• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于金屬有機(jī)骨架前驅(qū)體制備納米磷化鎳催化劑

    2019-08-08 06:53:14朱良奎付煜榮符小文李海霞
    關(guān)鍵詞:藥學(xué)院磷化吉林大學(xué)

    徐 丹 朱良奎 周 丹 付煜榮 符小文 陳 榕 李海霞

    (1海南醫(yī)學(xué)院藥學(xué)院,海口 571199)

    (2吉林大學(xué)無機(jī)合成與制備化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,吉林 130012)

    0 Introduction

    In the past few decades,the production of environmentally friendly energy has become a critical concern due to increasing environmental pollution and energy demand[1-3].Hydrogen is considered to be one of the most ideal and cleanest energy sources[4].It is considered to be the main energy carrier due to its high energy storage,ideal combustion efficiency and non-toxicity.Water electrolysis is an alternative process and a desirable way to produce molecular hydrogen,but both half-reactions of water splitting,namely,the oxygen evolution reaction (OER)and the hydrogen evolution reaction (HER),still remain technical challenges[5].Although,platinum (Pt)-based materials are most active and stable catalysts for HER,but their prohibitive cost,scarce reserves,and poor durability significantly prohibit widespread application in energy conversion[6-7].It is therefore highly imperative and challenging to develop nonprecious metal electrocatalysts for HER to achieve efficient overall water splitting.

    At present,metal phosphide (TMP)catalysts composed of transition elements such as Fe,Co,Ni and Mo are the alternative to precious metal catalysts and achieve high efficiency of HER catalytic activity[8-12].In particular,nickel phosphides (Ni3P,Ni2P,Ni5P2,Ni12P5and Ni5P4)of different phases exhibit promising HER catalytic performance in strongly acidic electrolytes.Schaak′s research group synthesized nanostructured Ni2P with a high accessible surface area and a high density of exposed (001)facets.The active Ni2P nanoparticles investigated for electrocatalytic activity and stability for the HER in acidic solutions,which had the highest HER activity among the non-noble metals at that time[13].Dismukes′s group reported microcrystalline Ni3P as a non-precious metal electrocatalyst for hydrogen evolution reaction (HER),whose catalytic activity was second only to the activity of Pt[14].

    Metal-organic frameworks (MOFs),with high porosity,large surface areas and inherent presence of heteroatoms have been proved to be ideal sacrificial templates for fabricating electrocatalyst by changing the thermal conditions in the different atmosphere[15-17].Liu′s group prepared carbon-cobalt hybrid materials through the thermolysis of the Co-ZIF precursor at 750℃which has been explored as a good catalyst for oxygen reduction reaction (ORR)[18].Dong′s group prepared porous CoP concave polyhedrons (CoPCPHs)via low-temperature multi-step calcination using Co-MOF (ZIF-67)polyhedrons as the precursor[19].The eletrocatalyst nanomaterials prepared by this novel MOF-templated route possessed many advantages such as large internal surface area,high crystallinity,tailorable porous structure and more catalytic centers.More and more researchers focuse on fabricating desired catalysts derived from MOFs precursors.

    In this work,Ni-based metal-organic framework(Ni-MOF)as a precursor is used to carbonize and synthesize a nickel-carbon composite (Ni@C)under a nitrogen atmosphere at 500℃.Next,the nickel phosphide nanocatalysts are obtained by phosphorization of Ni@C composite using phosphorus vapor without complicated chemical reactions and post-treatment steps involved.The MOF-derived crystalline Ni1P1-500 nanostructure guarantees the highly exposed active sites,and the charge properties of Ni and P contributes to a consecutive electrical conductivity,which is crucial for electron transfer.As a result,the Ni1P1-500 nanocatalyst exhibited excellent HER activity in acid solution with overpotentials of 178 mV at 10 mA·cm-2.More importantly,this facile two-step synthetic method reported here has the characteristics of simple synthesis and large-scale production,can be extended to other MOFs to synthesize metal phosphides.

    1 Experimental

    1.1 Synthesis

    1.1.1 Synthesis of 1,4,5,8-naphthalenetetracarboxylic acid (NTCA)

    1,4,5,8-Naphthalenetetracarboxylic dianhydride(NTCDA,1 mmol)was dissolved in NaOH (2 mol·L-1,50 mL)solution and stirred at 60~70 ℃.After hydrolyzing for 1 h,the solution was cooled to room temperature,and 1 mol·L-1HCl solution wasadded dropwise to adjust the pH value to 5~6.Then the precipitate was filtered and dried at room temperature[20].

    1.1.2 Synthesis of Ni-MOF

    Ni(NO3)2·6H2O (0.116 g,0.4 mmol)was dissolved in a mixture solvent of 1.4 mL of dimethylformamide(DMF),1.4 mL of ethanol,1.4 mL of water.Then NTCA (0.015 g,0.05 mmol)was added into the above solvent under sonicating.After uniformly dispersing,the resulting mixture was transferred into a Teflon autoclave and placed in an oven at 100℃for 3 d.After cooling,the product was suction filtered under reduced pressure,washed successively with distilled water,DMF and ethanol,and then dried at room temperature.The as-prepared powders were called as Ni-MOF.

    1.1.3 Synthesis of nickel phosphide nanocatalyst

    A certain amount of Ni-MOF powder was placed in a quartz crucible,and then the crucible was placed in the middle part of the tube furnace[21].The powder was carbonized under the protection of N2.The heating temperature was raised to 500℃at a heating rate of 5℃·min-1and maintained for 3 h.The black powder named as Ni@C.Ni@C and red phosphorus were ground and mixed in a mortar according to the mass ratio in Table 1,and carbonized in a tube furnace.At this time,the heating rate was changed to 10℃·min-1,and the holding time was changed to 1 h to obtain different compositions of nickel phosphide sample.The resultant samples were called Ni x P y-T (x∶y represents the mass ratio of Ni@C to red phosphorus;T represents pyrolysis temperature).

    Table 1 Experimental conditions and electrocatalytic performance of nickel phosphide sam ples

    1.2 Characterization methods

    Powder X-ray diffraction (PXRD)was carried out using an XRD-6000 powder X-ray diffractometer manufactured by Shimadzu Corporation of Japan.The PXRDwas performed with an accelerating voltage of 40 kV and a tube current of 30 mA,and Cu Kαradiation(λ=0.154 18 nm)in the 2θrange of 4°~80°with a step size of 0.02°and a time of 4 second per step.The transmission electron microscope (TEM)images were performed on a JEM-2100 with a field emission gun operating at 200 kV,manufactured by JEOL Ltd.The TEM image was recorded by an A Gatan 794 CCD camera.An X-ray photoelectron spectroscopy (XPS)wasmeasured by an ESCALAB 250 (Thermo VGUSA)multi-function surface analyzer.The gas used in the carbonization and phosphating process was high purity nitrogen.

    1.3 Electrochem ical test

    5 mg nickel phosphide sample was dispersed in a mixture of 1 mL of distilled water and ethanol (3∶1,V/V),and then 10 μL of 5%(w/w)Nafion was added.The mixture was ultrasonicated for 30 min to form a uniform ink dispersion.5μL of the mixture was drop-casted onto the glassy carbon electrode with the diameter of 3 mm for the electrochemical measurements.The test procedure was performed on an electrochemical workstation using a typical three-electrode mode:the Pt wire was the counter electrode,the Ag/AgCl electrode(saturated KCl)was the reference electrode,the glassy carbon loaded with the nickel phosphide catalyst was the working electrode,and the electrolyte was a 0.5 mol·L-1H2SO4solution.Before the electrochemical test,in order to eliminate the influence of dissolved O2on the catalytic reaction,Ar was first introduced until a stable CV cycle curve was obtained at a scanning rate of 50 mV·s-1,and then high-purity H2was introduced until a stable LSV curve was obtained at 5 mV·s-1.The LSV curve was obtained by a potential interval of 0.01 to-0.7 V (corrected under RHE)with a scan speed of 2 mV·s-1.The low scan rate overcomes the effect of material capacity on the catalytic performance.All potentials measured were converted to the reversible hydrogen electrode (RHE)scale according to the Nernst equation:in a 0.5 mol·L-1H2SO4solution,E (vs RHE)=E(Ag/AgCl)+(0.197+0.059pH).

    2 Results and discussion

    2.1 General properties of the Ni-MOF

    Nickel nitrate (Ni(NO3)2)and NTCA were selfassembled to form a Ni-MOF at a solvothermal temperature of 100℃.The PXRD pattern of the crystalline powder was shown in Fig.1.The position of the diffraction peak and the relative intensity of diffraction were consistent with the Ni-MOF pattern reported in the literature[22],indicating that the Ni-MOF crystal was successfully synthesized.

    Fig.1 PXRD patterns of Ni-MOF

    2.2 General properties of the Ni@C

    The synthesized Ni-MOF precursor underwent pyrolysis at 500℃in N2atmosphere for 3 h to afford Ni@C composites[23].One low broad peak centered at 2θ=25°assigned to amorphous carbon[24],the other three prominent peaks near at 2θ=44.3°,51.6°and 76.2°assigned to the (111),(200)and (220)crystalline planes of cubic-phased Ni (PDF No.04-0850),respectively(Fig.2A).TEM showed that the Ni nanoparticles were uniformly dispersed in the carbon matrix with almost no agglomeration (Fig.2B).

    Fig.2 PXRD patterns (A)and TEM image (B)of Ni@C

    2.3 PXRD and TEM analysis of nickel phosphide

    Fig.3 PXRD patterns of Ni2P phase(PDF No.03-065-3544)(a),Ni1P1-300 (b),Ni5P4 (PDF No.03-065-2075)(c),Ni1P1-500 (d),Ni12P5 phase (PDF No.03-065-1623)(e),Ni1P2-700 (f),Ni2P1-700 (g)and Ni1P1-700 (h)

    Ni@C was further phosphatized to prepare nickel phosphide nanocatalysts.Five nickel phosphide nanocatalysts were synthesized according to the different mass ratios and phosphating temperatures (Table 1).In our experiments,the phosphating temperature was found to be a key factor that affected the phase structure of the nickel phosphide nanocatalysts.The crystalline phase structure and the purity of the assynthesized nickel phosphide materials at different phosphating temperatures were characterized by PXRD (Fig.3).When phosphidation treatment of Ni@C was conducted at a calcination temperature of 300℃for 1 h,the Ni2P (PDF No.03-065-3544)and Ni12P5(PDF No.03-065-1623)nanoparticles could be prod-uced (Fig.3(a,b,e)).Interestingly,the Ni5P4nanoparticles could be obtained via a heat treatment at 500℃for 1 h.As shown in Fig.3(c,d),all diffraction peaks matched well with the hexagonal structure of Ni5P4(PDF No.03-065-2075)and no extraneous peaks existed.Upon further increasing the phosphating temperature to 700℃,the product was a mixture of hexagonal Ni2P and hexagonal Ni12P5phases ((Fig.3(a,e~h)).Among five nickel phosphide materials,the crystallinity increased with the increase of temperature.The morphology and structure of the nickel phosphide were further characterized by TEM (Fig.4).The Ni2P and Ni12P5particles in the Ni1P1-300 material were uniform in size and encapsulated in the carbon matrix (Fig.4(A,B)).The HRTEM image (Fig.5A)showed the lattice fringes with a distance of 0.221 nm,corresponding to the (111)lattice plane of Ni2P.As the phosphating temperature increased,the Ni5P4particles grew to ~20 nm (Fig.4(C,D)).The distance of the adjacent lattice fringes was calculated to be about 0.332 nm,corresponding well to the (110)lattice plane of Ni5P4(Fig.5B).When the temperature rises to 700℃,the biphasic Ni2P and Ni12P5nanoparticles were obtained with an average particle size of 100 nm and escaped from the carbon matrix (Fig.4(E,F)).

    Fig.4 TEM images of Ni1P1-300 (A,B),Ni1P1-500 (C,D)and Ni1P1-700 (E,F)

    Fig.5 HRTEM images of Ni1P1-300 (A)and Ni1P1-500 (B)

    2.4 Electrocatalytic activity

    The electrocatalytic activities of nickel phosphide nanocatalysts in different phases towards HER was evaluated.The polarization curves of catalysts in 0.5 mol·L-1H2SO4with a slow scan rate of 2 mV·s-1using a three electrode setup were shown in Fig.6A.As a comparison,commercial 20%(w/w)Pt/C catalyst was also performed under the identical measurements.The glassy carbon electrode of the nickel phosphide catalysts measured under the reversible hydrogen electrode had a large current density.Generally,the overpotential(η)required for the current density of 10 mA·cm-2(η10)was a matric relevant to solar fuel synthesis,commonly used as a standard for evaluating the HER activity of the catalyst[25].The Ni1P1-500 required an η10of 178 mV,while η10of Ni1P1-700,Ni1P2-700,Ni2P1-700,and Ni1P1-300 were 193,223,306,and 350 mV,respectively.These datas showed that nickel phosphide with different phases had good electrocatalytic properties,and that the Ni1P1-500 catalyst consisting of Ni5P4exhibited the highest catalytic activity.This superior HER activity can be attributed to the positive charge of Ni and the ensemble effect of P in nickel phosphide catalysts[26].The small positive charge of Ni was beneficial to improve the catalytic activity of HER.The XPSshowed that δ(Ni12P5)<δ(Ni2P)<δ(Ni5P4)(δ is the value of charges)[27],which indicated that the catalytic activity of Ni1P1-500 (Ni5P4)was better than other four catalysts.In addition,for the phosphide materials,the increase of the radio of P to Ni on the surface can also improve the catalytic activity[28].This effect could be one explanation why a higher phosphorous content was found to be beneficial for the activity and stability of transition metal phosphides[29-30].The molar ratios of P to Ni were 1∶2.4,1∶2 and 1∶1.25 in Ni12P5,Ni2P and Ni5P4,respectively,which was in accordance with our electrocatalytic results.In previous study,Ni and P sites in the nickel phosphides represented the hydride acceptor and proton acceptor center,respectively,to facilitate catalysis of the HER[13].Moreover,the P could also facilitate the formation of Ni-hydride via electrochemical desorption and offer more active sites[27].Therefore,Ni1P1-500 were expected to be better HER catalysts because of more positive charge of Ni and more P-rich nature.

    To further investigate the catalytic reaction kinetics of HER,the Tafel slope for different nickel phosphide nanocatalysts were examined by deriving from polarization curves.Under different overpotentials,the Tafel curve fitted well with the Tafel equation (η=b lg|j|+a,ηrepresents the overpotential,b represents the Tafel slope,and j represents the current density).The Tafel slope of Pt/C was 25 mV·dec-1,which was consistent with that reported in the literature[13].In contrast,the Tafel slope of Ni1P1-500,Ni1P1-700,and Ni1P2-700 electrodes (Fig.6B)were 62,74,130 mV·dec-1.The Tafel slope was a useful indicator of reaction kinetics.The smaller Tafel slope of the HER catalyst, the faster kinetics for electrochemical reactions[31].Thus,the reaction kinetic of the HER on Ni1P1-500 was much faster than those on other samples.According to the literature reports,nickel phosphides exhibit good catalytic stability[32-33].

    Fig.6 Polarization data (A)and corresponding Tafel plots (B)for nickel phosphide,Pt electrodes in 0.5 mol·L-1 H2SO4

    An overview of the hydrogen evolution reaction in acidic medium was given below with three possible rate limiting steps[34]:If Equation (1)is the rate determining step,the expected slope would be 120 mV·dec-1.On the other hand,if the kinetics of the HER is limited by the Equation (2),one would expect a Tafel slope of 40 mV·dec-1.Finally,if the Equation (3)is the rate limiting step,a slope of 30 mV·dec-1is expected[35].In our studies,the observed Tafel slopes of Ni1P1-500 were 62 mV·dec-1,which indicated that the HER reaction was limited by Desorption-Heyrovsky reaction.Hadsrepresents an H atom absorbed at the active site of the catalyst.

    2.5 XPS analysis

    Based on previous density functional theory(DFT)calculation,the highly active HER of the Ni1P1-500 was attributed to the presence of the proton acceptor and hydride acceptor centers on the surface of Ni5P4[36].In order to reveal the cause of HER reaction,we further analyzed the XPS spetra of Ni1P1-500.The binding energy of 853.0,856.6 and 861.4 eV for the Ni2p3/2energy level were observed (Fig.7A),corresponding to Niδ+,oxidized Ni species and the satellite of Ni2p3/2peak,respectively[37].It is noteworthy that the Ni2p3/2binding energy (853.0 eV)in this work was slightly higher than that in nickel metal(852.5~852.9 eV)[38],which suggested that the Ni in Ni1P1-500 had a very small positive charge.For the P2p region,one peaks at 133.9 eV was attributed to oxidized P species originated from the superficial oxidation of phosphide(Fig.7B)[39],and the other peaks at 129.6 eV was attributed to P in Ni1P1-500,which suggested that the related P species had a very small negative charge because this binding energy was less than that of elemental P (130.0 eV)[40].The results clarified that the HER catalytic activity of Ni1P1-500 may be related to the intrinsic charge properties of Ni and P[41].Moreover,the higherδ+value of phosphate and higher levels of phosphorus may be utilised for the HER in acidic medium[28].

    Fig.7 XPSspectra of the Ni1P1-500 nanoparticles

    3 Conclusions

    In conclusion, we have developed nickel phosphide nanocatalysts for HER,via a MOF pyrolysis and subsequent phosphating process.The resultant nickel phosphide catalysts exhibited superior HER catalytic performance in acid solution.The sample obtained by phosphating at 500 ℃ (Ni1P1-500)was composed of Ni5P4,which exhibited excellent electrocatalytic performance in HER.The Tafel slope was 62 mV·dec-1and the overpotential was 178 mV at a current density of 10 mA·cm-2.The excellent electrocatalytic performance might be ascribed to the presence of the proton acceptor (P site)and hydride-acceptor(Ni site)centers on the surface of nickel phosphide.More importantly,this strategy has the characteristics of simple synthesis,large-scale production and practical application,and it can also be extended to synthesize metal phosphides from other MOFs.

    猜你喜歡
    藥學(xué)院磷化吉林大學(xué)
    吉林大學(xué)學(xué)報(bào)(地球科學(xué)版)
    建筑結(jié)構(gòu)鋼鋅鈣系磷化膜的結(jié)構(gòu)與耐蝕性研究
    蘭州大學(xué)藥學(xué)院簡介
    《吉林大學(xué)學(xué)報(bào)(理學(xué)版)》征稿簡則
    《吉林大學(xué)學(xué)報(bào)(理學(xué)版)》征稿簡則
    《吉林大學(xué)學(xué)報(bào)( 理學(xué)版) 》征稿簡則
    槍械黑色磷化工藝
    AZ91D鎂合金磷化工藝的研究
    常溫磷化工藝技術(shù)漫談
    HSCCC-ELSD法分離純化青葙子中的皂苷
    飞空精品影院首页| 亚洲熟女毛片儿| 男女边摸边吃奶| 欧美黑人精品巨大| 悠悠久久av| 不卡av一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 久久这里只有精品19| 欧美激情 高清一区二区三区| 精品人妻一区二区三区麻豆| 91精品伊人久久大香线蕉| 国产精品免费大片| 色综合欧美亚洲国产小说| 亚洲精品中文字幕一二三四区 | 午夜视频精品福利| 久久综合国产亚洲精品| 各种免费的搞黄视频| 国产一区二区激情短视频 | 日韩大码丰满熟妇| 亚洲欧美一区二区三区黑人| 久久国产精品男人的天堂亚洲| 免费在线观看影片大全网站| 亚洲三区欧美一区| 美女国产高潮福利片在线看| 不卡av一区二区三区| 精品少妇内射三级| 中文精品一卡2卡3卡4更新| 十八禁人妻一区二区| 天堂中文最新版在线下载| 亚洲第一av免费看| 亚洲av片天天在线观看| 久久ye,这里只有精品| 黑人猛操日本美女一级片| 中文欧美无线码| 国产福利在线免费观看视频| 亚洲精品一二三| 天天躁夜夜躁狠狠躁躁| 在线观看免费高清a一片| 亚洲免费av在线视频| 18在线观看网站| 亚洲欧美一区二区三区黑人| 岛国毛片在线播放| 国产主播在线观看一区二区| 日韩欧美国产一区二区入口| 亚洲欧美精品综合一区二区三区| 日日夜夜操网爽| 大码成人一级视频| 亚洲色图 男人天堂 中文字幕| 高清黄色对白视频在线免费看| 黄色视频,在线免费观看| 国产精品国产av在线观看| 欧美日韩亚洲高清精品| 男人爽女人下面视频在线观看| 久久 成人 亚洲| 啦啦啦中文免费视频观看日本| 婷婷丁香在线五月| 亚洲国产av新网站| 国产精品偷伦视频观看了| 欧美精品一区二区免费开放| 永久免费av网站大全| 在线看a的网站| 欧美黄色片欧美黄色片| 国产精品二区激情视频| 亚洲专区中文字幕在线| 热99国产精品久久久久久7| 91老司机精品| 18禁黄网站禁片午夜丰满| 亚洲中文av在线| 波多野结衣av一区二区av| 黄色视频在线播放观看不卡| 99久久99久久久精品蜜桃| 日韩中文字幕视频在线看片| 两性夫妻黄色片| 人人妻人人爽人人添夜夜欢视频| 十八禁高潮呻吟视频| 曰老女人黄片| 一区二区三区四区激情视频| 丰满人妻熟妇乱又伦精品不卡| 日本vs欧美在线观看视频| 男女下面插进去视频免费观看| 在线天堂中文资源库| 精品一品国产午夜福利视频| 日韩视频在线欧美| 亚洲成人免费av在线播放| 成人国产一区最新在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 女人爽到高潮嗷嗷叫在线视频| 日日爽夜夜爽网站| 久久综合国产亚洲精品| 精品第一国产精品| 高潮久久久久久久久久久不卡| 欧美中文综合在线视频| 久久久久久亚洲精品国产蜜桃av| 亚洲精品久久久久久婷婷小说| 1024视频免费在线观看| 91av网站免费观看| 精品乱码久久久久久99久播| 亚洲精品在线美女| 曰老女人黄片| 国精品久久久久久国模美| 91老司机精品| 多毛熟女@视频| 777米奇影视久久| 国产精品亚洲av一区麻豆| 国产黄频视频在线观看| 欧美日本中文国产一区发布| 国产在线一区二区三区精| 亚洲专区国产一区二区| 亚洲欧美一区二区三区久久| 精品国产乱子伦一区二区三区 | 伦理电影免费视频| www.精华液| 一级片'在线观看视频| 欧美国产精品一级二级三级| 窝窝影院91人妻| 少妇猛男粗大的猛烈进出视频| 欧美精品啪啪一区二区三区 | 午夜视频精品福利| 成人国产一区最新在线观看| 精品国产国语对白av| 色婷婷久久久亚洲欧美| 亚洲精品国产区一区二| 十八禁高潮呻吟视频| 精品少妇黑人巨大在线播放| 欧美xxⅹ黑人| 免费观看av网站的网址| 欧美成狂野欧美在线观看| 精品久久久久久电影网| 熟女少妇亚洲综合色aaa.| 亚洲精品国产色婷婷电影| 一本色道久久久久久精品综合| 女人精品久久久久毛片| 欧美另类亚洲清纯唯美| 精品一区在线观看国产| 精品熟女少妇八av免费久了| 免费高清在线观看视频在线观看| 国产av精品麻豆| 一本一本久久a久久精品综合妖精| 青春草视频在线免费观看| 免费在线观看完整版高清| 岛国毛片在线播放| 国产av一区二区精品久久| 色94色欧美一区二区| 久久免费观看电影| 如日韩欧美国产精品一区二区三区| 在线av久久热| 国产日韩一区二区三区精品不卡| 91九色精品人成在线观看| 亚洲中文日韩欧美视频| 王馨瑶露胸无遮挡在线观看| 亚洲av片天天在线观看| 我要看黄色一级片免费的| 国产精品熟女久久久久浪| 97精品久久久久久久久久精品| 不卡av一区二区三区| a 毛片基地| 亚洲欧美清纯卡通| 黄色视频在线播放观看不卡| 少妇粗大呻吟视频| 巨乳人妻的诱惑在线观看| 中文字幕人妻丝袜一区二区| 男女之事视频高清在线观看| 亚洲av国产av综合av卡| 日本一区二区免费在线视频| 美女扒开内裤让男人捅视频| 窝窝影院91人妻| 97人妻天天添夜夜摸| 狠狠精品人妻久久久久久综合| 午夜影院在线不卡| 热99久久久久精品小说推荐| 在线观看人妻少妇| 999久久久精品免费观看国产| 黄网站色视频无遮挡免费观看| 亚洲精品国产av蜜桃| 久久狼人影院| 欧美黑人欧美精品刺激| 51午夜福利影视在线观看| 亚洲人成电影免费在线| 大码成人一级视频| 国精品久久久久久国模美| 精品高清国产在线一区| 欧美乱码精品一区二区三区| 国产精品99久久99久久久不卡| 国产1区2区3区精品| 欧美另类亚洲清纯唯美| 亚洲中文日韩欧美视频| 欧美黑人精品巨大| 精品福利永久在线观看| 久久久久久亚洲精品国产蜜桃av| 成年美女黄网站色视频大全免费| 汤姆久久久久久久影院中文字幕| 免费在线观看日本一区| tube8黄色片| 男女边摸边吃奶| 国产日韩一区二区三区精品不卡| 男女午夜视频在线观看| 一级,二级,三级黄色视频| 亚洲av电影在线观看一区二区三区| 欧美亚洲日本最大视频资源| 亚洲av日韩在线播放| 国产日韩一区二区三区精品不卡| 在线观看人妻少妇| 免费高清在线观看视频在线观看| 一本久久精品| 国产一区二区三区综合在线观看| 精品久久久久久电影网| 一级黄色大片毛片| 午夜福利免费观看在线| av一本久久久久| 三上悠亚av全集在线观看| 91av网站免费观看| 国产精品 欧美亚洲| 午夜福利视频在线观看免费| 午夜福利在线免费观看网站| 2018国产大陆天天弄谢| 自线自在国产av| 电影成人av| 真人做人爱边吃奶动态| 丁香六月天网| 久久香蕉激情| 侵犯人妻中文字幕一二三四区| 精品人妻熟女毛片av久久网站| 最新在线观看一区二区三区| 国产一级毛片在线| 电影成人av| 亚洲中文日韩欧美视频| 一本大道久久a久久精品| 考比视频在线观看| 国产精品亚洲av一区麻豆| 午夜两性在线视频| 亚洲九九香蕉| 在线永久观看黄色视频| 国产一区二区在线观看av| 老熟妇乱子伦视频在线观看 | 91麻豆av在线| 999久久久国产精品视频| 国产免费福利视频在线观看| 少妇猛男粗大的猛烈进出视频| 国产精品香港三级国产av潘金莲| 大香蕉久久成人网| 亚洲色图综合在线观看| av视频免费观看在线观看| 麻豆av在线久日| 欧美另类一区| 亚洲国产毛片av蜜桃av| 99热国产这里只有精品6| 岛国在线观看网站| 久久精品人人爽人人爽视色| 国产精品一区二区免费欧美 | www.熟女人妻精品国产| 亚洲少妇的诱惑av| 国产熟女午夜一区二区三区| 亚洲欧美日韩另类电影网站| 肉色欧美久久久久久久蜜桃| 日日爽夜夜爽网站| a级片在线免费高清观看视频| 亚洲伊人久久精品综合| 美女视频免费永久观看网站| 亚洲精华国产精华精| 中文字幕av电影在线播放| 日韩精品免费视频一区二区三区| 女人精品久久久久毛片| 欧美+亚洲+日韩+国产| 色精品久久人妻99蜜桃| 亚洲va日本ⅴa欧美va伊人久久 | 国产高清videossex| 极品少妇高潮喷水抽搐| 美女主播在线视频| 天堂俺去俺来也www色官网| 国产亚洲精品久久久久5区| 人人妻人人添人人爽欧美一区卜| 久久毛片免费看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区三区影片| 精品福利永久在线观看| 99国产精品一区二区三区| 啦啦啦 在线观看视频| 欧美中文综合在线视频| 婷婷成人精品国产| 精品人妻在线不人妻| 一个人免费在线观看的高清视频 | 精品国产乱码久久久久久小说| av天堂久久9| 人妻人人澡人人爽人人| 人人妻,人人澡人人爽秒播| 91av网站免费观看| 午夜91福利影院| 亚洲av美国av| 正在播放国产对白刺激| 男女无遮挡免费网站观看| 国产一区二区在线观看av| 妹子高潮喷水视频| 久久精品成人免费网站| 精品福利观看| 男女之事视频高清在线观看| 精品国产国语对白av| 亚洲成av片中文字幕在线观看| 欧美国产精品一级二级三级| 午夜影院在线不卡| 桃花免费在线播放| 人人妻,人人澡人人爽秒播| 亚洲色图 男人天堂 中文字幕| 精品福利观看| av网站免费在线观看视频| 在线观看舔阴道视频| 高清视频免费观看一区二区| 男女国产视频网站| 久热这里只有精品99| 两人在一起打扑克的视频| 女人被躁到高潮嗷嗷叫费观| 久久精品亚洲av国产电影网| 一二三四在线观看免费中文在| 香蕉丝袜av| 黄色毛片三级朝国网站| 捣出白浆h1v1| 欧美久久黑人一区二区| 国产精品久久久人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 三上悠亚av全集在线观看| 国产色视频综合| 亚洲国产精品成人久久小说| 高清黄色对白视频在线免费看| 在线观看舔阴道视频| 美女高潮到喷水免费观看| 黄片播放在线免费| 亚洲成人国产一区在线观看| av天堂久久9| 久久亚洲精品不卡| 一级片'在线观看视频| 国产亚洲av片在线观看秒播厂| 欧美日韩一级在线毛片| 国产成人欧美| 波多野结衣一区麻豆| 亚洲欧美精品综合一区二区三区| 精品免费久久久久久久清纯 | 黄色a级毛片大全视频| 国产精品久久久人人做人人爽| 欧美日韩亚洲国产一区二区在线观看 | 成人亚洲精品一区在线观看| 精品高清国产在线一区| 人人妻人人澡人人爽人人夜夜| 人人妻人人添人人爽欧美一区卜| 国产在线视频一区二区| 免费在线观看日本一区| www.av在线官网国产| 色视频在线一区二区三区| 国产免费av片在线观看野外av| 国产激情久久老熟女| 国产精品久久久av美女十八| 可以免费在线观看a视频的电影网站| 国产在线一区二区三区精| 操出白浆在线播放| av线在线观看网站| 欧美日韩福利视频一区二区| 纯流量卡能插随身wifi吗| 亚洲美女黄色视频免费看| 麻豆乱淫一区二区| 两性夫妻黄色片| 久热爱精品视频在线9| 永久免费av网站大全| 高清欧美精品videossex| 免费高清在线观看日韩| 亚洲欧美清纯卡通| 男女之事视频高清在线观看| 久久久久网色| 色精品久久人妻99蜜桃| 建设人人有责人人尽责人人享有的| 中亚洲国语对白在线视频| 成年人午夜在线观看视频| 狠狠狠狠99中文字幕| 一本大道久久a久久精品| 久久人妻福利社区极品人妻图片| 午夜日韩欧美国产| 国产精品自产拍在线观看55亚洲 | 午夜免费鲁丝| 国产欧美亚洲国产| 国产成人免费无遮挡视频| 日韩,欧美,国产一区二区三区| 精品一区二区三区av网在线观看 | www.自偷自拍.com| 亚洲人成电影免费在线| www.自偷自拍.com| 久久久久久亚洲精品国产蜜桃av| 搡老岳熟女国产| 成人三级做爰电影| 少妇被粗大的猛进出69影院| 国产高清国产精品国产三级| 精品乱码久久久久久99久播| 看免费av毛片| 人人妻人人澡人人爽人人夜夜| 亚洲av片天天在线观看| 成人亚洲精品一区在线观看| 啦啦啦在线免费观看视频4| 国产欧美日韩精品亚洲av| xxxhd国产人妻xxx| 国产一区二区激情短视频 | 欧美xxⅹ黑人| 成年人午夜在线观看视频| 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 丝袜人妻中文字幕| 不卡一级毛片| 精品国产乱码久久久久久小说| 伊人久久大香线蕉亚洲五| 久久久精品国产亚洲av高清涩受| 日本91视频免费播放| 精品一区二区三区四区五区乱码| 91成人精品电影| 日韩大片免费观看网站| av在线老鸭窝| 欧美中文综合在线视频| 热99久久久久精品小说推荐| 9色porny在线观看| av有码第一页| 我要看黄色一级片免费的| 久久人妻熟女aⅴ| 在线十欧美十亚洲十日本专区| 男女下面插进去视频免费观看| 欧美日韩精品网址| 国产精品成人在线| 嫩草影视91久久| 两人在一起打扑克的视频| 欧美av亚洲av综合av国产av| 国产亚洲欧美精品永久| 久久中文看片网| 黑人欧美特级aaaaaa片| 国产欧美亚洲国产| av电影中文网址| 性色av乱码一区二区三区2| 岛国在线观看网站| a在线观看视频网站| 久久久久久免费高清国产稀缺| 丝袜人妻中文字幕| 日韩一区二区三区影片| av福利片在线| 嫩草影视91久久| e午夜精品久久久久久久| 午夜影院在线不卡| 亚洲精品国产色婷婷电影| 亚洲国产精品999| xxxhd国产人妻xxx| 99国产综合亚洲精品| 老司机影院成人| 啪啪无遮挡十八禁网站| 韩国高清视频一区二区三区| 美女主播在线视频| 在线观看人妻少妇| svipshipincom国产片| 亚洲成人国产一区在线观看| 久久国产亚洲av麻豆专区| 90打野战视频偷拍视频| 在线十欧美十亚洲十日本专区| 久久天躁狠狠躁夜夜2o2o| 久久国产精品影院| 欧美日韩一级在线毛片| 丝袜喷水一区| 男女高潮啪啪啪动态图| 国产在线视频一区二区| 一本久久精品| 一级,二级,三级黄色视频| 999精品在线视频| 99久久国产精品久久久| 少妇精品久久久久久久| 黑人猛操日本美女一级片| 欧美黄色片欧美黄色片| 国产成人a∨麻豆精品| 免费女性裸体啪啪无遮挡网站| 国产精品1区2区在线观看. | 日韩,欧美,国产一区二区三区| 精品国产国语对白av| 国产福利在线免费观看视频| 久久人人爽人人片av| 69精品国产乱码久久久| 亚洲成人免费av在线播放| 一级片'在线观看视频| 久久中文看片网| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区黑人| 国产视频一区二区在线看| 欧美日韩一级在线毛片| 搡老岳熟女国产| 国产高清国产精品国产三级| 亚洲av日韩精品久久久久久密| 老司机深夜福利视频在线观看 | 老熟妇仑乱视频hdxx| 国产97色在线日韩免费| 久久毛片免费看一区二区三区| 久久青草综合色| 叶爱在线成人免费视频播放| 一级黄色大片毛片| 一区二区av电影网| 精品国产一区二区三区四区第35| 久久久久久久久免费视频了| 亚洲九九香蕉| 99热全是精品| 精品国产一区二区久久| 久久亚洲精品不卡| 丁香六月欧美| 天堂中文最新版在线下载| 又紧又爽又黄一区二区| 久久精品久久久久久噜噜老黄| 国产日韩欧美亚洲二区| 午夜成年电影在线免费观看| 国产欧美亚洲国产| 男人爽女人下面视频在线观看| 91国产中文字幕| 国产精品影院久久| 男女国产视频网站| 久久女婷五月综合色啪小说| 黄色视频在线播放观看不卡| 中文字幕人妻熟女乱码| 亚洲第一av免费看| 精品少妇久久久久久888优播| 黄色视频,在线免费观看| 欧美日韩精品网址| 18禁黄网站禁片午夜丰满| 在线观看一区二区三区激情| 正在播放国产对白刺激| 国产精品自产拍在线观看55亚洲 | 不卡av一区二区三区| 成人手机av| 老熟女久久久| 国产高清videossex| 90打野战视频偷拍视频| 97精品久久久久久久久久精品| 亚洲人成电影免费在线| avwww免费| 窝窝影院91人妻| 51午夜福利影视在线观看| 午夜两性在线视频| 国产成人免费观看mmmm| 欧美激情 高清一区二区三区| 丁香六月欧美| 老鸭窝网址在线观看| 午夜视频精品福利| 午夜久久久在线观看| 在线天堂中文资源库| av不卡在线播放| 成人黄色视频免费在线看| 国产又爽黄色视频| 国精品久久久久久国模美| 精品福利永久在线观看| www.自偷自拍.com| 国产高清videossex| 国产精品自产拍在线观看55亚洲 | 国产老妇伦熟女老妇高清| 香蕉国产在线看| 亚洲国产毛片av蜜桃av| 久久青草综合色| 亚洲欧美一区二区三区黑人| 成人av一区二区三区在线看 | 亚洲久久久国产精品| 在线十欧美十亚洲十日本专区| 一区在线观看完整版| 精品视频人人做人人爽| 国产成人免费无遮挡视频| 中亚洲国语对白在线视频| 亚洲精品一区蜜桃| 久久热在线av| 黄频高清免费视频| 国产成人欧美| 美女扒开内裤让男人捅视频| 国产在线免费精品| 亚洲午夜精品一区,二区,三区| 国产极品粉嫩免费观看在线| 久久精品国产亚洲av香蕉五月 | 欧美精品av麻豆av| 欧美激情高清一区二区三区| 婷婷成人精品国产| 国产精品免费大片| 国产欧美亚洲国产| 国产精品免费视频内射| 夜夜夜夜夜久久久久| 男女床上黄色一级片免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 999精品在线视频| 波多野结衣一区麻豆| 国产成人欧美| 最新在线观看一区二区三区| 国产又爽黄色视频| 9色porny在线观看| 精品久久久久久久毛片微露脸 | 人妻 亚洲 视频| 国产日韩一区二区三区精品不卡| 日韩三级视频一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 男女下面插进去视频免费观看| 亚洲三区欧美一区| 欧美日韩一级在线毛片| 丝袜喷水一区| 久久久精品94久久精品| 亚洲精品美女久久av网站| 国产亚洲精品一区二区www | 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 国产免费av片在线观看野外av| 精品少妇久久久久久888优播| 视频区欧美日本亚洲| 无限看片的www在线观看| 国产伦人伦偷精品视频| 亚洲国产精品成人久久小说| 日韩人妻精品一区2区三区| 欧美国产精品一级二级三级| 欧美日本中文国产一区发布| 国产精品亚洲av一区麻豆| 99精品欧美一区二区三区四区| 老司机影院成人| 菩萨蛮人人尽说江南好唐韦庄| 99国产精品免费福利视频| 五月天丁香电影| 久久精品亚洲av国产电影网| 国产精品香港三级国产av潘金莲| 午夜91福利影院| 午夜精品久久久久久毛片777| 日韩欧美一区二区三区在线观看 |