to find approaches and material systems to simply and efficiently control spin transport.

    Basically, spin transport can be modulated by means of any spin-related interactions in a material, e.g., spin-spin,spin-phonon, and spin-photon interactions. As two sides of one entity,transport spins in a spin current can be used to probe spin-related properties of a material. Therefore,the spin modulation issue in a condensed-state system can be addressed by finding and fully understanding the interaction between spin and other degrees of freedom in a material.

    Antiferromagnetics has become a growing concern in the field of spintronics. Recently, we have focused on antiferromagnetic insulators (AFMIs). First, spin-related phenomena and appropriate materials for next-generation spin-based devices can be extensively studied because of large number of AFMIs. AFMIs shield the spin transport from most associated charge-related effects, thereby making it easier to study the fundamental physics of spin angle-momentum transport. The demonstration of spin transport through an antiferromagnetic material was first achieved by Wang et al.,[7]and subsequently similar results were obtained by other researchers[8,9]using samples with comparable structure. Spins were injected into the AFMI layer using yttrium iron garnet(YIG)and detected by the inverse spin Hall effect (ISHE)[10]in platinum on the other side. The most interesting result of research using this YIG/AFMI/Pt structure is that the detected spin signal is enhanced when the AFM layer is NiO and the thickness is around 1 nm,[7]which motivated the development of spin-related investigations in AFMI.

    We systematically studied spin transport phenomena in various AFMIs from the viewpoints of spin application and spin modulation. We found spin susceptibility and the N′eel vector to be the most important factors for spin transport in AFMIs. We summarize our experimental results and theoretical explanations. The remainder of this paper is organized as follows. Section 2 introduces the experimental set-up. Section 3 introduces our experimental results in three sub-sections, in which experiments related to spin susceptibility,[11]N′eel vector,[12]and spin colossal magnetoresistance (SCMR)[12]are described respectively. In the final section, we summarize our present work and discuss further challenges and potential applications.

    2. Experiment set-up

    Electron spin is not isolated but is correlated to many physical degrees of freedom,including spin itself. Therefore,other physical quantities can be probed via a spin-related interaction. Inelastic neutron scattering, for example, can be used to detect magnetic excitations in an antiferromagnetic system by spin-spin interaction between the neutrons’ spins and the local spins (Fig. 1(a)). In this process, the spin degree of freedom (rather than the particle of neutrons) is the only necessary element. This inspired our consideration that a pure spin-current may replace the neutron beam in this process, which in turn could reveal further related information(Fig. 1(b)). Two prerequisites are required to reproduce the inelastic neutron-scattering experiment in a spin-current way.First,a spin source is required to generate and inject spin currents into the target materials, which will replace the spins carried by a neutron beam. Second,an effective method is required to quantitatively detect spins passed through the target material.

    Fig. 1. (a) The concept of the inelastic scattering of polarized neutrons.(b) The concept of spin-current transmission through an antiferromagnetic system.

    Therefore, a trilayer device (Fig. 2) was developed, in which a target AFMI film was sandwiched between a magnetic YIG layer and a heavy metal Pt layer.In such a set-up,the single crystal YIG layer acts as the spin source layer,from which pure spin currents are injected into the adjacent target film.On the other side, Pt, the ISHE of which is relatively large,stable, and well-studied, detects the spin that passed through the target film. We set the trilayer device at the short termination of a short-end coplanar waveguide. By applying an external magnetic field and a microwave, ferromagnetic resonance (FMR) and a perpendicular temperature gradient are simultaneously excited in the YIG layer. Spin currents due to the spin-pumping effect and spin Seebeck effect (SSE)[13,14]are generated and injected into the adjacent target film. Then,the voltage signal due to the spin pumping and SSE can be observed simultaneously in a voltage spectrum from the Pt layer(Fig.2).

    Fig. 2. Set-up of experiment using trilayer spin-transport device. The trilayer sample, built of yttrium iron garnet (YIG), antiferromagnetic insulators (AFMIs), and platinum (Pt), is placed near the short termination of a short-end coplanar waveguide. Ferromagnetic resonance in YIG is excited by an applied microwave,while a temperature gradient is created in the perpendicular direction. As a result,the spin-pumping effect and spin Seebeck effect can be observed simultaneously.

    3. Experiment results and discussion

    3.1. Spin susceptibility

    Spin susceptibility is one of the key factors for spin transport in an antiferromagnetic system. The magnetic phase transition of an ultrathin antiferromagnetic film can be detected by a pure spin-current probe. The detection of such a phase transition in an ultrathin film is impossible without using large synchrotron facilities and a special x-ray magnetic linear dichroism spectrometer.[15-17]Our present method provides a way to probe such a phase transition by a bench-top experiment. Transport spins penetrating the antiferromagnetic film also carry the dynamic information about local spins due to spin-spin interactions. Potentially a method for magnetic re-search on ultrathin antiferromagnetic films,this approach will encourage further investigations.

    Figure 3(a) shows spin pumping signals observed in a YIG/CoO/Pt trilayer device at various temperatures. Voltage peaks appear at the magnetic fields of FMR conditions.The signs of the peak voltages VISHEare reversed by reversing the polarity of the applied magnetic fields, showing that the voltage peaks are due to ISHE induced by spin currents pumped from the YIG layer. We chose a typical insulating antiferromagnetic film,CoO,was elected to be the target material, not only because the N′eel temperature of bulk CoO is ~292 K[18,19]making our measurable temperature easily cover the antiferromagnetic transition region(given our physical property measurement system), but also because the excellent insulation property of CoO makes it easy to focus our research on the transport of pure spin currents.

    Figure 3(c) shows the temperature dependence of the peak voltage VISHEof YIG/CoO/Pt trilayer devices,compared with that of a YIG/Pt bilayer (Fig. 3(b)). Clearly, unconventional peak structures appear in the temperature dependent ISHE signal VISHEwhile using an YIG/CoO/Pt trilayer device (Fig. 3(c), whereas VISHEdecreases monotonically with decreasing temperature while using an YIG/Pt bilayer device(Fig. 3(b)). The temperature dependences of VISHEfor samples with various CoO layer thickness have the same peak features, while sharing a shape like the temperature dependences of spin susceptibility for CoO films.[20]Peak temperature decreases with decreasing CoO-layer thickness, which is consistent with the finite size effect of ultrathin antiferromagnetic films.[20]The peak temperature of VISHEis comparable to the N′eel temperature of the CoO layer determined by an x-ray magnetic linear dichroism measurement using a synchrotron facility.[11]All the results show that the VISHEpeak position indicates the N′eel temperature of the CoO layer and that the VISHEenhancement around the antiferromagnetic transition can be related to the CoO-film spin susceptibility enhancement.The CoO layers in our samples are well controlled single-crystal structures with [111]directions along the outplane direction. When the spin currents are excited by SSE or CoO is replaced by other antiferromagnets,such as NiO film,similar peak structures can be observed in the temperaturedependent voltage signal(Fig.3(d)).The N′eel temperature determined in YIG/AFMI/Pt trilayer devices should be the magnetic ordering temperature of AFMI layer under the effect of the magnetic YIG layer.[21]

    Fig.3. (a)Magnetic-field(H)dependence of electric voltage(V)generated in YIG/CoO(3 nm)/Pt trilayer film at various temperatures. VISHE denotes the voltage signal in the ferromagnetic resonance field. (b)Temperature dependence of VISHE for the YIG/Pt bilayer film. (c)Temperature dependence of VISHE for the YIG/CoO(3,6,10 nm)/Pt trilayer devices. (d)Temperature dependence of spin pumping signal VSP and spin Seebeck signal VSSE for the YIG/NiO(1.5 nm)/Pt trilayer devices.

    These results indicate that the spins are transported dominantly by incoherent thermal magnons rather than coherent N′eel dynamics in an antiferromagnetic system. At high temperatures, thermal magnons continuously evolve into thermal spin fluctuations,which would transport spin current above the N′eel temperature.Such thermal spin dynamics both below and above TNare well described by the bosonic auxiliary-particle method.Using this method,the spin conductivity in an antiferromagnetic insulator was shown to be maximized near its N′eel temperature, exactly like our VISHE.[22]Since VISHEmeasures spin moments transferred across magnetic insulators, its enhancement directly reflects that of the spin conductivity. The spin conductivity and the magnetic susceptibility are in principle different quantities. However, their temperature dependence is rather similar because both are dominated by spin excitations with zero momentum transfer. Therefore,VISHEin our experimental set-up is a good measure of spin dynamics and transition.

    3.2. N′eel vector

    Unlike electrical charge,spin has not only a definite magnitude but also has a ’direction’, which makes spin transport act with an intrinsic anisotropy. It is natural that magnetic anisotropy affects the spin transport in condensed-state matter. In an antiferromagnet system, the magnetic anisotropy is mainly defined by the N′eel vector. In Fig. 4(a), we show the crystal and spin structure of another antiferromagnetic insulator Cr2O3. In Cr2O3, there is only one easy axis pointing to the c axis of a hexagonal structure. We prepared trilayer samples,in which this time the middle target layer was Cr2O3(Fig. 4(b)). The crystal orientation of Cr2O3was carefully controlled to ensure that the c axis was perpendicular to the surface of the device. This means the N′eel vector direction can be different from the spin accumulate direction. SSE was used to inject spin currents from the YIG layer into the Cr2O3.Spin currents,passed through the Cr2O3layer,were converted into a measurable voltage in the Pt layer via the ISHE.

    Figures 4(c) and 4(d) show the magnetic-field dependence of the measured voltage V for a YIG/Pt device and a YIG/Cr2O3/Pt device. The YIG/Pt device was used as a control sample because the SSE has been extensively studied in this bilayer system. In both samples - with and without a Cr2O3layer-the sign of V reverses with the sign of H,and the shape of the V-H curves agree with the M-H (hysteresis)curve of the YIG film.[23-25]This confirms that the measured voltage V in the YIG/Cr2O3/Pt trilayer device is induced by the thermal spin currents generated from the YIG via SSE.

    A steep conductor-nonconductor transition for spin currents was observed in Cr2O3. Figure 4(e)shows the temperature dependence of the SSE voltage VSSEfor the YIG/Cr2O3/Pt trilayer device. Unexpectedly,the voltage exhibited an abrupt change of more than 100× at ~290 K. Above this temperature,a peak voltage appears at T =296 K.When T <282 K,VSSEis close to the noise floor(Fig.4(e)). By contrast,in the YIG/Pt bilayer device,VSSEvaries little across the same temperature region(Fig.4(f)).[26]The abrupt change ofVSSEin the YIG/Cr2O3/Pt marks the transition of the Cr2O3layer from a spin conductor to a spin nonconductor at T =296 K. This critical temperature coincides with the N′eel temperature of the Cr2O3thin film.[27,28]We found a similar spin conductornonconductor transition in a spin-pumping measurement for devices with the same YIG/Cr2O3/Pt structure as shown in Fig.4(g),demonstrating that the spin conductor-nonconductor transition in Cr2O3does not depend on the method of spincurrent generation. By using a control sample with a 5-nm Cu layer inserted between the YIG and Cr2O3layers (Fig. 4(h)),we also ruled out magnetic interface effects between the exchanged coupled YIG and Cr2O3(such as exchange bias,proximity effect or spin-reorientation transitions)as the cause of the large change in VSSE. By measuring the VSSEwhen using a Cr2O3/Pt bilayer sample, we also confirmed that VSSEcomes from the spin current generated in the YIG and transmitted through the Cr2O3rather than by spin currents originating within Cr2O3or from a Nernst effect in a magnetized Pt layer(Fig.4(h)).

    Fig. 4. (a) Schematic diagram of the crystal structure of antiferromagnetic Cr2O3. (b) Cross-sectional transmission-electron microscopy image of the YIG/Cr2O3/Pt trilayer device used in this research. Scale bar represents 5 nm. Easy axis c of Cr2O3 is in the film’s out-of-plane direction z. (c)External magnetic field HHH dependence of voltage signal V measured in YIG/Pt bilayer device at 300 K.(d)External magnetic field HHH dependence of voltage signal V measured in YIG/Cr2O3/Pt trilayer device at various temperatures.(e)Temperature dependence of spin Seebeck voltage VSSE at H=0.1 T for YIG/Cr2O3/Pt trilayer device. Inset shows concept of spin-current transmissivity measurement. (f)Temperature dependence of spin Seebeck voltage VSSE at H=0.1 T for a YIG/Pt bilayer device. (g)Temperature dependence of spin pumping signals VISHE for YIG/Cr2O3/Pt trilayer devices with various values of Cr2O3 layer thickness dCr2O3. (h)Temperature dependence of spin Seebeck voltage VSSE at H=0.1 T for YIG/Cu/Cr2O3/Pt and Cr2O3/Pt devices.

    The sharp transition observed at the N′eel temperature is attributed to the anisotropic transmissivity of the antiferromagnet in combination with the device geometry. Above the N′eel temperature, the paramagnetic moments of Cr2O3follow the external magnetic field and spin current is carried by the correlation of the paramagnetic moments as previously reported.[11,29,30]Below the N′eel temperature, in the ordered antiferromagnetic phase,only the spin component parallel (or antiparallel) to the N′eel vector can be carried by magnons.[31]Below the N′eel temperature, due to the strong uniaxial anisotropy,the N′eel vector of Cr2O3is pinned to the easy axis (out of plane in this work). When the YIG magnetization is in the plane of the film, the spins are polarized perpendicularly to the Cr2O3N′eel vector and the spin current cannot be transmitted into the Cr2O3. Also, the strength of the anisotropy in Cr2O3is almost independent of temperature,collapsing to zero only very close to the N′eel temperature.[32]Therefore, the Cr2O3is strongly aligned perpendicular to the plane for almost the entire temperature range and no spin current can be transmitted. The small temperature window where the anisotropy decreases corresponds with the increase in ISHE voltage.

    3.3. Spin colossal magnetoresistance

    Colossal magnetoresistance (CMR) refers to a large change in electrical conductivity induced by a magnetic field in the vicinity of a metal-insulator transition. CMR occurs due to a correlation between the magnetic structure and electron conduction and has inspired extensive studies for decades.[33,34]As mentioned above, we have confirmed the spin conductor-nonconductor transition in the Cr2O3antiferromagnetic system. If the spin conductivity of such a system can be tuned by an external magnetic field, we then can term a spin version of CMR effect(SCMR).We found that the spin conductivity of Cr2O3has an anisotropic response to magnetic fields in the critical region of the magnetic transition and that it depends on both the magnitude and direction of the magnetic field.

    Within the critical region, we measured the dependence of VSSEon the magnetic field magnitude |HHH| and angle θ in the z-y plane (Figs. 5(a) and 5(d)). At T = 296 K (in the spin conducting regime),VSSEshows a sinusoidal change with respect to θ. The magnitude of VSSEchanges only slightly from |HHH|=0.5 T to 2.5 T. Similar behavior is observed for T >296 K.However,at T <296 K,VSSE(θ)starts to deviate from this dependence. As the temperature decreases further,the character of VSSE(θ)changes completely,the shape changing to resemble rabbit ears in polar coordinates of θ. VSSEalso becomes strongly dependent on |HHH|. Thus,VSSE(θ, H)depends on both θ and|HHH|in the critical region.

    Fig. 5. (a) Out-of-plane spin Seebeck set-up for the YIG/Cr2O3/Pt trilayer device. Temperature gradient, ?T, is along the z direction, and an external magnetic field,HHH,is applied in the y-z plane. θ is the angle between ?T and HHH. (b)θ dependencies of VSSE at different temperatures for the YIG/Cr2O3/Pt trilayer device for various values of HHH. (c) External magnetic field HHH dependence of voltage signal V measured in the YIG/Cr2O3/Pt trilayer device for θ =20° at various temperatures. (d) Temperature dependence of VSSE for the YIG/Cr2O3/Pt trilayer device for different external magnetic fields HHH at θ =20°. Solid lines serve as visual guides. (e)Ts change ratio Ratio(Ts)@H due to external magnetic fields HHH as functions of temperature. Ratio(Ts)@H=(VSSE@H-VSSE@0.5 T)/VSSE@0.5 T. Ts refers to spin-current transmissivity in the Cr2O3 layer. Solid lines serve as visual guides.

    Figure 5(d) shows the temperature dependence of VSSE(|HHH|) at θ = 20°, where the |HHH| dependence is the most pronounced(Fig.5(c)). The temperature dependence of VSSEis qualitatively similar for all field strengths, featuring a sharp transition between the spin nonconductor and conductor regimes. However, the transition edge of VSSEshifts to lower temperatures for stronger magnetic fields. Taking|HHH|=0.5 T as a reference,~500%modulation of VSSEis achieved with a 2.5 T field(Fig.5(e)).

    As mentioned in the prior section, only the spin component parallel(or antiparallel)to the N′eel vector can be carried by magnons,therefore spin transport is blocked because of the strong uniaxial anisotropy. However,in the region just below the N′eel temperature,where the anisotropy is reducing,the enhanced susceptibility and reduced anisotropy in this small temperature window allows the N′eel vector to be slightly rotated.giving a finite in-the-plane y-component onto which the spin current is projected.[32,35]This makes spin conductivity able to be manipulated with an applied magnetic field: the SCMR.

    4. Summary

    From results of our investigating spin-transport phenomena in various AFMI thin films, we found that the spin susceptibility and the N′eel vector are the most important factors affecting the transport spin. We demonstrated that spin current can be a probe for detecting the antiferromagnetic phase transition in an ultrathin AFMI film. Furthermore, in a uniaxial AFMI Cr2O3, we discovered a spin conductor-nonconductor transition. Such a transition can be tuned efficiently by an external magnetic field;as it is reminiscent of the CMR in electronics,we call it the spin CMR(SCMR).

    Our results show that the AFMI system is a possible functional core for a spin device, by which a spin transistor may be achieved.[36]However, the mechanisms of spin transport through AFMI,which is indispensable for further design and development of such a device,has not been clarified. For example,the frequency dependence of the spin-pumping behavior near the N′eel temperature,[11]which implies that the observed phenomena reflects dynamical properties, is required for further theoretical understanding. Therefore,constructing a comprehensive theory for spin-current transport is an important outstanding task for the future development of the proposed spintronic device based on AFMI.

    日韩国内少妇激情av| 欧美xxⅹ黑人| 国产真实伦视频高清在线观看| 色婷婷av一区二区三区视频| 深爱激情五月婷婷| 99久国产av精品国产电影| 亚洲精品456在线播放app| 国产日韩欧美在线精品| 久久精品国产亚洲av涩爱| 91午夜精品亚洲一区二区三区| 少妇人妻久久综合中文| 一区二区三区乱码不卡18| 久久人人爽人人片av| 中文字幕久久专区| 国产爱豆传媒在线观看| 18禁裸乳无遮挡动漫免费视频| 嫩草影院入口| 直男gayav资源| 国产精品一区二区三区四区免费观看| 哪个播放器可以免费观看大片| 91久久精品国产一区二区三区| 老司机影院成人| 久久久久久久久久久丰满| 免费大片黄手机在线观看| 久久久午夜欧美精品| 国产精品免费大片| 麻豆乱淫一区二区| 国产精品99久久久久久久久| 免费人妻精品一区二区三区视频| 国产男人的电影天堂91| av女优亚洲男人天堂| 少妇精品久久久久久久| 人体艺术视频欧美日本| 一本色道久久久久久精品综合| 好男人视频免费观看在线| 免费黄网站久久成人精品| 国产在线视频一区二区| 亚洲天堂av无毛| 美女xxoo啪啪120秒动态图| 51国产日韩欧美| 国产色婷婷99| 日韩一本色道免费dvd| 国产成人精品婷婷| 国产中年淑女户外野战色| 久久这里有精品视频免费| 大话2 男鬼变身卡| 久久久精品94久久精品| 美女高潮的动态| 亚洲精华国产精华液的使用体验| 男人舔奶头视频| 亚洲国产欧美人成| 青春草国产在线视频| 亚洲精品一二三| 91午夜精品亚洲一区二区三区| 国产精品欧美亚洲77777| 简卡轻食公司| 久久亚洲国产成人精品v| 国产极品天堂在线| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 最黄视频免费看| 国精品久久久久久国模美| 国产v大片淫在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 成人高潮视频无遮挡免费网站| 免费看光身美女| 欧美日韩在线观看h| 偷拍熟女少妇极品色| 久久人人爽人人片av| av专区在线播放| 在线观看av片永久免费下载| 丰满乱子伦码专区| 亚洲精品456在线播放app| 人妻制服诱惑在线中文字幕| 国产成人免费观看mmmm| 精品一区二区三区视频在线| 男女无遮挡免费网站观看| 日韩欧美 国产精品| 久久久久视频综合| 午夜激情福利司机影院| 国产探花极品一区二区| 欧美日韩精品成人综合77777| 啦啦啦中文免费视频观看日本| 美女视频免费永久观看网站| 欧美最新免费一区二区三区| 亚洲av福利一区| 久久久色成人| 亚洲欧美成人精品一区二区| 日韩中字成人| 高清欧美精品videossex| 一个人免费看片子| 2022亚洲国产成人精品| 日本av手机在线免费观看| 国产精品蜜桃在线观看| 三级经典国产精品| 亚洲国产精品专区欧美| 国产人妻一区二区三区在| 另类亚洲欧美激情| 日韩中字成人| 一区二区三区免费毛片| 日韩电影二区| 精华霜和精华液先用哪个| 欧美zozozo另类| 内地一区二区视频在线| 男女免费视频国产| 久久久精品94久久精品| 亚洲人成网站在线播| 亚洲国产日韩一区二区| 亚洲自偷自拍三级| 国产乱来视频区| 亚洲,欧美,日韩| 在线观看一区二区三区| 国产老妇伦熟女老妇高清| 久久婷婷青草| 亚洲天堂av无毛| 国产精品久久久久久av不卡| av在线app专区| av在线蜜桃| 黑人猛操日本美女一级片| 建设人人有责人人尽责人人享有的 | 91狼人影院| 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| 成人黄色视频免费在线看| 欧美zozozo另类| 涩涩av久久男人的天堂| 亚洲电影在线观看av| 午夜激情久久久久久久| 免费黄色在线免费观看| 国产精品.久久久| 色吧在线观看| 韩国av在线不卡| 99re6热这里在线精品视频| 欧美bdsm另类| 国产精品久久久久久精品电影小说 | 久久精品久久久久久噜噜老黄| 亚洲婷婷狠狠爱综合网| 国产淫语在线视频| av国产免费在线观看| 亚洲婷婷狠狠爱综合网| 免费看不卡的av| 亚洲熟女精品中文字幕| 99久国产av精品国产电影| 久久毛片免费看一区二区三区| 国产一区二区三区av在线| 久久青草综合色| 国产大屁股一区二区在线视频| av在线蜜桃| 久久影院123| 女的被弄到高潮叫床怎么办| 99视频精品全部免费 在线| 午夜激情久久久久久久| 国产视频内射| 全区人妻精品视频| av一本久久久久| 亚洲精品456在线播放app| 成人亚洲欧美一区二区av| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 国产探花极品一区二区| 九色成人免费人妻av| 国产中年淑女户外野战色| 少妇高潮的动态图| 国产视频首页在线观看| av在线app专区| 久久久亚洲精品成人影院| av国产精品久久久久影院| 丝袜喷水一区| 日本av免费视频播放| 精品久久久久久久末码| 国产又色又爽无遮挡免| 久久久久久伊人网av| 日韩 亚洲 欧美在线| 久久精品国产亚洲av涩爱| 色吧在线观看| 特大巨黑吊av在线直播| 日韩av不卡免费在线播放| 国产av国产精品国产| 在线观看一区二区三区激情| 免费观看a级毛片全部| 欧美日韩国产mv在线观看视频 | 女人十人毛片免费观看3o分钟| 99热这里只有是精品50| 午夜福利在线在线| 一本一本综合久久| 内射极品少妇av片p| 爱豆传媒免费全集在线观看| 99热全是精品| 亚洲欧美精品自产自拍| 91精品国产国语对白视频| 青春草视频在线免费观看| 日本午夜av视频| 夜夜骑夜夜射夜夜干| 国产精品国产av在线观看| 欧美bdsm另类| 国产精品一二三区在线看| 网址你懂的国产日韩在线| 国产亚洲欧美精品永久| 丝瓜视频免费看黄片| 欧美精品一区二区大全| 久久久久久久精品精品| 少妇精品久久久久久久| 精品国产三级普通话版| 欧美3d第一页| av网站免费在线观看视频| 久久青草综合色| 精品一区二区三卡| 久久久成人免费电影| 乱系列少妇在线播放| 国产精品.久久久| 97在线视频观看| 免费黄网站久久成人精品| 亚洲美女视频黄频| 三级国产精品片| 波野结衣二区三区在线| 国产精品女同一区二区软件| 国产免费又黄又爽又色| 五月伊人婷婷丁香| 麻豆精品久久久久久蜜桃| 久久国产精品大桥未久av | 51国产日韩欧美| 伦理电影大哥的女人| 国产精品欧美亚洲77777| 国产深夜福利视频在线观看| 哪个播放器可以免费观看大片| 热99国产精品久久久久久7| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 婷婷色av中文字幕| 日韩一本色道免费dvd| 亚洲婷婷狠狠爱综合网| 日本黄色日本黄色录像| 91久久精品国产一区二区三区| 精品人妻一区二区三区麻豆| 日本av免费视频播放| 在现免费观看毛片| 国产精品一区二区三区四区免费观看| 欧美一区二区亚洲| 午夜免费观看性视频| 免费播放大片免费观看视频在线观看| 国产乱来视频区| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜爱| 久久婷婷青草| 精品午夜福利在线看| 亚洲成人一二三区av| 国产女主播在线喷水免费视频网站| 国产高清有码在线观看视频| 91精品一卡2卡3卡4卡| 我的女老师完整版在线观看| 久久久久久久国产电影| 久久99蜜桃精品久久| 亚洲四区av| 亚洲最大成人中文| 国产精品精品国产色婷婷| 免费黄频网站在线观看国产| 日韩不卡一区二区三区视频在线| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 春色校园在线视频观看| 人人妻人人澡人人爽人人夜夜| 丰满乱子伦码专区| 在线观看免费视频网站a站| 美女主播在线视频| 婷婷色av中文字幕| 这个男人来自地球电影免费观看 | 视频中文字幕在线观看| 久久亚洲国产成人精品v| 中文精品一卡2卡3卡4更新| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 久久久久网色| 国产av码专区亚洲av| 女人十人毛片免费观看3o分钟| 久久久欧美国产精品| 丰满人妻一区二区三区视频av| 91精品国产九色| 22中文网久久字幕| 久久久色成人| 午夜福利在线观看免费完整高清在| 卡戴珊不雅视频在线播放| 人人妻人人看人人澡| 大码成人一级视频| av在线老鸭窝| 色婷婷av一区二区三区视频| 直男gayav资源| 一区在线观看完整版| 亚洲欧美日韩另类电影网站 | 日日摸夜夜添夜夜爱| 尾随美女入室| 噜噜噜噜噜久久久久久91| 成人综合一区亚洲| 日韩中文字幕视频在线看片 | 男女边吃奶边做爰视频| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看| 久久久久久久国产电影| 日韩伦理黄色片| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 国模一区二区三区四区视频| 波野结衣二区三区在线| 99久久综合免费| 日韩国内少妇激情av| 搡老乐熟女国产| 欧美97在线视频| 亚洲av男天堂| 亚洲精品一区蜜桃| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 久久国产乱子免费精品| 国产69精品久久久久777片| 男的添女的下面高潮视频| 精品久久久精品久久久| 大香蕉久久网| 一区二区三区四区激情视频| 不卡视频在线观看欧美| 精品一区在线观看国产| 午夜视频国产福利| 男女边吃奶边做爰视频| 少妇的逼水好多| 亚洲av福利一区| 国产亚洲av片在线观看秒播厂| 黄片wwwwww| 婷婷色av中文字幕| 亚洲熟女精品中文字幕| 极品教师在线视频| 久久国产乱子免费精品| 特大巨黑吊av在线直播| 久久精品久久久久久噜噜老黄| 国产一级毛片在线| 日韩中字成人| 熟妇人妻不卡中文字幕| 又大又黄又爽视频免费| 中文字幕免费在线视频6| 国产午夜精品久久久久久一区二区三区| 狂野欧美白嫩少妇大欣赏| 欧美精品一区二区大全| 最近2019中文字幕mv第一页| 这个男人来自地球电影免费观看 | 亚洲va在线va天堂va国产| 亚洲中文av在线| 亚洲,一卡二卡三卡| 伊人久久精品亚洲午夜| 久久久久久久精品精品| 岛国毛片在线播放| 国产免费视频播放在线视频| .国产精品久久| 天天躁日日操中文字幕| h日本视频在线播放| 啦啦啦视频在线资源免费观看| 亚洲最大成人中文| 91精品伊人久久大香线蕉| 亚洲欧美日韩东京热| 嫩草影院新地址| 精品少妇黑人巨大在线播放| 色视频在线一区二区三区| 欧美激情国产日韩精品一区| 国产av国产精品国产| 久久久久国产网址| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产网址| 嫩草影院入口| 熟女电影av网| 久久久久网色| 日韩av在线免费看完整版不卡| 亚洲国产精品成人久久小说| 22中文网久久字幕| 久久人人爽人人片av| 日日啪夜夜撸| 热re99久久精品国产66热6| 午夜日本视频在线| 人妻系列 视频| av在线观看视频网站免费| 亚洲欧美日韩另类电影网站 | 色婷婷久久久亚洲欧美| 国产爱豆传媒在线观看| 日韩一区二区三区影片| av免费观看日本| 免费看av在线观看网站| 男女下面进入的视频免费午夜| 午夜激情久久久久久久| 国产精品成人在线| 婷婷色av中文字幕| 视频区图区小说| 99久久人妻综合| 亚洲成人中文字幕在线播放| 午夜精品国产一区二区电影| 草草在线视频免费看| 内地一区二区视频在线| 我的女老师完整版在线观看| 中文字幕久久专区| 国产精品爽爽va在线观看网站| 熟女av电影| 天堂8中文在线网| 久久久久久久久久成人| 91精品国产国语对白视频| 人人妻人人澡人人爽人人夜夜| 亚洲国产最新在线播放| 身体一侧抽搐| 亚洲欧美一区二区三区国产| 亚洲美女黄色视频免费看| 嘟嘟电影网在线观看| 亚洲天堂av无毛| 国产91av在线免费观看| 18禁裸乳无遮挡动漫免费视频| 国产成人精品一,二区| 在线观看三级黄色| 人妻 亚洲 视频| 亚洲精品国产成人久久av| 18+在线观看网站| 国产精品一区二区在线不卡| 内射极品少妇av片p| 日日摸夜夜添夜夜爱| 免费av不卡在线播放| 97热精品久久久久久| 国产av精品麻豆| 热99国产精品久久久久久7| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区国产| 国产精品无大码| 狠狠精品人妻久久久久久综合| 精品国产三级普通话版| 99热这里只有是精品50| av一本久久久久| 人妻一区二区av| 国产精品免费大片| 亚洲第一av免费看| 免费久久久久久久精品成人欧美视频 | tube8黄色片| 中文精品一卡2卡3卡4更新| 日韩欧美一区视频在线观看 | 国产精品一二三区在线看| 日本午夜av视频| 亚洲图色成人| 最近最新中文字幕免费大全7| 成人综合一区亚洲| 亚洲国产精品一区三区| 性高湖久久久久久久久免费观看| 国产精品久久久久成人av| 国产永久视频网站| 欧美3d第一页| 精品一区二区免费观看| 免费少妇av软件| 91久久精品国产一区二区三区| 久久久久久久久久成人| 欧美日韩国产mv在线观看视频 | 成人二区视频| 久久久久久久久大av| 美女中出高潮动态图| 在线观看国产h片| 国产欧美亚洲国产| 国产亚洲精品久久久com| 日韩一本色道免费dvd| 亚洲成人一二三区av| 日本wwww免费看| 一个人免费看片子| 噜噜噜噜噜久久久久久91| 久久鲁丝午夜福利片| 美女内射精品一级片tv| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 日韩伦理黄色片| 又黄又爽又刺激的免费视频.| 亚洲内射少妇av| 91狼人影院| 亚洲成人手机| 中文天堂在线官网| 国产精品久久久久久久久免| 中国三级夫妇交换| 成人午夜精彩视频在线观看| 少妇裸体淫交视频免费看高清| 亚洲中文av在线| 毛片女人毛片| 午夜福利在线在线| 直男gayav资源| 少妇的逼好多水| 亚洲在久久综合| 一级毛片我不卡| 22中文网久久字幕| 18禁动态无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 99久久综合免费| 夫妻性生交免费视频一级片| 高清欧美精品videossex| 亚洲一区二区三区欧美精品| 熟妇人妻不卡中文字幕| 免费久久久久久久精品成人欧美视频 | 日日啪夜夜撸| 国产深夜福利视频在线观看| 亚洲国产欧美人成| 精品酒店卫生间| 在现免费观看毛片| 深夜a级毛片| 老师上课跳d突然被开到最大视频| 黑人猛操日本美女一级片| 成人高潮视频无遮挡免费网站| 春色校园在线视频观看| 日本与韩国留学比较| 欧美成人午夜免费资源| 亚洲欧洲日产国产| 女人久久www免费人成看片| 日韩亚洲欧美综合| 亚洲熟女精品中文字幕| 国产日韩欧美在线精品| 色视频在线一区二区三区| 在线天堂最新版资源| 99热全是精品| 久久久久久伊人网av| 人人妻人人看人人澡| 毛片一级片免费看久久久久| 午夜福利高清视频| 女的被弄到高潮叫床怎么办| 大片电影免费在线观看免费| 亚洲久久久国产精品| 夜夜骑夜夜射夜夜干| 亚洲精品自拍成人| 免费黄网站久久成人精品| 一边亲一边摸免费视频| 亚洲精品一二三| 偷拍熟女少妇极品色| 国产成人freesex在线| 亚洲精品国产av成人精品| 国产乱人视频| 99热这里只有是精品在线观看| 街头女战士在线观看网站| 日日啪夜夜爽| 男女国产视频网站| 久久久久久久久久人人人人人人| 国产精品99久久99久久久不卡 | 亚洲精品乱码久久久久久按摩| 欧美高清性xxxxhd video| 久久久国产一区二区| 看免费成人av毛片| 丝袜脚勾引网站| 又大又黄又爽视频免费| 小蜜桃在线观看免费完整版高清| 国产成人免费无遮挡视频| 我的老师免费观看完整版| 国产无遮挡羞羞视频在线观看| 日日撸夜夜添| 麻豆成人av视频| 国内精品宾馆在线| av国产免费在线观看| 国产淫语在线视频| 美女福利国产在线 | 一本久久精品| 亚洲真实伦在线观看| 午夜精品国产一区二区电影| 国产精品欧美亚洲77777| 波野结衣二区三区在线| 国产乱来视频区| 国产精品国产三级国产av玫瑰| 尾随美女入室| 热99国产精品久久久久久7| 一区在线观看完整版| 日韩电影二区| 欧美成人a在线观看| 日日啪夜夜撸| 国产精品麻豆人妻色哟哟久久| 日韩强制内射视频| 国产男女超爽视频在线观看| 国产精品一二三区在线看| 亚州av有码| 看免费成人av毛片| 最近2019中文字幕mv第一页| 美女国产视频在线观看| 欧美+日韩+精品| 国产片特级美女逼逼视频| 国产黄色免费在线视频| 国产亚洲av片在线观看秒播厂| 在线观看美女被高潮喷水网站| 在线看a的网站| 欧美成人精品欧美一级黄| 午夜激情久久久久久久| 国产白丝娇喘喷水9色精品| 少妇熟女欧美另类| 高清日韩中文字幕在线| 色5月婷婷丁香| 国内精品宾馆在线| 最新中文字幕久久久久| 免费人成在线观看视频色| 美女内射精品一级片tv| 街头女战士在线观看网站| 夜夜爽夜夜爽视频| av卡一久久| 国产黄色免费在线视频| 国产高清三级在线| 亚洲aⅴ乱码一区二区在线播放| 午夜日本视频在线| 少妇精品久久久久久久| 女人十人毛片免费观看3o分钟| 国产黄色免费在线视频| 99热这里只有是精品50| 卡戴珊不雅视频在线播放| 蜜臀久久99精品久久宅男| 国产成人精品一,二区| 国产成人a∨麻豆精品| 在线观看免费日韩欧美大片 | 91精品国产国语对白视频| 午夜日本视频在线| 久久久久久久亚洲中文字幕| 天堂8中文在线网| 男的添女的下面高潮视频| av在线app专区| av国产精品久久久久影院| 午夜日本视频在线| 国产精品麻豆人妻色哟哟久久| 久久国产亚洲av麻豆专区| 久久热精品热| tube8黄色片| 91精品国产国语对白视频| 亚洲精品,欧美精品|