• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AuPd和AgPd枝晶納米催化劑催化甲酸分解制氫

    2019-08-08 06:53:24謝佳琦吳新華蘭立新
    無機化學學報 2019年8期
    關鍵詞:維護費用渠系末級

    劉 軍 謝佳琦 吳新華 李 容 蘭立新

    (湖南化工職業(yè)技術學院,制藥與生物工程學院,株洲 412000)

    0 Introduction

    Among various power sources,hydrogen energy is attracting increasing attention on account of its cleanness and sustainability[1].However,storage and transfer of hydrogen gas are difficult with current technology because hydrogen gas is flammable and has a poor volumetric energy density.Noteworthily,formic acid has been considered as a promising in situ hydrogen source by catalytic decomposition[1-19]because it offers relatively high volumetric energy density,is non-toxic,can be safely handled in liquid and in aqueous solution,and can be derived from hydrogenation of CO2[20-21].Decomposition of formic acid through two possible pathways is as follows[2,6]:

    Reaction (1)is desired for hydrogen production and Reaction (2)should be avoided because CO is highly poisonous to catalysts.The content of carbon monoxide in hydrogen gas should be less than 10-3%for direct use in fuel cells[2].

    Recently,considerable progress has been made to obtain ultrapure hydrogen gas effectively from formic acid with different catalysts.For example,homogenous catalystsof metallic complexes(e.g.Ru and Fe complexes)showed excellent catalytic activities at ambient conditions towards the decomposition of formic acid in an inert atmosphere and in the presence of formate[10-11],amine[12-15]or in an organic solvent[16].On the other hand,much more efforts have also been made recently in developing heterogenous catalysis of formic acid decomposition to surpass the efficiency by homogenous catalysis.Some nanocatalysts dispersed in aqueous solution of formic acid containing formate have also shown high activity for hydrogen production from decomposition of formic acid.Core-shell Ag@Pd/C nanoparticles[2],Pd/C catalysts[3],Pd-B-P/C[4],Au/ZrO2catalyst[5],Pd/C[6],TiO2-supported AgPd@Pd nanocatalysts[9],AgPd nanoparticles[17],AuPd/C[18],and agglomerated Ag-Pd catalyst[22]are such representativenanocatalysts.However,further improvements of nanocatalysts in activity and selectivity are still requested to obtain high-quality hydrogen gas by decomposition of formic acid at room temperature.

    As far as we knew,nanoporous alloy materials like AuPd[23],PdAg[24],PtNi[25],PtFe[26],PtCo[27],and PtRu[28-29]prepared by dealloying or hydrothermal method have also received considerable attention for electrocatalytic oxidation of small organic molecules.We first demonstrated that noble metal alloy foam materials of AuPt[30]with nanodendritic structures prepared by electrodeposition with a template of in situ produced hydrogen bubbles have high electrocatalytic activity for the oxidation of formic acid.Since the pioneer work on the electrodeposition of Cu and Sn foams[31],the hydrogen bubble dynamic template approach has been employed to prepare a lot of monometallic and bimetallic 3D porous foams,including Au[32-33],Ag[34-35],Ni[36],Bi[37],CuSn[38],PtPd[39],CuPd[40],Pt@AuxCu100-x[41],CoNi[42],and NiCu[43].This is a very facile,fast and environment-friendly method for the preparation of metal foams without using protective reagents and additional template reagents.

    In this work,we made detailed investigation for the first time on the preparation of nanodendritic AuPd and AgPd foam film catalysts with different atomic ratios by direct electrodeposition using hydrogen bubble dynamic templates and on their performance in hydrogen production from decomposition of formic acid at room temperature.These nanodendritic foam film catalysts show excellent activity for the decomposition of formic acid under room temperature and have great potential for practical applications in fuel cells.

    1 Experimental

    1.1 Reagents and materials

    HAuCl4·4H2O,AgNO3,Pd(C2H3O2)2and PdCl2were obtained from Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).A gold disk (1 mm diameter,purity 99.99%),a platinum foil (geometric area 1 cm2)and Ti plates (geometric area 1 or 2 cm2)were purchased from Tianjin Ai Da Heng Sheng Technology Development Co.,Ltd. (Tianjin,China).Sulfuric acid (H2SO4),formic acid(HCOOH)and sodium formate (HCOONa)were purchased from the Factory of Hunan Normal University.All the chemicals were of analytical grade and were used as received.Milli-Q water with a resistivity of greater than 18 MΩ·cm was used in the preparation of aqueous solutions.

    1.2 Electrodeposition of alloy foam film s

    In order to save Au and Pd precursors,exploratory electrodeposition of prous foams were performed firstly on a CHI 660C electrochemical workstation(Chenhua Instruments,Shanghai,China)with a small gold disk (1 mm diameter,purity 99.99%)or a Ti disk (2 mm diameter,purity 99.99%)purchased from Good Fellows as the substrate (working electrode).A platinum foil (geometric area 1 cm2),and a saturated mercurous sulfate electrode(SMSE)were employed as the counter and reference electrode,respectively.Prior to use,the working electrode was polished with 2 000 grit carbimet paper,followed by rinsing in Millipore water under ultrasonic waves.Then the electrode was electrochemically pretreated by cycling the potential between-0.7 and 1.1 V in 0.5 mol·L-1H2SO4at a scan rate of 100 mV·s-1until a stable voltammogram was obtained.According to our previous experience for theelectrodeposition of AuPt[30]alloy foams,electrodeposition of AuPd foam films were performed under a constant potential of-4 V for 300 s in a stationary solution of 2 mmol·L-1HAuCl4+0.58 mmol·L-1PdCl2+2 mol·L-1H2SO4,1 mmol·L-1HAuCl4+1 mmol·L-1PdCl2+2 mol·L-1H2SO4,0.5 mmol·L-1HAuCl4+1.5 mmol·L-1PdCl2+2 mol·L-1H2SO4,and we denoted the deposited foam films as Au100Pd29,Au1Pd1,and Au1Pd3,respectively,according to the molar ratios of HAuCl4/PdCl2in the feeding solution.For comparison,monometallic Au and Pd foam films were deposited in the same way by substituting the mixed precursors with 1 mmol·L-1HAuCl4and 2 mmol·L-1PdCl2,respectively.AgPd foam films were also prepared by electrodeposition under-4 V for 300 s with precursor solutions of 1 mmol·L-1AgNO3+1 mmol·L-1Pd(C2H3O2)2+2 mol·L-1H2SO4.

    An alternative two-step method was also employed to fabricate Pd-covered Au foams (denoted as Pd/Au).First,the gold foam was deposited under 4 V for 300 s in a solution of 2 mmol·L-1HAuCl4+2 mol·L-1H2SO4,then,immersed in Milli-Q water for 10 min to remove the absorbed AuCl4-.Finally,the gold foam film electrode was transferred into a solution of 5 mmol·L-1of PdCl2+0.1 mol·L-1HClO4to deposit Pd on the surface by galvanic replacement reaction for 45 min.The obtained Au/Pd bimetallic foam electrode was taken out and immersed into 100 mL Milli-Q water for 30 min to remove the absorbed precursor ions.

    For convenience and practical applications,the alloy foam catalysts for the decomposition of formic acid were prepared with a direct current (DC)power (KXN-1550D)and a two-electrode configuration.A larger Ti plate (geometric area 2 cm2)substrate and a platinum foil (geometric area 1 cm2)were employed as the working and counter electrode,respectively.Prior to use,the Ti plates were polished with 2 000 grit carbimet paper,etched in 18%(w/w)HCl at 85 ℃ for 15 min to remove the surface oxide,and washed with Milli-Q water.Similar foam films can also be fabricated by electrodeposition under a constant voltage of 7 V for 200 s in different precursor solutions.

    1.3 Determ ination of real surface areas

    The real surface areas of these bimetallic and monometallic foam films were estimated from the double layer capacity measurement and the details of experiment and calculation were described in the Supplementary Information (Fig.S1,S2 and S3).

    1.4 Characterization

    The morphology images of the electrodeposited foam films were taken with a JEOL JSM-6360 scanning electron microscope (SEM)operating at 25 kV.TEM measurements were performed with JEOL-1230 electron microscope operating at a voltage 200 kV.Their bulk compositions were analyzed with an energy-dispersive X-rayspectrometer(EDS)using Tecnai 20.X-ray diffraction(XRD)analysis of the resulting products was carried out on a Dmax Rapid IIR diffractometer (Cu Kα radiation(λ=0.154 2 nm))in a scan range of 20°~120°,and the exposure time was 15 min at 40 kV and 40 mA.

    測算末級渠系水價應在嚴格控制管護人員、約束成本以及清理、取消不合理收費的基礎上,按照補償末級渠系運行管理和維護費用的原則核定,末級渠系水價的計算公式為:

    1.5 Catalytic decomposition of form ic acid and product analysis

    The catalytic reactions of formic acid by the deposited foam films were performed at room temperature(~25 ℃)either in a test tube or in a beaker containing a solution of 6.64 mol·L-1HCOOH and 3.32 mol·L-1HCOONa.For anlalysis of gas chromatography(GC 5890F)[44],the produced gases were collected by the draining water method using a glass funnel and a gascollecting bottle (35 mL)that were placed upside down.In addition,a graduated gas-collecting tube was used to record the gas volume released during 2 h.The deposited foam catalysts can be activated repeatedly after being washed with Milli-Q water and dried under an infrared lamp,or treated by potential cycling in 1 mol·L-1H2SO4within the range of-0.65 to 1 V at a scan rate of 100 mV·s-1.

    2 Results and discussion

    2.1 Characterization of the electrodeposited AuPd foam film s

    The SEM images in Fig.1 show the porous structures of the prepared AuPd foam films with different compositions by electrodeposition on Au disk electrodes (1 mm diameter)under a constant potential of-4 V for 300 s.The hierarchical pores in the forms were highly interconnected and look similar to each other(columns 1~2),resembling those of pure Au and pure Pd foams (Fig.S4).The pore size increased from bottom to top up to about 20μm due to the coalescenceof hydrogen gas bubbles during evolution from the substrate.The foams consisted of dense nanodendrites (column 3).Such dendritic AuPd alloy foams have larger surface area and provide more active sites like steps,corners,kinks and edges,which are beneficial to catalytic reactions[30].Similar foam structures were obtained using either Ti disks (2 mm diameter)or Ti plates (geometric area 2 cm2)under violent hydrogen evolution,which are given in Fig.S5 and S6.However,such foam structure was not observed (Fig.S7) while lessened the cathodic polarization extent from-4 to-0.8 V,where no severe hydrogen evolution occurred during electrodeposition.

    The detailed dendritic structures of Au1Pd1foams were further characterized by TEM and high-resolution TEM (HRTEM).As seen in Fig.2a and 2b,the dendrites were comprised of abundant nanocrystals sizing from 10 to 30 nm.Such morphology indicated that the formation of dendrites underwent orientated attachment of deposited nanocrystals[45-47].The HRTEM image in Fig.2c reveals the atom lattice.The lattice fringe spacings of 0.234,0.224 and 0.229 nm corresponded to the interplanar distance of Au (111),Pd (111)and AuPd (111)planes[48-49],respectively.In our experimental conditions,the Au1Pd1foam film was rapidly electrodeposited in short duration.

    The atomic compositions of AuPd foams were analyzed by EDS (Fig.3),which were roughly consistent with those of their corresponding precursor solutions(Table S1).It indicates that the foam composition could be controlled by the ratio of precursors.

    Fig.1 SEM images of 3D porous AuPd alloys electrodeposited on Au disk electrodes (1 mm diameter)at-4 V for 300 s in 2 mol·L-1 H2SO4 containing different Au/Pd ratios of precursor concentrations

    Fig.2 (a,b)TEM and (c)HRTEM images of the dendritic structure in the Au1Pd1 alloy foam

    Fig.3 EDS spectra for the foam films of(a)Au100Pd29,(b)Au1Pd1 and (c)Au1Pd3

    In order to further determine the feature of bulk phase,the AuPd foam films were characterized by XRD.Fig.4 shows the XRD patterns of the deposited AuPd alloy foams as well as pure Pd and Au foams.The diffraction peaks at 38.23°,44.34°,64.63°,77.65°and 81.89°were assigned to Au (111), (200), (220),(311)and (222)planes,respectively,according to PDF No.04-0784 of Au;and the diffraction peaks at 40.09°,46.47°,68.26°,82.33°and 86.88°were assigned to Pd (111),(200),(220),(311)and (222)planes,respectively,according to PDF No.46-1043 of Pd.The diffraction peaks of Au100Pd29,Au1Pd1and Au1Pd3samples fall well between those of pure Au and Pd,presenting a smooth transition from an Au-like pattern to a Pd-like pattern with the increase of Pd content.It suggests that the AuPd porous films are single-phase alloy nanomaterials.The detailed 2θvalues of all samples are presented in Table S2.

    Fig.4 XRD patterns for foam films of pure Au,pure Pd and AuPd alloys

    2.2 Hydrogen production from form ic aciddecom position on the AuPd foam film s

    We found that the foam films of Au,Pd and AuPd alloys deposited on Au disk electrodes exhibited high catalytic activity in hydrogen generation from decomposition of formic acid at room temperature (~25 ℃).As demonstrated in Fig.5,vigorous gas released as soon as the foam film electrodes were immersed in the solution of 3.32 mol·L-1HCOONa+6.64 mol·L-1HCOOH.Among them,the Au1Pd1foam film catalyst showed the highest reactive activity for the decomposition of formic acid.Similar phenomena were also observed on the foam films deposited on Ti disk electrodes (2 mm diameter)and on the Ti plate (geometric area 2 cm2)for formic acid decomposition as shown in Fig.S8 and S9,respectively.

    Fig.5 Photos for the hydrogen production at room temperature in 3.32 mol·L-1 HCOONa+6.64 mol·L-1 HCOOH from the decomposition of formic acid on the foam films of(a)Au,(b)Au100Pd29,(c)Au1Pd1,(d)Au1Pd3,and (e)Pd deposited on gold disk electrodes (1 mm diameter)

    Fig.6 (a)Output volume of reforming gas (H 2+CO2)during 120 min on the porous film catalysts of Au,Au100Pd29,Au1Pd1,Au1Pd3,and Pd in 6.64 mol·L-1 HCOOH+3.32 mol·L-1 HCOONa at room temperature (~25 ℃);(b)Cycling performance of the Au1Pd1 foam film

    The cumulation of CO at the foam film surface might be the reason for the decreased in decomposition rate of formic acid after 20 min.We found that the activity of the catalysts could be easily renewed by cleaning them in pure water and followed by drying in air under an infrared lamp for 2 h.During this treatment,the adsorbed CO was removed by oxygen species on the film surface resulted from the water and/or air.Fig.6b shows the results for repeated performances of the Au1Pd1foam film catalyst in formic acid decomposition.After the cleaning and drying treatment,the catalytic activity of Au1Pd1foam film was restored completely and the released gas volumes were almost the same for the two repeated performances,especially in the first 20 min.

    The presence and removal of poisonous CO adsorbed on the AuPd foam films were confirmed by cyclic voltammograms in H2SO4solution (Fig.S11).On the Au1Pd1foam film without treatment by cleaning and drying there was a big sharp oxidation peak at 0.49 V in the first positive potential sweep,which is ascribed to the oxidation of adsorbed CO formed previously from the dissociative adsorption of formic acid.Meanwhile,hydrogen desorption peak vanished in the first positive potential sweep because the adsorbed CO inhibited the hydrogen adsorption.However,no such CO oxidative peak was observed for the Au1Pd1foam film after cleaning and drying.It can also be seen that one potential cycle in 1 mol·L-1H2SO4solution could remove the adsorbed CO because hydrogen desorption peak around-0.5 V reappeared.This is another convenient way to reactivate the catalysts.The repeated performance of the Au1Pd1foam film reactivated by potential cycles is shown in Fig.S12.

    We also prepared Pd-covered Au (Pd/Au)foam films by galvanic displacement between Au foams and PdCl2solution because the Au nanodendrites were highly reactive.According to Chung and his co-workers,galvanic displacement of Au by Pt or Pd can only occur at places of active Au atoms[52],so the deposited Pd layer would be very thin.The Pd/Au foam film in Fig.S13 displayed similar morphology with that of AuPd alloy foam films (Fig.1).EDS analysis (Fig.S14)of the Pd/Au foam film showed that the average surface atomic ratio of Au to Pd was about 55.73∶44.27.However,the atomic ratio of Au to Pd varied from place to place because the active Au atoms on the dendritic Au foam film were not distributed uniformly.

    A photo for the hydrogen production at room temperature from decomposition of formic acid on the Au/Pd foam film deposited on Ti plate was shown in Fig.S9d.The Pd/Au foam film catalyst possessed much higher activity for the formic acid decomposition (Fig.7)than pure foam films of Au and Pd (Fig.6a).101.6,7.89 and 61.40 mL·m-2reforming gas were obtained in 2 h on the foam films of Pd/Au,pure Au and pure Pd,respectively.However,the performance of Pd-covered Au foam film towards formic acid decomposition was a little poor than that of Au1Pd1alloy foam film (Fig.6a).

    Fig.7 Output volume of reforming gas (H2+CO2)during 120 min with the Pd/Au foam film catalyst in 6.64 mol·L-1 HCOOH+3.32 mol·L-1 HCOONa at room temperature (~25 ℃)

    2.3 Hydrogen production from form ic aciddecom position on bimetallic AgPd foam film s

    We further deposited Ag1Pd1foam film and investigated its catalytic activity for formic acid decomposition at room temperature (~25 ℃).Fig.8 shows typical SEM images of the deposited Ag1Pd1foam film.As can be clearly seen,the foam film have similar hierarchical porous structures,resembling that of AuPd foam films.Nevertheless,the wall of Ag1Pd1foam(Fig.8c)consisted of much smaller and thinner dendtrites than those of AuPd foams in Fig.1.

    The representative TEM images in Fig.9 (a,b)demonstrated that the prepared nanodendritic AgPd foam film comprise of samll nanocrystals sizing from 10 to 20 nm.Such morphology also indicated that the formation of nanodendrites underwent orientated attachment of deposited nanocrystals[45-47].Fig.9(c)shows the HRTEM image of an AgPd sprout.The lattice fringe spacings of 0.224 and 0.232 nm corresponded to the interplanar distance of Pd (111)(PDF No.46-1043)and Ag (111)(PDF No.65-2871)planes,respectively.The orientations of the crystal planes suggested that the growth direction was along the [111]axis.On the other hand,we found that most of the lattice fringe spacings were assigned to Pd (111)plane on the surface of AgPd nanoparticles.The reason would be that galvanic replacement reaction took place between the freshly deposited Ag and Pd2+ions in solution.This explantion was supported by EDS analysis shown in Fig.S15,where the atomic percentage of Pd in the AgPd foam was somewhat higher than that in the corresponding feeding solution.

    The bulk phase of the AgPd foam film was characterized by XRD (Fig.10).The standard card of cubic Ag (PDF No.65-2871)and the XRD pattern of deposited pure Pd foam film are also shown in Fig.10 for comparison.The diffraction peaks of (111), (200), (220)and (311)planes both from pure Ag and from AgPd alloy appeared,suggesting that the Ag1Pd1foam film was a mixture of metallic Ag and AgPd alloy.

    Fig.8 SEM images of 3D porous AgPd film electrodeposited on Au disk electrodes (1 mm diameter)at-4 V for 300 s in 2 mol·L-1 H2SO4 containing 1 mmol·L-1 AgNO3+1 mmol·L-1 Pd(CH3COO)2

    Fig.9 (a,b)TEM,and (c)HRTEM images of the dendritic structure in the Ag1Pd1 foam film electrodeposited in the solution of 1 mmol·L-1 AgNO3+1 mmol·L-1 Pd(CH3COO)2+2 mol·L-1 H2SO4

    Fig.10 XRD patterns of foam films of Ag1Pd1 and pure Pd

    The Ag1Pd1foam film also showed high catalytic activity toward the decomposition of formic acid at room temperature,which would be observed by naked eyes(Fig.S16).Fig.11 gives the relationship between released gas volume and collection time.The original reaction rate on the Ag1Pd1foam was rather fast and about 128.2 mL·m-2reforming gas was released in the first 8 min and gave a maximum output of 279.5 mL·m-2reforming gas in 2 h,which was more than that on the Au1Pd1foam film catalyst due to the electronic effect[2].Comparison of catalytic activities of AuPd,AgPd foams and different nano-power catalysts for hydrogen generation from formic acid were showed in Table 1.Among all the catalysts tested,Ag1Pd1foam exhibited the high catalytic activity with the TOF value of 308 h-1at room temperature toward hydrogen generation from formic acid,which is higher than of most previously reported values.

    Fig.11 Output volume of reforming gas (H2+CO2)during 120 min for the foam film catalyst of Ag1Pd1 in 6.64 mol·L-1 HCOOH+3.32 mol·L-1 HCOONa solution at room temperature (~25 ℃)

    Table 1 Com parison of activities of different catalysts for hydrogen generation from form ic acid

    3 Conclusions

    To conclude,we have provided a facile and green way to prepare AuPd and AgPd foam film catalysts composed of special porous structures with nanodendritic walls.Among the prepared AuPd dendritic foam film catalysts,the foam of Au1Pd1displayed the highest catalytic activity for the decomposition of formic acid at room temperature,and the foam of Ag1Pd1was better than Au1Pd1.The high catalytic activity of the dendritic foam films of Au1Pd1and Ag1Pd1is attributed to the presence of abundant active sites like steps,corners,kinksand edges in thenanodendrites,and to theelectronic effect.Such supported thin films of nanocatalysts are easier to operate than that of dispersed nanoparticles and homogeneous catalysts because they are convenient for controlling,seperating and recycling.We hope that this work opens a new avenue to develop supported solid film nanocatalysts for hydrogen production from formic acid decomposition in aqueous solution.

    Supporting information isavailable at http://www.wjhxxb.cn

    猜你喜歡
    維護費用渠系末級
    工程狀況與管理水平影響的渠系水利用效率指標體系的構建
    末級壓出室水力結構對多級離心泵水力性能的影響
    水泵技術(2022年3期)2022-08-26 08:59:18
    運載火箭末級離軌控制策略優(yōu)化
    超臨界機組鍋爐末級過熱器管爆管分析
    DF100A發(fā)射機末級電子管的計算與分析
    電子制作(2018年8期)2018-06-26 06:43:32
    無人機航遙技術在某灌區(qū)渠系信息提取中的應用
    燃氣輪機性能對聯(lián)合循環(huán)電站經(jīng)濟性的影響
    西部論叢(2017年5期)2017-10-25 14:20:58
    鐵路信息系統(tǒng)運行維護費用模型體系設計
    中國鐵路(2017年5期)2017-08-27 09:08:42
    灌區(qū)渠系水利用系數(shù)推求方法優(yōu)選研究
    黎榕灌區(qū)渠系水力計算及輸配水管設計
    99九九线精品视频在线观看视频| 少妇人妻一区二区三区视频| 亚洲伊人久久精品综合| 国产亚洲91精品色在线| videossex国产| 色视频www国产| 成人一区二区视频在线观看| 欧美区成人在线视频| 精华霜和精华液先用哪个| 一级片'在线观看视频| 男男h啪啪无遮挡| 日韩一区二区三区影片| 亚洲精华国产精华液的使用体验| 亚洲av日韩在线播放| 草草在线视频免费看| 欧美一区二区亚洲| 久久久久性生活片| 18+在线观看网站| 亚洲成人av在线免费| 亚洲熟女精品中文字幕| 精品少妇久久久久久888优播| 亚洲av免费高清在线观看| 99热这里只有精品一区| 亚洲色图av天堂| 日本av免费视频播放| 欧美少妇被猛烈插入视频| 免费观看的影片在线观看| 啦啦啦啦在线视频资源| 国产精品99久久久久久久久| 精品人妻视频免费看| 亚洲国产欧美在线一区| 精品一区二区三区视频在线| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 色吧在线观看| 99久久精品国产国产毛片| 欧美高清性xxxxhd video| 精品少妇黑人巨大在线播放| 国产黄频视频在线观看| 国产综合精华液| 97精品久久久久久久久久精品| 成人美女网站在线观看视频| 午夜福利网站1000一区二区三区| 久久久久久伊人网av| 高清不卡的av网站| 97精品久久久久久久久久精品| 联通29元200g的流量卡| 日本-黄色视频高清免费观看| 日韩精品有码人妻一区| 精品久久久久久久末码| 99热这里只有精品一区| 黑丝袜美女国产一区| 看非洲黑人一级黄片| 久久人人爽av亚洲精品天堂 | 国产毛片在线视频| 欧美日韩在线观看h| 久久ye,这里只有精品| 亚洲国产精品成人久久小说| 欧美一级a爱片免费观看看| 欧美区成人在线视频| 精品一区二区免费观看| 亚洲欧美清纯卡通| 日韩视频在线欧美| 黄色日韩在线| 亚洲国产av新网站| 最近手机中文字幕大全| 亚洲第一av免费看| 久久久久久九九精品二区国产| 日韩中文字幕视频在线看片 | 亚洲欧美一区二区三区黑人 | 精品一区二区免费观看| 在线观看免费高清a一片| 亚洲av综合色区一区| 久久久精品免费免费高清| 精品熟女少妇av免费看| 爱豆传媒免费全集在线观看| 成人无遮挡网站| 久久久久国产精品人妻一区二区| 高清欧美精品videossex| 校园人妻丝袜中文字幕| 在线观看美女被高潮喷水网站| 日韩成人av中文字幕在线观看| 联通29元200g的流量卡| 亚洲成人中文字幕在线播放| 亚洲久久久国产精品| 国产成人午夜福利电影在线观看| 久久精品国产亚洲av涩爱| 色5月婷婷丁香| 国产成人精品福利久久| 一个人看的www免费观看视频| 女性生殖器流出的白浆| 99视频精品全部免费 在线| 交换朋友夫妻互换小说| 亚洲精品国产色婷婷电影| 51国产日韩欧美| 成人午夜精彩视频在线观看| 精品人妻偷拍中文字幕| 色视频在线一区二区三区| 久久精品久久久久久久性| 色5月婷婷丁香| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 国产久久久一区二区三区| 亚洲av二区三区四区| 国产精品秋霞免费鲁丝片| 日韩欧美精品免费久久| h视频一区二区三区| 男的添女的下面高潮视频| 高清av免费在线| 亚洲国产色片| 久久av网站| 街头女战士在线观看网站| 青青草视频在线视频观看| 亚洲成人一二三区av| 精品少妇黑人巨大在线播放| 草草在线视频免费看| 午夜老司机福利剧场| 乱码一卡2卡4卡精品| 高清午夜精品一区二区三区| 97在线视频观看| 亚洲精品第二区| 高清视频免费观看一区二区| 久久久成人免费电影| 最后的刺客免费高清国语| 免费黄频网站在线观看国产| av在线蜜桃| 有码 亚洲区| 欧美精品亚洲一区二区| 国产在线免费精品| 色吧在线观看| 日本黄色片子视频| 色网站视频免费| 久久久久视频综合| 国产乱来视频区| 欧美精品一区二区大全| 久久久精品94久久精品| 性色av一级| 日韩国内少妇激情av| 少妇人妻 视频| 美女cb高潮喷水在线观看| 免费少妇av软件| 22中文网久久字幕| 亚洲国产精品一区三区| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久免费av| 十分钟在线观看高清视频www | 成人漫画全彩无遮挡| 亚洲成人一二三区av| 色综合色国产| 丰满人妻一区二区三区视频av| 日本欧美国产在线视频| 人人妻人人爽人人添夜夜欢视频 | 少妇人妻久久综合中文| 麻豆成人午夜福利视频| 尾随美女入室| 七月丁香在线播放| 国产 精品1| 亚洲久久久国产精品| 99热国产这里只有精品6| 欧美xxxx黑人xx丫x性爽| av在线app专区| 寂寞人妻少妇视频99o| 精品国产乱码久久久久久小说| 女人十人毛片免费观看3o分钟| 久久精品国产a三级三级三级| 99视频精品全部免费 在线| 免费久久久久久久精品成人欧美视频 | 亚洲最大成人中文| 国产男女超爽视频在线观看| 国产黄片美女视频| 色网站视频免费| 精品久久久久久久久亚洲| 成人18禁高潮啪啪吃奶动态图 | 亚洲色图av天堂| 汤姆久久久久久久影院中文字幕| av免费在线看不卡| 男女边吃奶边做爰视频| 亚洲国产精品一区三区| 18禁裸乳无遮挡免费网站照片| 国产成人aa在线观看| 免费黄网站久久成人精品| 亚洲第一av免费看| 亚洲丝袜综合中文字幕| 久久亚洲国产成人精品v| 免费av不卡在线播放| 亚洲精品乱码久久久久久按摩| 午夜日本视频在线| 亚洲av成人精品一二三区| 免费播放大片免费观看视频在线观看| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 国产欧美日韩精品一区二区| 99热国产这里只有精品6| 99久国产av精品国产电影| 99久久精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 大片免费播放器 马上看| 亚洲第一av免费看| 成人国产麻豆网| 下体分泌物呈黄色| 欧美激情极品国产一区二区三区 | 免费人成在线观看视频色| 免费高清在线观看视频在线观看| 一级毛片我不卡| 日韩欧美一区视频在线观看 | 午夜老司机福利剧场| 日本欧美视频一区| 亚洲美女视频黄频| 久久久久性生活片| 在线看a的网站| 偷拍熟女少妇极品色| 熟妇人妻不卡中文字幕| 身体一侧抽搐| 激情 狠狠 欧美| 亚洲精品成人av观看孕妇| 热re99久久精品国产66热6| 中国国产av一级| 国产黄色视频一区二区在线观看| 国产精品国产av在线观看| 亚洲精品视频女| 国产视频首页在线观看| 成年免费大片在线观看| 秋霞伦理黄片| 久久久久久九九精品二区国产| 日韩强制内射视频| 国产中年淑女户外野战色| 97超碰精品成人国产| 在线看a的网站| 久久久久人妻精品一区果冻| 久久久久久人妻| 在线天堂最新版资源| 国产亚洲欧美精品永久| 下体分泌物呈黄色| 国产成人一区二区在线| 精品国产乱码久久久久久小说| 国产精品女同一区二区软件| 亚洲美女搞黄在线观看| 在线天堂最新版资源| 五月玫瑰六月丁香| 久久久久精品性色| 日韩在线高清观看一区二区三区| 91aial.com中文字幕在线观看| 啦啦啦视频在线资源免费观看| 亚洲精品一区蜜桃| 国产有黄有色有爽视频| 大片电影免费在线观看免费| 久久精品国产亚洲网站| 久久精品国产亚洲av涩爱| 欧美精品一区二区免费开放| 国精品久久久久久国模美| 国产在线一区二区三区精| 亚洲欧美精品自产自拍| 2018国产大陆天天弄谢| 国产精品99久久99久久久不卡 | 一个人看的www免费观看视频| 最新中文字幕久久久久| 亚洲高清免费不卡视频| 国产大屁股一区二区在线视频| 岛国毛片在线播放| 亚洲欧美成人综合另类久久久| 搡老乐熟女国产| 日韩亚洲欧美综合| 又黄又爽又刺激的免费视频.| 久久久久久久久久人人人人人人| 国产一区二区三区av在线| 国产亚洲午夜精品一区二区久久| 春色校园在线视频观看| 精品久久久噜噜| 亚洲av日韩在线播放| 日韩av免费高清视频| 日本一二三区视频观看| 蜜桃久久精品国产亚洲av| 91狼人影院| 日韩av在线免费看完整版不卡| 97在线视频观看| a 毛片基地| 免费少妇av软件| 三级国产精品欧美在线观看| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| .国产精品久久| 日韩伦理黄色片| 免费观看的影片在线观看| 午夜免费男女啪啪视频观看| 男女啪啪激烈高潮av片| 大香蕉97超碰在线| 国产精品一区二区在线观看99| 国国产精品蜜臀av免费| 丝瓜视频免费看黄片| 午夜福利在线在线| 国语对白做爰xxxⅹ性视频网站| 伊人久久精品亚洲午夜| 国产精品一区二区在线不卡| 精品视频人人做人人爽| 色吧在线观看| 涩涩av久久男人的天堂| 精品一区二区免费观看| 九九爱精品视频在线观看| 日日啪夜夜撸| 国产精品久久久久久精品电影小说 | 亚洲成人中文字幕在线播放| 国产69精品久久久久777片| 久久久久久九九精品二区国产| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美日韩东京热| 97在线视频观看| 99热这里只有是精品50| www.色视频.com| 久久久久久久大尺度免费视频| 91午夜精品亚洲一区二区三区| 2021少妇久久久久久久久久久| www.av在线官网国产| 一级二级三级毛片免费看| 日韩一区二区视频免费看| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久久久免| 在线观看免费日韩欧美大片 | 啦啦啦视频在线资源免费观看| 国产乱人视频| 麻豆成人午夜福利视频| 两个人的视频大全免费| 国产精品久久久久成人av| 国产精品一区二区三区四区免费观看| 啦啦啦中文免费视频观看日本| 中文在线观看免费www的网站| 成人国产麻豆网| 蜜桃亚洲精品一区二区三区| 久久99蜜桃精品久久| 黄色视频在线播放观看不卡| 高清黄色对白视频在线免费看 | 国产久久久一区二区三区| 一区在线观看完整版| 小蜜桃在线观看免费完整版高清| 中文字幕av成人在线电影| 国产免费一级a男人的天堂| 亚洲欧美一区二区三区黑人 | 国产黄色免费在线视频| 中文天堂在线官网| 免费观看av网站的网址| 成人亚洲精品一区在线观看 | av在线观看视频网站免费| 日韩视频在线欧美| 国产男女超爽视频在线观看| 九草在线视频观看| 国产在线免费精品| 午夜福利在线在线| 久久精品久久久久久噜噜老黄| 国产精品av视频在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 丰满人妻一区二区三区视频av| 国产精品一区二区在线不卡| 啦啦啦啦在线视频资源| 亚洲丝袜综合中文字幕| 亚洲欧美一区二区三区黑人 | 18禁在线无遮挡免费观看视频| 免费观看的影片在线观看| 直男gayav资源| 免费观看性生交大片5| 少妇人妻精品综合一区二区| 日本欧美视频一区| 免费av不卡在线播放| 99热国产这里只有精品6| 激情 狠狠 欧美| 午夜激情福利司机影院| 久久久欧美国产精品| 这个男人来自地球电影免费观看 | 色视频在线一区二区三区| 国产精品一二三区在线看| 久久久久久久亚洲中文字幕| 国产午夜精品一二区理论片| 欧美区成人在线视频| 日产精品乱码卡一卡2卡三| 国产成人免费观看mmmm| av卡一久久| 美女视频免费永久观看网站| 免费看不卡的av| 亚洲精品亚洲一区二区| 精品久久国产蜜桃| 久久精品夜色国产| 99久久精品一区二区三区| 国产高潮美女av| 一级a做视频免费观看| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 寂寞人妻少妇视频99o| 日本猛色少妇xxxxx猛交久久| 亚洲国产色片| 日韩电影二区| 大话2 男鬼变身卡| 精品久久久久久久久av| 成年人午夜在线观看视频| 一级毛片aaaaaa免费看小| 久久人妻熟女aⅴ| 一边亲一边摸免费视频| 中文乱码字字幕精品一区二区三区| 国产色爽女视频免费观看| 国产有黄有色有爽视频| 亚洲欧美成人综合另类久久久| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 国产精品一区二区在线观看99| 亚洲欧美成人综合另类久久久| 久久6这里有精品| 91精品国产九色| 色综合色国产| 99久久精品热视频| 欧美成人一区二区免费高清观看| 蜜桃亚洲精品一区二区三区| 日韩,欧美,国产一区二区三区| av国产免费在线观看| 美女福利国产在线 | 久久婷婷青草| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品一区三区| 婷婷色av中文字幕| 黄色日韩在线| 高清日韩中文字幕在线| 精品人妻熟女av久视频| 人妻 亚洲 视频| 亚洲天堂av无毛| 国产在视频线精品| 九草在线视频观看| 不卡视频在线观看欧美| 亚洲美女黄色视频免费看| 日本av手机在线免费观看| 老熟女久久久| 最近中文字幕2019免费版| 国产亚洲午夜精品一区二区久久| 久久精品久久久久久久性| 99re6热这里在线精品视频| 日本vs欧美在线观看视频 | 免费不卡的大黄色大毛片视频在线观看| 狂野欧美激情性bbbbbb| 日日啪夜夜爽| .国产精品久久| 亚洲自偷自拍三级| 美女高潮的动态| 人体艺术视频欧美日本| 久久久国产一区二区| 色视频www国产| 精品国产露脸久久av麻豆| 激情五月婷婷亚洲| 国产深夜福利视频在线观看| 中文天堂在线官网| 亚洲色图综合在线观看| 一级爰片在线观看| 亚洲天堂av无毛| 老司机影院成人| 亚洲国产日韩一区二区| 欧美另类一区| 日本欧美视频一区| 日本vs欧美在线观看视频 | 国产成人aa在线观看| 九草在线视频观看| 麻豆国产97在线/欧美| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人 | 亚洲欧美日韩东京热| 十分钟在线观看高清视频www | 夫妻午夜视频| 99热这里只有精品一区| 国内少妇人妻偷人精品xxx网站| 久久6这里有精品| 久久这里有精品视频免费| 免费播放大片免费观看视频在线观看| 一本一本综合久久| 91狼人影院| 日日撸夜夜添| 热re99久久精品国产66热6| 全区人妻精品视频| 国产精品精品国产色婷婷| 精品亚洲成国产av| 一区在线观看完整版| 国内精品宾馆在线| 国产毛片在线视频| 久久久久久久久大av| 欧美xxxx性猛交bbbb| 国产黄片美女视频| 黑人猛操日本美女一级片| 尤物成人国产欧美一区二区三区| 亚洲av中文av极速乱| 国产精品久久久久久av不卡| av视频免费观看在线观看| 草草在线视频免费看| 国产黄色视频一区二区在线观看| 免费看光身美女| 亚洲av福利一区| 欧美 日韩 精品 国产| 亚洲av欧美aⅴ国产| 久久韩国三级中文字幕| 秋霞伦理黄片| 久久精品久久久久久噜噜老黄| 国产精品一区www在线观看| 五月开心婷婷网| 久久人人爽人人爽人人片va| 欧美高清性xxxxhd video| 免费人妻精品一区二区三区视频| 99久国产av精品国产电影| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级 | 欧美xxxx性猛交bbbb| 天堂中文最新版在线下载| av在线播放精品| 国产淫语在线视频| 在线观看一区二区三区| 乱系列少妇在线播放| 黄色日韩在线| 日本av手机在线免费观看| 免费少妇av软件| 少妇人妻 视频| 久久99热6这里只有精品| 欧美xxⅹ黑人| 毛片一级片免费看久久久久| 久久久欧美国产精品| 亚洲国产欧美在线一区| 国产一级毛片在线| 中文天堂在线官网| 亚洲国产最新在线播放| 色5月婷婷丁香| 高清av免费在线| av线在线观看网站| 日本av免费视频播放| 国产精品久久久久久精品电影小说 | 天堂俺去俺来也www色官网| 制服丝袜香蕉在线| 国产高清有码在线观看视频| 国产精品国产av在线观看| 亚洲自偷自拍三级| 乱码一卡2卡4卡精品| 草草在线视频免费看| 国产精品久久久久久精品古装| 1000部很黄的大片| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 免费大片18禁| 午夜免费男女啪啪视频观看| 国产亚洲最大av| 亚洲精品一二三| 欧美国产精品一级二级三级 | 久久久久久久国产电影| 免费观看a级毛片全部| 青春草国产在线视频| 亚洲精品乱码久久久久久按摩| 国产片特级美女逼逼视频| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 国产精品偷伦视频观看了| 韩国av在线不卡| 国产一区二区三区av在线| 少妇 在线观看| 天天躁夜夜躁狠狠久久av| 女性被躁到高潮视频| 天堂中文最新版在线下载| 亚洲av免费高清在线观看| 亚洲第一区二区三区不卡| 亚洲精品国产av成人精品| av在线蜜桃| 亚洲精品第二区| 男人舔奶头视频| 韩国av在线不卡| 久久精品人妻少妇| 久久久久精品性色| 肉色欧美久久久久久久蜜桃| 毛片一级片免费看久久久久| 黄色配什么色好看| 日本爱情动作片www.在线观看| 欧美老熟妇乱子伦牲交| 搡老乐熟女国产| av专区在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 超碰97精品在线观看| 只有这里有精品99| 狂野欧美激情性bbbbbb| 国产爱豆传媒在线观看| 在现免费观看毛片| h日本视频在线播放| 啦啦啦在线观看免费高清www| 国产一级毛片在线| 国产一区二区三区av在线| 亚洲精品第二区| 亚洲精品乱码久久久久久按摩| 我要看黄色一级片免费的| 色5月婷婷丁香| 国产国拍精品亚洲av在线观看| 老女人水多毛片| freevideosex欧美| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| 午夜福利视频精品| 免费大片黄手机在线观看| 亚洲色图综合在线观看| 亚洲国产日韩一区二区| 最近中文字幕高清免费大全6| 久久久久久久久久成人| 丰满迷人的少妇在线观看| 国产伦理片在线播放av一区| 一级二级三级毛片免费看| 国产毛片在线视频| 超碰av人人做人人爽久久| 国产精品99久久久久久久久| 色视频在线一区二区三区| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看| 亚洲最大成人中文| 女人十人毛片免费观看3o分钟| 色综合色国产| 国产精品久久久久成人av| 成人毛片60女人毛片免费| 欧美xxxx性猛交bbbb| 国产永久视频网站| 99热6这里只有精品| 亚洲精品视频女| 久久99热6这里只有精品| 亚洲天堂av无毛|