摘要:【目的】分析野釀2號(hào)毛葡萄果實(shí)發(fā)育進(jìn)程中蘋(píng)果酸代謝規(guī)律及相關(guān)基因表達(dá)情況,為提高野釀2號(hào)毛葡萄的釀造品質(zhì)及優(yōu)質(zhì)葡萄酒生產(chǎn)提供參考依據(jù)?!痉椒ā恳?年生野釀2號(hào)毛葡萄為試驗(yàn)材料,于盛花后5~17周采集不同生長(zhǎng)發(fā)育階段果實(shí),測(cè)定果實(shí)單粒重、pH、可溶性固形物和可滴定酸含量,采用高效液相色譜法測(cè)定果實(shí)中蘋(píng)果酸、檸檬酸和酒石酸含量;使用酶標(biāo)儀測(cè)定蘋(píng)果酸代謝關(guān)鍵酶[蘋(píng)果酸脫氫酶(NAD-MDH)、NADP-蘋(píng)果酸酶(NADP-ME)和磷酸烯醇式丙酮酸羧化酶(PEPC)]活性;采用實(shí)時(shí)熒光定量PCR檢測(cè)蘋(píng)果酸代謝相關(guān)基因PEPC、MDH和ME的相對(duì)表達(dá)量,并分析3個(gè)基因與蘋(píng)果酸含量的相關(guān)性。【結(jié)果】野釀2號(hào)毛葡萄果實(shí)單粒重在轉(zhuǎn)色期前增長(zhǎng)較快,轉(zhuǎn)色期的果實(shí)pH、可溶性固形物、蘋(píng)果酸含量分別是盛花后5周的1.03、1.36和2.38倍,盛花后11周可滴定酸含量達(dá)峰值,為35.68 mg/g。盛花后5~17周,野釀2號(hào)毛葡萄果實(shí)中酒石酸和檸檬酸含量變化不明顯,而蘋(píng)果酸含量變化幅度較大。盛花后8周,NAD-MDH和NADP-ME活性最高,分別為736.06和453.50 nmol/(g·min),幼果期PEPC活性較高。轉(zhuǎn)色期果實(shí)中MDH基因的相對(duì)表達(dá)量是盛花后5周的1.62倍,而PEPC和ME基因的相對(duì)表達(dá)量均低于盛花后5周。相關(guān)分析結(jié)果表明,蘋(píng)果酸含量與MDH基因呈極顯著正相關(guān)(P<0.01),與PEPC基因呈顯著正相關(guān)(P<0.05,下同),與ME基因呈顯著負(fù)相關(guān)?!窘Y(jié)論】野釀2號(hào)毛葡萄蘋(píng)果酸含量變化是影響總酸變化趨勢(shì)的主要因素,轉(zhuǎn)色期是蘋(píng)果酸含量由積累到降低的轉(zhuǎn)折期,蘋(píng)果酸含量受相關(guān)基因MDH、PEPC和ME表達(dá)調(diào)控。
關(guān)鍵詞:野釀2號(hào)毛葡萄;果實(shí)不同發(fā)育階段;蘋(píng)果酸;酶活性;基因表達(dá)
中圖分類(lèi)號(hào):S663.1文獻(xiàn)標(biāo)志碼:A文章編號(hào):2095-1191(2024)08-2332-10
Malic acid metabolism regulation and related genes expression VCVGugDZEF3ZTa6SaI165g==during berry development in Vitis heyneanacv.Yeniang No.2
QIN Hong-mei YANG Guo-shun LIANG Xiao-wen LUO Fei-xiong1*,HE Jian-jun2*
(1College of Horticulture,Hunan Agricultural University/Hunan Engineering and Technology Research Center for Grapes,Changsha,Hunan 410128,China;2Guangxi Academy of Special Crops/Laboratory of Germplasm Innovation andUtilization of Specialized Economic Crops in North Guangxi,Guilin,Guangxi 541004,China)
Abstract:【Objective】This study aimed to analyze the dynamics of malic acid metabolism and the expression patterns of related genes during berry development in Vitis heyneanacv.Yeniang No. provided reference for improving the brewing quality of V.heyneanacv.Yeniang No.2 and facilitating the production of high-quality wines.【Method】Five-year-old V.heyneanacv.Yeniang No.2 grapes were used as experimental materials,berries at different developmental stages were collected at 5-17 weeks after full bloom.The single berry weight,pH,soluble solids content(SSC)and titrata-ble acidity(TA)content were measured.High-performance liquid chromatography(HPLC)was employed to determine the contents of malic acid,citrate,and tartrate in the berries.Enzyme-linked immunosorbent assay(ELISA)was used to assess the activities of key enzymes in malic acid metabolism:activities of NAD-dependent malate dehydrogenase(NAD-MDH),NADP-malic enzyme(NADP-ME)and phosphoenolpyruvate carboxylase(PEPC).Real-time fluorescence quan-titative PCR was conducted to quantify the relative expression levels of genes related to malic acid metabolism(PEPC,MDHand ME),and the correlations between these genes and malic acid content were analyzed.【Result】The single berry weight of V.heyneanacv.Yeniang No.2 grapes increased rapidly before the veraisonstage.Duringveraison,pH,SSC and malic acid content of the berries were as 1.03,1.36,and 2.38 times as those of 5 week after full bloom respectively.The TA peaked at 11 weeks after full bloom,reaching 35.68 mg/g.From 5 to 17 weeks after full bloom,the contents oftartrate and citrate did not change greatly,while the malic acid content fluctua-ted greatly.The activities of NAD-MDH and NADP-ME peaked at 8 weeks after full bloom,with values of 736.06 and 453.50 nmol/(g·min)respectively,while PEPC activity was high during the early berry development stage.Duringveraison,the relative expression of MDH gene was as 1.62 times as that at 5 weeks after full bloom,while the relative expression levels of PEPC and ME genes werelower than that at 5 weeks after full bloom.Correlation analysis revealed extremely significant positive correlation be-tween malic acid content and MDH gene expression(P<0.01),significant positive correlation with PEPC gene expression(P<0.05,the same below),and significant negative correlation with ME gene expression.【Conclusion】Malic acid con-tent variation is the primary factor influencing the trend of total acidity in V.heyneanacv.Yeniang No.2 grapes.Theverai-son stage marks a transition from malic acid accumulation to degradation.The expression of related genes MDH,PEPC and ME regulates malic acid content during berry development.
Key words:Vitisheyneanacv.Yeniang No.2;different development stages of berries;malic acid;enzyme activity;gene expression
Foundation items:National Key Research and Development Program of China(2021YFD1200200);China Agricul-ture Research System(CARS-29-zp-9,CARS-29-22)
0引言
【研究意義】毛葡萄(Vitis heyneana)是葡萄屬東亞種群中分布最廣泛的種之一,截至2020年,廣西毛葡萄栽培面積超過(guò)7986ha(謝林君等,2022)。目前有關(guān)毛葡萄的研究多集中在品種選育、種質(zhì)資源調(diào)查、花色苷等果實(shí)品質(zhì)分析方面(王西銳等,2000;成果等,2017;趙明等,2020)。釀酒葡萄總酸度最高的是東亞種群,其次是北美種群,歐亞種群最低,毛葡萄為低糖高酸種(江雨等,2017)。毛葡萄成熟果實(shí)味道較酸,其蘋(píng)果酸含量高是主要原因之一。使用蘋(píng)果酸含量高的果實(shí)釀制的葡萄酒具有未成熟蘋(píng)果的酸味和澀味,且在葡萄酒后期貯藏時(shí)容易變酸或變質(zhì)(朱磊等,2022)。因此,研究野釀2號(hào)毛葡萄果實(shí)蘋(píng)果酸積累規(guī)律及與代謝酶的相關(guān)性,對(duì)提高野釀2號(hào)毛葡萄的釀造品質(zhì)及優(yōu)質(zhì)葡萄酒生產(chǎn)具有重要意義?!厩叭搜芯窟M(jìn)展】關(guān)于葡萄果實(shí)有機(jī)酸組分構(gòu)成、含量和各組分代謝規(guī)律的研究已有較多報(bào)道(陳國(guó)品等,2014;鄭麗靜等,2015;陳曉麗,2019;李治葦?shù)龋?021)。根據(jù)成熟果實(shí)有機(jī)酸中含量最高的酸組分分類(lèi),可將果實(shí)分為三大類(lèi):酒石酸、蘋(píng)果酸和檸檬酸優(yōu)勢(shì)型水果(陳發(fā)興等,2005)。葡萄是酒石酸優(yōu)勢(shì)型水果,葡萄成熟果實(shí)中主要含有酒石酸、蘋(píng)果酸及少量檸檬酸和琥珀酸。葡萄果實(shí)中的酒石酸在花后1個(gè)月內(nèi)迅速積累,轉(zhuǎn)移到液泡中儲(chǔ)存(楊巧鋒等,2023)。葡萄果實(shí)成熟過(guò)程中,酒石酸含量下降較少,未成熟葡萄果實(shí)酒石酸含量高于成熟果實(shí)(Weiet al.,2022)。蘋(píng)果酸代謝貫穿整個(gè)葡萄果實(shí)生長(zhǎng)發(fā)育過(guò)程,蘋(píng)果酸對(duì)增加果實(shí)風(fēng)味和提高釀酒質(zhì)量具有重要意義。蘋(píng)果酸參與葡萄果實(shí)中的三羧酸循環(huán)、糖酵解、呼吸作用等多個(gè)代謝過(guò)程,蘋(píng)果酸是葡萄果實(shí)中含量較高且能被顯著高效代謝的關(guān)鍵有機(jī)酸之一(Sweetman et al.,2009)。蘋(píng)果酸代謝受蘋(píng)果酸代謝關(guān)鍵酶的調(diào)控,其中蘋(píng)果酸脫氫酶(NAD-dependent malate dehydrogenase,NAD-MDH)、NADP-蘋(píng)果酸酶(Cytoplasmic NADP-dependent ma-lic enzyme,NADP-ME)、磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvate carboxylase,PEPC)是參與果實(shí)蘋(píng)果酸代謝的部分關(guān)鍵酶。蘋(píng)果酸在葡萄漿果中的長(zhǎng)期積累主要由NAD-MDH和PEPC這2種酶共同驅(qū)動(dòng),MDH和PEPC基因編碼的蛋白酶主要參與蘋(píng)果酸合成,ME基因的表達(dá)主要與蘋(píng)果酸降解相關(guān)(王西成等,2017)。NAD-MDH活性在葡萄果實(shí)發(fā)育初期較高,發(fā)育中期降至最低,并在發(fā)育末期出現(xiàn)波動(dòng)升高(Taureilles-Saurel et al.,1995)。因此,推測(cè)NAD-MDH活性變化與果實(shí)中蘋(píng)果酸的合成和分解有關(guān)。裴英豪等(2020)通過(guò)研究釀酒葡萄赤霞珠果實(shí)發(fā)育過(guò)程中有機(jī)酸的積累規(guī)律,發(fā)現(xiàn)果實(shí)中可滴定酸、蘋(píng)果酸和酒石酸含量的變化趨勢(shì)相似,均為先上升后下降。Diakou等(2000)通過(guò)比較正常酸和低酸含量葡萄品種的酸度及酸代謝關(guān)鍵酶差異,結(jié)果表明2個(gè)品種果實(shí)之間的PEPC活性差異并未造成蘋(píng)果酸含量差異,低pH品種果實(shí)PEPC活性顯著高于正常pH品種。蘋(píng)果酸代謝關(guān)鍵酶也參與了其他果樹(shù)果實(shí)中蘋(píng)果酸積累,如駿棗和酸棗果實(shí)中NAD-MDH活性與蘋(píng)果酸含量呈顯著正相關(guān)(馬倩倩等,2017)。果梅品種荔波-3和荔波-11果實(shí)中蘋(píng)果酸的積累差異主要由NAD-MDH、PEPC和NADP-ME活性協(xié)同變化引起(劉雅蘭等,2017)。紅寶石蘋(píng)果在果實(shí)不同生長(zhǎng)發(fā)育期以積累蘋(píng)果酸為主,NADP-ME和NAD-MDH協(xié)同調(diào)節(jié)果實(shí)中蘋(píng)果酸積累(楊光凱等,2023)。【本研究切入點(diǎn)】毛葡萄在廣西分布廣泛,其成熟果實(shí)中蘋(píng)果酸含量高是導(dǎo)致其釀造品質(zhì)不高的主要原因,目前關(guān)于其他葡萄品種有機(jī)酸合成代謝途徑的研究已相對(duì)成熟,但是毛葡萄蘋(píng)果酸的合成代謝途徑仍存在諸多疑問(wèn),野釀2號(hào)是從廣西野生毛葡萄中選育出的優(yōu)良兩性花毛葡萄品種(鄒瑜等,2013),是目前廣西毛葡萄的主栽品種,目前尚未見(jiàn)有關(guān)該品種果實(shí)中蘋(píng)果酸積累規(guī)律及與相關(guān)基因表達(dá)分析的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】以野釀2號(hào)毛葡萄為試驗(yàn)材料,測(cè)定果實(shí)單粒重、pH、可溶性固形物和可滴定酸含量等指標(biāo),采用高效液相色譜(HPLC)法測(cè)定該品種果實(shí)發(fā)育過(guò)程中的蘋(píng)果酸含量,使用酶標(biāo)儀測(cè)定蘋(píng)果酸代謝關(guān)鍵酶NADP-ME、NAD-MDH和PEPC活性,并采用實(shí)時(shí)熒光定量PCR檢測(cè)果實(shí)蘋(píng)果酸代謝相關(guān)基因PEPC、MDH和ME的相對(duì)表達(dá)量;分析3個(gè)基因與蘋(píng)果酸的相關(guān)性,為提高野釀2號(hào)毛葡萄的釀造品質(zhì)及優(yōu)質(zhì)葡萄酒生產(chǎn)提供參考依據(jù)。
1材料與方法
1.1試驗(yàn)材料
以種植于廣西桂林市臨桂區(qū)南邊山鎮(zhèn)東山基地的東亞種毛葡萄野釀2號(hào)(5年生)為試驗(yàn)材料,株行距為2.0 m×2.5 m,選取9穗生長(zhǎng)一致、健壯無(wú)病蟲(chóng)害的果穗,掛牌標(biāo)記,田間水肥管理和病蟲(chóng)害防治按照常規(guī)管理。
1.2試驗(yàn)方法
于盛花后5周開(kāi)始采集樣品,每周采集1次樣品直至果實(shí)成熟期(盛花后17周)。采樣時(shí)間為上午9:00-10:00,每次隨機(jī)挑選大小相近、色澤一致的葡萄果粒,采集約250 g果粒。果實(shí)用鋁箔采樣袋包裹,一部分用液氮速凍后帶回實(shí)驗(yàn)室,保存于-80℃超低溫冰箱中備用;另一部分使用冰盒帶回實(shí)驗(yàn)室用于測(cè)定果實(shí)品質(zhì)、有機(jī)酸含量及蘋(píng)果酸代謝相關(guān)酶活性。
1.3測(cè)定指標(biāo)及方法
1.3.1果實(shí)理化性質(zhì)測(cè)定使用電子天平(泉州貨集貿(mào)易有限公司)測(cè)定果實(shí)單粒重;參考郭淑萍等(2022)的方法采用氫氧化鈉酸堿滴定法測(cè)定可滴定酸含量;使用pH計(jì)(上海佑科儀器儀表有限公司)測(cè)定pH;采用電子糖度計(jì)(廣州市愛(ài)宕科學(xué)儀器有限公司)測(cè)定可溶性固形物含量。
1.3.2果實(shí)有機(jī)酸含量測(cè)定葡萄果實(shí)中酒石酸、蘋(píng)果酸和檸檬酸提取及含量測(cè)定參照胡志群等(2005)的方法。取0.2%磷酸10 mL在4℃低溫下預(yù)冷20 min,準(zhǔn)確稱取1.000 g樣品,裝進(jìn)已經(jīng)預(yù)冷的0.2%磷酸中,旋渦混勻,在4℃條件下12000r/min離心10 min,若有沉淀懸浮則離心2次。用一次性注射器吸取1 mL待測(cè)液,經(jīng)0.45μm微孔濾膜過(guò)濾后注入棕色進(jìn)樣瓶待測(cè),使用LC-20A型高效液相色譜儀(日本島津公司)測(cè)定酒石酸、蘋(píng)果酸和檸檬酸含量。
色譜條件:色譜柱為InertSustain C18柱(5μm,4.6 mm×250 mm),流動(dòng)相為甲醇∶0.2%磷酸=4∶96,流速1.0 mL/min,進(jìn)樣量10μL,柱溫30℃,檢測(cè)器為SPD-20A紫外檢測(cè)器,檢測(cè)波長(zhǎng)210nm。以標(biāo)準(zhǔn)溶液濃度(mg/L)為橫坐標(biāo),峰面積(mAU·min)為縱坐標(biāo),確定出峰時(shí)間繪制標(biāo)準(zhǔn)曲線,利用標(biāo)準(zhǔn)曲線計(jì)算樣品的酸含量。試驗(yàn)所用蘋(píng)果酸為分析純(AR≥99.5%),色譜級(jí)磷酸。標(biāo)準(zhǔn)曲線回歸方程線性關(guān)系良好,符合分析方法的要求(表1)。
1.3.3果實(shí)蘋(píng)果酸代謝相關(guān)酶活性測(cè)定采用酶活試劑盒(蘇州格銳思生物科技有限公司)測(cè)定酶活性。稱取0.100 g粉末果實(shí)樣品,加入1 mL提取液,進(jìn)行冰浴勻漿。4℃條件下12000r/min離心10min,取上清液置于冰上待測(cè)。酶活性反應(yīng)體系總體積為200μL,加入相應(yīng)的反應(yīng)底物后使用酶標(biāo)儀測(cè)定其吸光度,重復(fù)3次記錄吸光度變化,按樣本鮮重計(jì)算,酶活性以每克鮮樣組織在反應(yīng)體系中每分鐘生成1nmol NADP-ME、NAD-MDH和PEPC表示。
1.3.4果實(shí)蘋(píng)果酸代謝相關(guān)基因表達(dá)水平測(cè)定葡萄果實(shí)總RNA的提取使用多糖多酚植物專用RNA提取試劑盒Quick RNA Isolation Kit(北京華越洋生物科技有限公司)。以提取的果實(shí)總RNA為模板,按照SuperScript gDNA Removal cDNA Synthesis Kit試劑盒(北京華越洋生物科技有限公司)說(shuō)明書(shū)反轉(zhuǎn)錄合成第一鏈cDNA。
采用MonAmpTMSYBR?Green qPCR Mix試劑盒[莫納(蘇州)生物科技有限公司]對(duì)果實(shí)蘋(píng)果酸代謝相關(guān)基因PEPC、MDH和ME表達(dá)特性進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè)。以UBI(XM_002266714.1)為葡萄內(nèi)參基因,引物序列信息見(jiàn)表2(王西成等,2017),內(nèi)參及目的基因引物均委托武漢天一輝遠(yuǎn)生物科技有限公司合成。反應(yīng)體系10.0μL:cDNA模板1.0μL,上、下游引物各0.4μL,MonAmpTMSYBR?Green qPCR Mix 5.0μL,ddH2O補(bǔ)足至10.0μL。擴(kuò)增程序:95℃預(yù)變性h4nP/nq3zz2b6mwLOpg+aA6/cdiEEeBJESvoHWT/ctA=1 min;95℃10 s,60℃20 s,72℃30 s,進(jìn)行40個(gè)循環(huán)。重復(fù)3次。采用2-??Ct方法計(jì)算目的基因的相對(duì)表達(dá)量(Livak and Schmitt-gen,2001)。
1.4統(tǒng)計(jì)分析
采用Excel 2016和SPSS 27.0處理試驗(yàn)數(shù)據(jù)并進(jìn)行顯著性分析,使用Origin 2022制圖。
2結(jié)果與分析
2.1野釀2號(hào)毛葡萄果實(shí)發(fā)育過(guò)程中單粒重變化趨勢(shì)
由圖1可知,隨著野釀2號(hào)毛葡萄果實(shí)逐漸成熟,果實(shí)單粒重逐漸增加,轉(zhuǎn)色期前單粒重增加速度較快,轉(zhuǎn)色期后增速減緩。野釀2號(hào)果粒較小,最大單粒重為1.45 g。
2.2野釀2號(hào)毛葡萄果實(shí)發(fā)育過(guò)程中pH變化趨勢(shì)
由圖2可知,盛花后6~10周和12~17周野釀2號(hào)毛葡萄果實(shí)pH顯著高于盛花后5周(P<0.05,下同)。從采樣開(kāi)始到果實(shí)成熟,pH整體上呈升高趨勢(shì),盛花后16周果實(shí)pH達(dá)到峰值,為2.53。轉(zhuǎn)色期果實(shí)pH是盛花后5周的1.03倍,成熟期果實(shí)pH較盛花后5周、轉(zhuǎn)色期分別顯著升高16.06%和18.88%。
2.3野釀2號(hào)毛葡萄果實(shí)發(fā)育過(guò)程中可溶性固形物含量變化趨勢(shì)
由圖3可知,盛花后5~17周,野釀2號(hào)毛葡萄果實(shí)中可溶性固形物含量整體上持續(xù)升高,轉(zhuǎn)色期前升高幅度較小,轉(zhuǎn)色期后升高幅度增加。轉(zhuǎn)色期后1周至成熟期果實(shí)可溶性固形物含量顯著高于盛花后5~12周。轉(zhuǎn)色期果實(shí)可溶性固形物含量是盛花后5周的1.36倍,成熟期果實(shí)可溶性固形物含量最高,為10.37%,較盛花后5周果實(shí)可溶性固形物含量高234.52%。
2.4野釀2號(hào)毛葡萄果實(shí)發(fā)育過(guò)程中酸含量變化趨勢(shì)
野釀2號(hào)毛葡萄果實(shí)可滴定酸含量呈先升高后降低的變化趨勢(shì)(圖4-A)。隨著果實(shí)的發(fā)育成熟,除盛花后10周可滴定酸含量與盛花后9周無(wú)顯著差異外(P>0.05),自盛花后5周開(kāi)始至轉(zhuǎn)色前1周(盛花后11周),果實(shí)可滴定酸含量顯著升高,盛花后11周達(dá)峰值,為35.68 mg/g,較盛花后5周增加96.15%。轉(zhuǎn)色期果實(shí)中可滴定酸含量是成熟期的2.32倍。盛花后11周開(kāi)始,果實(shí)可滴定酸含量逐漸降低。成熟期果實(shí)可滴定酸含量降至13.60 mg/g。由圖4-B可知,盛花后5~12周,該品種果實(shí)蘋(píng)果酸含量持續(xù)積累,盛花后12周(轉(zhuǎn)色期)達(dá)到峰值,為24.75 mg/g,轉(zhuǎn)色期后果實(shí)蘋(píng)果酸含量開(kāi)始下降,成熟期降至最低值,為8.28 mg/g,與最高值相比下降66.55%。盛花后5周至轉(zhuǎn)色期,該品種葡萄果實(shí)蘋(píng)果酸含量升高138.29%。轉(zhuǎn)色期該品種果實(shí)蘋(píng)果酸含量顯著高于盛花后5周和成熟期果實(shí)蘋(píng)果酸含量,分別是盛花后5周、成熟期果實(shí)蘋(píng)果酸含量的2.38和2.99倍。野釀2號(hào)毛葡萄果實(shí)中可滴定酸和蘋(píng)果酸含量變化趨勢(shì)相似,均呈先升高后降低的變化趨勢(shì),分別在轉(zhuǎn)色期前1周和轉(zhuǎn)色期含量達(dá)到最高值,轉(zhuǎn)色期后含量迅速下降(圖4-A和圖4-B)。
由圖4-C可知,盛花后5~17周,野釀2號(hào)毛葡萄果實(shí)中酒石酸和檸檬酸含量變化不明顯,而蘋(píng)果酸含量變化幅度較大,說(shuō)明蘋(píng)果酸含量變化是影響可滴定酸含量變化趨勢(shì)的關(guān)鍵因素。果實(shí)中酒石酸含量在果實(shí)發(fā)育過(guò)程中起伏變化,盛花后5周含量最高,為18.32 mg/g,成熟期含量最低,為14.15 mg/g,下降22.76%。轉(zhuǎn)色期后1周,果實(shí)中檸檬酸含量達(dá)到峰值,為2.12 mg/g,成熟期降至1.38 mg/g,降低34.91%。轉(zhuǎn)色期,果實(shí)中蘋(píng)果酸含量(24.75 mg/g)明顯高于酒石酸和檸檬酸,分別為同一時(shí)期酒石酸和檸檬酸含量的1.63和11.85倍。盛花后5周和成熟期,果實(shí)中酒石酸含量最高,其次是蘋(píng)果酸,檸檬酸含量最低。
2.5野釀2號(hào)毛葡萄果實(shí)發(fā)育過(guò)程中蘋(píng)果酸代謝關(guān)鍵酶活性變化趨勢(shì)
由圖5-A可知,野釀2號(hào)毛葡萄果實(shí)的NAD-MDH活性呈起伏波動(dòng)變化趨勢(shì),盛花后8周,果實(shí)中酶活性最高,為736.06 nmol/(g·min),轉(zhuǎn)色期NAD-MDH活性為124.16 nmol/(g·min)。成熟期NAD-MDH活性最低,為37.64 nmol/(g·min),顯著低于盛花后5周和轉(zhuǎn)色期。
由圖5-B可知,野釀2號(hào)毛葡萄果實(shí)PEPC活性變化趨勢(shì)呈波動(dòng)變化趨勢(shì)。幼果期(盛花后5~7周)PEPC活性較高,盛花后5~8周,果實(shí)中PEPC活性持續(xù)降低,轉(zhuǎn)色前1周PEPC活性最低,為9.79 nmol/(g·min)。隨著果實(shí)成熟,盛花后11~15周,果實(shí)PEPC活性整體上呈持續(xù)升高趨勢(shì),盛花后15~16周PEPC活性大幅降低。轉(zhuǎn)色期和成熟期果實(shí)PEPC活性顯著低于盛花后5周。
由圖5-C可知,盛花后5~17周野釀2號(hào)毛葡萄果實(shí)中NADP-ME活性呈先升高后降低的變化趨勢(shì)。盛花后5~8周,野釀2號(hào)果實(shí)NADP-ME活性顯著升高,盛花后8周,NADP-ME活性最高,為453.50 nmol/(g·min),盛花后8~17周總體呈波動(dòng)下降趨勢(shì)。轉(zhuǎn)色期和成熟期果實(shí)NADP-ME活性均顯著高于盛花后5周。成熟期NADP-ME活性為32.86 nmol/(g·min)。轉(zhuǎn)色期、成熟期果實(shí)中NADP-ME活性分別是盛花后5周的3.09和4.09倍。
2.6野釀2號(hào)毛葡萄果實(shí)發(fā)育過(guò)程中蘋(píng)果酸代謝相關(guān)基因表達(dá)情況
由圖6-A可知,野釀2號(hào)毛葡萄果實(shí)中MDH基因的相對(duì)表達(dá)量整體上呈先降低后升高再降低再升高的起伏變化趨勢(shì)。盛花后8周至轉(zhuǎn)色期,果實(shí)中MDH基因的相對(duì)表達(dá)量整體上呈升高趨勢(shì),轉(zhuǎn)色期果實(shí)中MDH基因的相對(duì)表達(dá)量較盛花后8周顯著增加144.32%轉(zhuǎn)色期果實(shí)中MDH基因的相對(duì)表達(dá)量是盛花后5周的1.62倍,且達(dá)到顯著差異水平。成熟期果實(shí)中MDH基因的相對(duì)表達(dá)量最高,顯著高于除轉(zhuǎn)色期外的11個(gè)調(diào)查日期。
由圖6-B可知,盛花后5~7周和9~11周,野釀2號(hào)毛葡萄果實(shí)中PEPC基因的相對(duì)表達(dá)量呈下降趨勢(shì),盛花后7~9周和11~13周果實(shí)中PEPC基因相對(duì)表達(dá)量呈上升趨勢(shì),盛花后13~17周果實(shí)中PEPC基因的相對(duì)表達(dá)量整體上呈降低趨勢(shì),盛花后14~15周和16~17周下降幅度較大。轉(zhuǎn)色期后1周即盛花后13周,果實(shí)中PEPC基因的相對(duì)表達(dá)量最高。轉(zhuǎn)色期與成熟期果實(shí)PEPC基因的相對(duì)表達(dá)量均顯著低于盛花后5周,分別顯著降低16.80%和86.34%。
由圖6-C可知,野釀2號(hào)毛葡萄在果實(shí)生長(zhǎng)發(fā)育過(guò)程中,ME基因的相對(duì)表達(dá)量整體上呈先下降后上升再下降的變化趨勢(shì),盛花后5~9周果實(shí)中ME基因相對(duì)表達(dá)量持續(xù)降低,10~15周該基因的相對(duì)表達(dá)量大幅度升高,盛花后15~17周該基因的相對(duì)表達(dá)量大幅度下降,到成熟期,果實(shí)中ME基因相對(duì)表達(dá)量顯著低于盛花后5周。轉(zhuǎn)色期至盛花后15周,果實(shí)中ME基因的相對(duì)表達(dá)量呈近直線上升趨勢(shì),盛花15周之后ME基因的相對(duì)表達(dá)量又呈近直線下降趨勢(shì)。成熟期果實(shí)中ME基因的相對(duì)表達(dá)量顯著低于盛花后5周。
2.7蘋(píng)果酸代謝相關(guān)基因與蘋(píng)果酸含量的相關(guān)分析結(jié)果
由表3可知,野釀2號(hào)毛葡萄果實(shí)中3個(gè)蘋(píng)果酸代謝相關(guān)基因與蘋(píng)果酸含量均擬合為一次方程。MDH基因與蘋(píng)果酸含量呈極顯著正相關(guān)(P<0.01),相關(guān)系數(shù)為0.849;PEPC基因與蘋(píng)果酸含量呈顯著正相關(guān),相關(guān)系數(shù)為0.602;ME基因與蘋(píng)果酸含量顯著負(fù)相關(guān),相關(guān)系數(shù)為-0.123。
3討論
成熟果實(shí)中蘋(píng)果酸含量是釀酒葡萄品種的重要品質(zhì)指標(biāo)(劉蕊等,2013),蘋(píng)果酸在評(píng)估葡萄酒質(zhì)量方面發(fā)揮著重要作用,研究毛葡萄果實(shí)中蘋(píng)果酸的積累規(guī)律對(duì)葡萄酒釀造具有重要意義。蘋(píng)果酸較酒石酸受溫度、濕度等環(huán)境因素影響更大,且熱敏性高于酒石酸。本研究通過(guò)測(cè)定野釀2號(hào)毛葡萄不同生長(zhǎng)發(fā)育期果實(shí)中有機(jī)酸含量,研究蘋(píng)果酸動(dòng)態(tài)變化規(guī)律,結(jié)果表明在轉(zhuǎn)色期前,果實(shí)中可滴定酸和蘋(píng)果酸含量呈上升趨勢(shì),轉(zhuǎn)色期達(dá)到最大值,與美樂(lè)葡萄果實(shí)中有機(jī)酸含量變化規(guī)律相似(李治葦?shù)龋?021)。Ruffner和Hawker(1977)研究發(fā)現(xiàn)歐亞種葡萄蘇丹娜果實(shí)轉(zhuǎn)色前1周蘋(píng)果酸含量最高,為120.0 mmol/kg,盛花后10周蘋(píng)果酸含量最低,為3.2 mmol/kg,果實(shí)蘋(píng)果酸含量下降97.33%。而本研究中野釀2號(hào)毛葡萄果實(shí)轉(zhuǎn)色期蘋(píng)果酸含量最高,為24.75 mg/g,成熟期蘋(píng)果酸含量最低,為8.28 mg/g,蘋(píng)果酸含量下降66.55%。轉(zhuǎn)色期前后野釀2號(hào)毛葡萄果實(shí)中蘋(píng)果酸含量下降幅度明顯小于歐亞種葡萄蘇丹娜,推測(cè)這是導(dǎo)致毛葡萄成熟果實(shí)中蘋(píng)果酸含量較高的原因。本研究中野釀2號(hào)毛葡萄成熟期果實(shí)有機(jī)酸中含量最高的是酒石酸,其次是蘋(píng)果酸,檸檬酸含量最低,與在鮮食葡萄果實(shí)發(fā)育過(guò)程中有機(jī)酸組分的積累規(guī)律一致(任言等,2024)。野釀2號(hào)毛葡萄蘋(píng)果酸含量變化是影響總酸變化趨勢(shì)的主要因素,轉(zhuǎn)色期開(kāi)始果實(shí)蘋(píng)果酸含量下降幅度較大,而可溶性固形物含量在轉(zhuǎn)色期開(kāi)始大幅度升高,因此造成轉(zhuǎn)色期蘋(píng)果酸含量下降的原因可能是蘋(píng)果酸被分解參與糖分積累,三羧酸循環(huán)與果實(shí)體積增大導(dǎo)致蘋(píng)果酸含量下降(問(wèn)亞琴等,2009);其次,也可能是由于葡萄成熟期正值炎熱夏季,總酸和蘋(píng)果酸含量代謝及降解速率較快,導(dǎo)致蘋(píng)果酸含量降低(Reshefetal.,2022)。
果實(shí)生長(zhǎng)過(guò)程中逐漸積累蘋(píng)果酸,當(dāng)果實(shí)生長(zhǎng)發(fā)育減緩時(shí),果實(shí)會(huì)逐漸變軟,蘋(píng)果酸含量也會(huì)迅速降低。葡萄果實(shí)蘋(píng)果酸代謝過(guò)程復(fù)雜,受多個(gè)基因及相關(guān)酶綜合調(diào)控,蘋(píng)果酸的積累水平取決于蘋(píng)果酸代謝相關(guān)基因的表達(dá)與調(diào)控,MDH、PEPC和ME基因是參與蘋(píng)果酸代謝的部分關(guān)鍵酶合成基因,這些基因的相對(duì)表達(dá)量在果實(shí)發(fā)育過(guò)程中受到溫度、濕度等環(huán)境因子的影響(劉蓉等,2016)。PEPC將PEP縮合成草酰乙酸(OAA)為MDH合成提供原料,在三羧酸循環(huán)中MDH催化蘋(píng)果酸與OAA的可逆反應(yīng),幼果期PEPC活性保持較高水平,成熟前活性迅速降低。MDH和PEPC聯(lián)合驅(qū)動(dòng)葡萄果實(shí)蘋(píng)果酸的合成,ME在葡萄果實(shí)成熟過(guò)程中的蘋(píng)果酸降解中起主要作用(Ruffneretal.,1984),本研究結(jié)果與之基本一致,幼果期PEPC活性較高。本研究中野釀2號(hào)毛葡萄MDH基因的相對(duì)表達(dá)量在轉(zhuǎn)色期達(dá)到最高水平,轉(zhuǎn)色之后MDH基因相對(duì)表達(dá)量下降,與果實(shí)轉(zhuǎn)色前蘋(píng)果酸大量積累的情況相符。盛花后9周至轉(zhuǎn)色期前1周,野釀2號(hào)果實(shí)PEPC基因的相對(duì)表達(dá)量降低,猜測(cè)此時(shí)期蘋(píng)果酸含量較高限制了PEPC活性。野釀2號(hào)果實(shí)轉(zhuǎn)色期1周后PEPC基因的相對(duì)表達(dá)量逐漸降低,與果梅和蘋(píng)果果實(shí)中NAD-MDH和PEPC調(diào)控蘋(píng)果酸合成的結(jié)果一致(姚玉新等,2010;劉雅蘭等,2017)。猜測(cè)原因是此時(shí)果實(shí)不再進(jìn)行光合作用積累蘋(píng)果酸,果實(shí)代謝所需的碳源不再由葉片合成的蔗糖來(lái)提供,而是需要蘋(píng)果酸的降解提供,但具體作用機(jī)制有待進(jìn)一步研究。
本研究發(fā)現(xiàn),轉(zhuǎn)色前2周,即盛花后10周,野釀2號(hào)毛葡萄果實(shí)中的ME基因相對(duì)表達(dá)量最低,而后開(kāi)始升高,轉(zhuǎn)色期后蘋(píng)果酸含量開(kāi)始降低,野釀2號(hào)毛葡萄果實(shí)中ME基因與蘋(píng)果酸含量呈顯著負(fù)相關(guān),與菠蘿(張秀梅等,2007)和蘋(píng)果(楊光凱等,2023)中的研究結(jié)果一致。進(jìn)入轉(zhuǎn)色期,野釀2號(hào)果實(shí)PEPC基因相對(duì)表達(dá)量增加,說(shuō)明在轉(zhuǎn)色期果實(shí)中的PEPC仍參與蘋(píng)果酸的合成。
綜上所述,野釀2號(hào)成熟果實(shí)蘋(píng)果酸含量高是由于轉(zhuǎn)色前合成量多、轉(zhuǎn)色期后降解量較少造成的。下一步將繼續(xù)針對(duì)野釀2號(hào)毛葡萄轉(zhuǎn)色期蘋(píng)果酸的代謝機(jī)制進(jìn)行深入研究。在實(shí)際生產(chǎn)中可在果實(shí)轉(zhuǎn)色后通過(guò)促進(jìn)野釀2號(hào)毛葡萄果實(shí)蘋(píng)果酸降解的栽培措施以降低成熟果實(shí)中蘋(píng)果酸含量,提高其釀造品質(zhì)。
4結(jié)論
野釀2號(hào)毛葡萄蘋(píng)果酸含量變化是影響總酸變化趨勢(shì)的主要因素,轉(zhuǎn)色期是蘋(píng)果酸含量由積累到降低的轉(zhuǎn)折期,蘋(píng)果酸含量受相關(guān)基因MDH、PEPC和ME表達(dá)調(diào)控。
參考文獻(xiàn)(References):
陳發(fā)興,劉星輝,陳立松.2005.果實(shí)有機(jī)酸代謝研究進(jìn)展[J].果樹(shù)學(xué)報(bào),22(5):526-531.[Chen F X,Liu X H,Chen L S.2005.Advances in research on organic acid metabolism in fruits[J].Journal of Fruit Science,22(5):526-531.]doi:10.13925/j.cnh1Y+kjR6+aNO+N1BKU2OBckGQ6gRmp/j/H6i6fjAmJ4=ki.gsxb.2005.05.020.
陳國(guó)品,白先進(jìn),李洪艷,韓佳宇,盤(pán)豐平,謝蜀豫,曹慕明.
2014.葡萄冬果成熟過(guò)程中有機(jī)酸變化的研究[J].河北林業(yè)科技,(Z1):37-40.[Chen G P,Bai X J,LXUAHeC6p0CHeKvHviY+cCa9/sqMgUhSZIZkgYPnlLA0=i H Y,Han J Y,Pan F P,Xie S Y,Cao M M.2014.Studies on changes in organic acids during ripening of grape winter berries[J].Journal of Hebei Forestry Science and Techno-logy,(Z1):37-40.]doi:10.16449/j.cnki.issn 1002-3356.2014.z 1.033.
陳曉麗.2019.高效液相色譜法測(cè)定釀酒葡萄果實(shí)中的有機(jī)酸[J].河北果樹(shù),(4):12-14.[Chen X L.2019.Determi-nation of organic acids in wine grape berries by high per-formance liquid chromatography[J].Hebei Fruits,(4):12-14.]doi:10.19440/j.cnki.1006-9402.2019.04.006.
成果,周思泓,張勁,張瑛,管敬喜,楊瑩,謝林君,文仁德.2017.毛歐雜種葡萄‘NW196’花色苷組成與相關(guān)基因表達(dá)分析[J].園藝學(xué)報(bào),44(6):1073-1084.[Cheng G,Zhou S H,Zhang J,Zhang Y,Guan J X,Yang Y,Xie L J,Wen R D.2017.Analysis of anthocyanin composition and genes expression patterns of Vitis quinquangularis×V.vinifera‘NW196’[J].Acta Horticulturae Sinica,44(6):1073-1084.]doi:10.16420/j.issn.0513-353x.2016-0693.
郭淑萍,楊順林,楊玉皎,張永輝,孟富宣,何建軍,張俊松,金杰.2022.GA3和CPPU對(duì)無(wú)核翠寶葡萄果實(shí)品質(zhì)的影響[J].果樹(shù)學(xué)報(bào),39(10):1834-1844.[Guo S P,Yang S L,Yang Y J,Zhang Y H,Meng F X,He J J,Zhang J S,Jin J.2022.Effect of GA3 and CPPU treatments on fruit quality of WuheCuibao grape[J].Journal of Fruit Science,39(10):1834-1844.]doi:10.13925/j.cnki.gsxb.20220074.
胡志群,王惠聰,胡桂兵.2005.高效液相色譜測(cè)定荔枝果肉中的糖、酸和維生素C[J].果樹(shù)學(xué)報(bào),22(5):582-585.[Hu Z Q,Wang H C,Hu G B.2005.Measurement of su-gars,organic acids and vitamin C in litchi fruit by high performance liquid chromatography[J].Journal of Fruit Science,22(5):582-585.]doi:10.13925/j.cnki.gsxb.2005.05.035.
江雨,孟江飛,劉崇懷,姜建福,樊秀彩,嚴(yán)靜,張振文.2017.中國(guó)野生葡萄果實(shí)基本品質(zhì)、酚類(lèi)物質(zhì)含量及其抗氧化活性分析[J].食品科學(xué),38(7):142-148.[Jiang Y,Meng J F,Liu C H,Jiang J F,F(xiàn)an X C,Yan J,Zhang Z W.2017.Quality characteristics,phenolics content and antioxidant activity of Chinese wild grapes[J].Food Science,38(7):142-148.]doi:10.7506/spkx 1002-6630-201707023.
李治葦,張萍,李慶,王云霞,靳磊.2021.釀酒葡萄果實(shí)發(fā)育過(guò)程中糖酸積累規(guī)律的研究[J].食品安全質(zhì)量檢測(cè)學(xué)報(bào),12(19):7738-7743.[Li Z W,Zhang P,Li Q,Wang Y X,Jin L.2021.Study on the accumulation regularity of sugar and acid in the development process of wine grape fruit[J].Journal of Food Safety&Quality,12(19):7738-7743.]doi:10.19812/j.cnki.jfsq 11-5956/ts.2021.19.034.
劉蓉,丁文魁,徐彬,楊吉萍,張春松,馬中華.2016.溫室葡萄生育期管理及氣象條件分析[J].中國(guó)農(nóng)學(xué)通報(bào),32(19):130-135.[Liu R,Ding W K,Xu B,Yang J P,Zhang C S,Ma Z H.2016.Greenhouse grapes:Growth period manage-ment and meteorological condition analysis[J].ChineseAgricultural Science Bulletin,32(19):130-135.]
劉蕊,高茜,段長(zhǎng)青,潘秋紅.2013.避雨栽培對(duì)釀酒葡萄有機(jī)酸的影響[J].熱帶生物學(xué)報(bào),4(3):251-256.[Liu R,Gao Q,Duan C Q,Pan Q H.2013.Effects of rain-shelter culti-vation on the organic acid content of wine grape berry[J].Journal of Tropical Biology,4(3):251-256.]doi:10.15886/j.cnki.rdswxb.2013.03.013.
劉雅蘭,靳志飛,陳紅.2017.果梅果實(shí)發(fā)育過(guò)程中有機(jī)酸含量及相關(guān)代謝酶活性的變化特征[J].西北植物學(xué)報(bào),37(1):130-137.[Liu Y L,Jin Z F,Chen H.2017.Changes of the organic acid concentrations and the relative meta-bolic enzyme activities during the development of Prunus mume fruit[J].Acta Botanica Boreali-Occidentalia Sinica,37(1):130-137.]doi:10.7606/j.issn.1000-4025.2017.01.0130.
馬倩倩,蒲小秋,王德,于軍,吳翠云.2017.棗果實(shí)發(fā)育過(guò)程中有機(jī)酸質(zhì)量分?jǐn)?shù)及相關(guān)代謝酶活性的變化[J].西北農(nóng)業(yè)學(xué)報(bào),26(12):1821-1827.[Ma Q Q,Pu X Q,Wang D,Yu J,Wu C Y.2017.Changes in organic acid concentra-tion and acid-metabolising enzymatic activities during development of jujube fruits[J].Acta AgriculturaeBoreali-Occidentalis Sinica,26(12):1821-1827.]doi:10.7606/j.issn.1004-1389.2017.12.011.
裴英豪,王云霞,李浩浩,鄒倩,文炳南,靳磊.2020.‘赤霞珠’葡萄果實(shí)中有機(jī)酸的積累規(guī)律[J].安徽農(nóng)學(xué)通報(bào),26(21):19-20.[Pei Y H,Wang Y X,Li H H,Zou Q,Wen B N,Jin L.2020.Accumulation of organic acids in‘Caber Sauvignon’grape berries[J].Anhui Agricultural Science Bulletin,26(21):19-20.]doi:10.16377/j.cnki.issn 1007-7731.2020.21.008.
任言,劉婉君,李美璇,喬月蓮,王莉,師校欣,杜國(guó)強(qiáng).2024.鮮食葡萄果實(shí)發(fā)育過(guò)程中有機(jī)酸積累差異研究[J].中外葡萄與葡萄酒,(3):67-74.[Ren Y,Liu W J,Li M X,Qiao Y L,Wang L,Shi X X,Du G Q.2024.Study on dif-ferences of organic acid accumulation during fruit develop-ment of table grape[J].Sino-Overseas Grapevine&Wine,(3):67-74.]doi:10.13414/j.cnki.zwpp.2024.03.009.
王西成,錢(qián)亞明,吳偉民,趙密珍,周蓓蓓,王壯偉,巫建華.2017.6-BA對(duì)葡萄果實(shí)中有機(jī)酸積累及相關(guān)基因表達(dá)的影響[J].華北農(nóng)學(xué)報(bào),32(5):149-153.[Wang X C,Qian Y M,Wu W M,Zhao M Z,Zhou B B,Wang Z W,Wu J H.2017.Effect of 6-BA on organic acidc content and related genes expression in grape berry[J].Acta Agricul-turaeBoreali-Sinica,32(5):149-153.]doi:10.7668/hbnxb.2017.05.023.
王西銳,阮仕立,李華.2000.毛葡萄釀酒及其利用研究初報(bào)[J].中外葡萄與葡萄酒,(3):63-65.[Wang X R,Ruan S L,Li H.2000.A preliminary report on the study of wine-making and utilization of the vitisheyneana[J].Sino-Overseas Grapevine&Wine,(3):63-65.]doi:10.13414/j.cnki.zwpp.2000.03.026.
問(wèn)亞琴,張艷芳,潘秋紅.2009.葡萄果實(shí)有機(jī)酸的研究進(jìn)展[J].海南大學(xué)學(xué)報(bào)(自然科學(xué)版),27(3):302-307.[Wen Y Q,Zhang Y F,Pan Q H.2009.Progress on organic acids in grape berries[J].Journal of Hainan University(Natural Science),27(3):302-307.]doi:10.15886/j.cnki.hdxbzkb.2009.03.016.
謝林君,張勁,吳代東,李洪艷,曹慕明,周思泓,張瑛,龐麗婷,成果.2022.廣西9個(gè)釀酒葡萄品種果實(shí)糖酸組分特征解析[J].中外葡萄與葡萄酒,(5):37-45.[Xie L J,Zhang J,Wu D D,Li H Y,Cao M M,Zhou S H,Zhang Y,Pang L T,Cheng G.2022.Characteristics of sugar and acid components in nine wine grape varieties in Guangxi region[J].Sino-Overseas Grapevine&Wine,(5):37-45.]doi:10.13414/j.cnki.zwpp.2022.05.006.
楊光凱,薛詩(shī)怡,李嘉禎,李匯斌,高燕,張小軍,郝燕燕.2023.紅寶石蘋(píng)果果實(shí)有機(jī)酸組分及蘋(píng)果酸代謝酶活性分析[J].果樹(shù)學(xué)報(bào),40(5):884-892.[Yang G K,Xue S Y,Li J Z,Li H B,Gao Y,Zhang X J,Hao Y Y.2023.Analysis of organic acid components and malic acid metabolizing enzyme activity in Hongbaoshi apple fruits[J].Journal of Fruit Science,40(5):884-892.]doi:10.13925/j.cnki.gsxb.20220451.
楊巧鋒,李長(zhǎng)林,裴忺,龔林忠,金莉,王俊芳,方林川.2023.葡萄果實(shí)酒石酸研究進(jìn)展[J].中外葡萄與葡萄酒,(2):66-72.[Yang Q F,Li C L,Pei X,Gong L Z,Jin L,Wang J F,F(xiàn)ang L C.2023.Research progress on tartaric acid of grape berries[J].Sino-Overseas Grapevine&Wine,(2):66-72.]doi:10.13414/j.cnki.zwpp.2023.02.011.
姚玉新,李明,由春香,劉志,王冬梅,郝玉金.2010.蘋(píng)果果實(shí)中蘋(píng)果酸代謝關(guān)鍵酶與蘋(píng)果酸和可溶性糖積累的關(guān)系[J].園藝學(xué)報(bào),37(1):1-8.[Yao Y X,Li M,You C X,Liu Z,Wang D M,Hao Y J.2010.Relationship between malic acid metabolism-related key enzymes and accumulation of malic acid as well as the soluble sugars in apple fruit[J].Acta Horticulturae Sinica,37(1):1-8.]doi:10.16420/j.issn.0513-353x.2010.01.031.
張秀梅,杜麗清,孫光明,弓德強(qiáng),陳佳瑛,李偉才,謝江輝.2007.菠蘿果實(shí)發(fā)育過(guò)程中有機(jī)酸含量及相關(guān)代謝酶活性的變化[J].果樹(shù)學(xué)報(bào),24(3):381-384.[Zhang X M,Du L Q,Sun G M,Gong D Q,Chen J Y,Li W C,Xie J H.2007.Changes in organic acid concentrations and therela-tive enzyme activities during the development of Cayenne pineapple fruit[J].Journal of Fruit Science,24(3):381-384.]doi:10.13925/j.cnki.gsxb.2007.03.029.
趙明,武鵬,龍芳,林茜,何海旺,鄒瑜,潘永杰,李賢高,呂朝安,韓曉華.2020.野生毛葡萄新品種野釀3號(hào)的選育及栽培技術(shù)要點(diǎn)[J].中國(guó)南方果樹(shù),49(4):167-168.[Zhao M,Wu P,Long F,Lin X,He H W,Zou Y,Pan Y J,Li X G,LüC A,Han X H.2020.Selection and breeding of new wild Vitis heyneanae variety Yeniang No.3 and the main points of cultivation technology[J].South China Fruits,49(4):167-168.]doi:10.13938/j.issn.1007-1431.20190655.
鄭麗靜,聶繼云,閆震.2015.糖酸組分及其對(duì)水果風(fēng)味的影響研究進(jìn)展[J].果樹(shù)學(xué)報(bào),32(2):304-312.[Zheng L J,Nie J Y,Yan Z.2015.Advances in research on sugars,organic acids and their effects on taste of fruits[J].Journal of Fruit Science,32(2):304-312.]doi:10.13925/j.cnki.gsxb.20140271.
朱磊,陳蕓華,胡禧熙,李新月,戰(zhàn)川,呂珊珊.2022.葡萄有機(jī)酸的研究進(jìn)展[J].中外葡萄與葡萄酒,(6):88-95.[Zhu L,Chen Y H,Hu X X,Li X Y,Zhan C,LüS S.2022.Research progress of organic acids in grape[J].Sino-Overseas Grapevine&Wine,(6):88-95.]doi:10.13414/j.cnki.zwpp.2022.06.015.
鄒瑜,林貴美,牟海飛,呂朝安,吳代東,張進(jìn)忠,覃柳燕,趙明.2013.兩性花野生毛葡萄新品種——“野釀2號(hào)”的選育[J].中國(guó)南方果樹(shù),42(5):107-108.[Zou Y,Lin G M,Mou H F,LüC A,Wu D D,Zhang J Z,Qin LY,Zhao M.2013.Selection and breeding of a new variety of wild Vitis heyneana——“Yeniang No.2”[J].South China Fruits,42(5):107-108.]doi:10.13938/j.issn.1007-1431.2013.05.037.
Diakou P,Svanella L,Raymond P,Gaudillère J P,Mong A.2000.Phosphoenolpyruvate carboxylase during grape berry development:Protein level,enzyme activity and regulation[J].Functional Plant Biology,27(3):221-229.doi:10.1071/PP99141.
Livak K J,Schimittgen T D.2001.Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ct method[J].Methods,25(4):402-408.doi:10.1006/meth.2001.1262.
Reshef N,Karn A,Manns D C,Mansfield A K,Cadle-Davidson L,Reisch B,Sacks G L.2022.Stable QTL for malate levels in ripe fruit and their transferability across Vitis species[J].Horticulture Research,9:uhac009.doi:10.1093/hr/uhac009.
Ruffner H P,Hawker J S.1977.Control of glycolysis in ripe-ning berries of Vitis vinifera[J].Phytochemistry,16(8):1711-1175.doi:10.1016/S0031-9422(00)94354-1.
Ruffner H P,Possner D,Brem S,Rast D.M.1984.The physio-logical role of malic enzyme in grape ripening[J].Planta,160:444-448.doi:10.1007/BF00429761.
Sweetman C,Deluc L G,Cramer G R,F(xiàn)ord C M,Soole K L.2009.Regulation of malate metabolism in grape berry and other developing fruits[J].Phytochemistry,70(11-12):1329-1344.doi:10.1016/j.phytochem.2009.08.006.
Taureille-Ssaurel C,Romieu C G,Robin J P,F(xiàn)lanzy C.1995.Grape(Vitis vinifera L.)malate dehydrogenase.II.charac-terization of the major mitochondrial and cytosolic iso-forms and their role in ripening[J].American Journal of Enology and Viticulture,46:29-36.doi:10.5344/ajev.1995.46.1.29.
Wei M Y,Ma T T,Cao M M,Wei B S,Li C,Li C H,Zhang K K,F(xiàn)ang Y L,Sun X Y.2022.Biomass estimation and cha-racterization of the nutrient components of thinned unripe grapes in China and the global grape industries[J].Food Chemistry:X,15:15100363.doi:10.1016/j.fochx.2022.100363.
(責(zé)任編輯李洪艷)