• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data Augmentation based Convolutional Neural Network for Auscultation

    2019-07-30 08:52:32,,,,2,,2
    復旦學報(自然科學版) 2019年3期

    , , , ,2, ,2

    (1. School of Computer Science and Technology, Fudan University, Shanghai 201203, China; 2. Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China)

    Abstract: Acoustic analysis has great potential for clinical application because of its objective, non-invasive and low-cost nature. Auscultation is an important part of Traditional Chinese Medicine(TCM). By analyzing a voice signal, we attempt to diagnose the syndrome of the subject by labelling them normal or deficient. In this paper, we explore a Data Augmentation based Convolutional Neural Network(DACNN) for auscultation. The idea behind this method is the use of Convolutional Neural Network(CNN) on imbalanced data with data augmentation for automatic feature extraction and classification. We conduct experiments on our auscultation dataset containing voice segments of 959 speakers (346 males and 613 females), which were labeled by two experienced TCM physicians. We demonstrate the effectiveness of data augmentation to overcome the imbalanced dataset problem. We also compare its performance with traditional machine learning methods. By using DACNN, we achieve 97.25% diagnosis accuracy for females and 95.12% diagnosis accuracy for males, with 1%—10% improvement in accuracy and slight improvements in other indicators over traditional machine learning methods. The experimental results demonstrate that the proposed approach is helpful for objective auscultation diagnosis.

    Keywords: acoustic analysis; traditional Chinese medicine; auscultation; convolutional neural network; machine learning method; data augmentation

    Auscultation is to utilize the auditory sense to differentiate the patient’s syndromes or perform disease classification[1]. In the theory of TCM, pathology or disease would occur if the Ying-Yang balance was disturbed in the human body. Irregular vibrations of the human body system would be apparent in some parts of the body such as speech sound. In primitive TCM, the accuracy of auscultation largely depends on the doctor’s professional level. Hence it is often considered qualitative, subjective and unreliable to some extent due to lack of objective quantification, especially when compared to western medicine.

    In recent years, the development of objective TCM diagnosis studies has relieved the issues mentioned above. Specifically, objective auscultation is often achieved by acoustic analysis. In general, most existing studies focus on extracting different acoustic features by signal processing methods. However, there is no specific feature corresponding to the process of acoustic diagnosis. For example, according to TCM theory, voice largely depends on Zang Qi; a normal person’s voice with sufficient Zang Qi usually sounds sonorous and steady, while a deficient person’s voice lacking Zang Qi is usually timid and weak. These characteristics may correspond to acoustic features such as energy, shimmer, Linear Predictive Cepatral Coefficient(LPCC), etc. We can utilize deep learning to perform automatic feature extraction which could avoid omitting features in some way.

    Deep learning has been successfully used for classification tasks in many domains, such as computer vision and speech recognition. However, few studies have used deep learning for auscultation diagnosis. In this paper, we propose DACNN that is, utilizing data augmentation (adding noise) to overcome the imbalanced dataset problem and then using CNN for automatic feature extraction and classification. We expect convolutional layers to automatically learn high-level features and the fully connected layers to differentiate a patient’s syndromes into normal and deficient.

    1 Related work

    Most related works use traditional machine learning methods with extracted signal features. Chiu et al.[2]extract four acoustic parameters (temporal parameters: zero-crossing rates, variations on peaks and valleys, as well as spectral parameters: variations on peaks and valleys, spectral energy ratios) and classify syndromes into non-vacuity, moderate qi-vacuity and severe qi-vacuity through logistic regression. In their later work[3], they utilize a non-linear method (fractal dimension parameters) for auscultation, which is proved slightly better than their previous work. Yan et al.[4]utilize Support Vector Machine(SVM) to differentiate syndromes into health, Qi-vacuity, and Yin-vacuity with wavelet packet transform and approximate entropy. Later, Yan et al.[5]focus on non-stationarity of vocal signal, which uses non-linear cross-prediction to extract features. Furthermore, they proved that auscultation features based on the fractal dimension combined with wavelet packet transform were conductive to differentiate healthy, lung Qi-deficiency and lung Yin-deficiency[6].

    In general, feature extraction by signal processing technique is the first step for traditional machine learning methods. On one hand, features correspond to TCM diagnosis principles such as zero-crossing rate, energy, jitter and shimmer[2-3]are often commonly selected. On the other hand, features frequently used in relevant areas (e.g. speech recognition, singer identification) are also considered, such as Mel-Frequency Cepstral Coefficients(MFCC)[7], LPCC[8]and LSP[9], etc.

    For machine learning methods, the most commonly used method is SVM[10], which finds the optimal hyperplane that separates two classes maximizing the margin between separating boundary[4-6]. Gaussian Mixture Model(GMM)[11], boosting[12], random forest[13]and Auto-Associative Neural Networks(AANN)[14]are also commonly used methods in related tasks.

    2 Methodology

    In this paper, we proposed DACNN for auscultation to differentiate a patient’s syndrome into normal and deficient. The overview of proposed DACNN method and traditional models can be seen in Fig.1.

    Fig.1 The overview of proposed DACNN method and traditional methods

    2.1 Data balancing

    The number of both syndromes of our dataset is imbalanced. This issue will be introduced in detail in Section 3.1. There are two solutions:

    (1) Weighting imbalanced data

    This method attributes normal instances more weight than deficient instances. For example, the number of deficient male instances is 6 times that of normal male instances. Therefore, we give more weight to normal instances when assigning classification.

    (2) Data augmentation

    This method uses data augmentation techniques to generate new ‘data’ with little changes. Commonly used techniques in audio fields are: time shifting, pitch shifting, time stretching, noise adding, and so on. Because we will utilize pitch related features, and time shifting may distort some important patterns, we chose to add random Gaussian noise. Note that we will constrain the amplitude of the noise so that it mimics noise in the environment without significant impact on the original audio.

    2.2 The architecture of DACNN

    We use Short-Time Fourier Transform(STFT) to transform voice signals from time-domain into spectral-domain. In this pre-processing step, each recording was split into multiple 10 ms long segments (Hamming windowed) with 50% overlap. Then the spectrogram is reshaped to 513×250 points, removing the area with almost no information. An example of input feature maps can be seen in Fig.2. We utilize CNN to automatically extract high-level features that can differentiate normal and deficient syndromes from input feature maps.

    Fig.2 The input feature map of a voice segment

    For DACNN architecture, we use three stacks of convolutional layers to transform input feature maps into a high-level feature representation. A set of 16 kernels (5×5) is used to convolve the input feature maps with stride one. Then max-pooling is down-sampled by 4×4 shape filters to reduce the dimensionality of feature maps. We use Rectified Linear Unit(RELU) as activation function to make it non-linear and fit for classification. The second and third convolutional layers are almost the same as the first one except we use 32 filters to convolve. There are three fully connected layers ended with a Softmax layer for classification. We also combine cross entropy withL2 regularization to prevent over-fitting. The architecture of DACNN can be seen in Fig.3.

    Fig.3 The architecture of proposed DACNN model

    3 Experiments

    3.1 Datasets

    All data in our dataset was collected and labeled by a TCM institution in China. Each recording segment contains a normal pitch of vowel /a/ vocalization of duration about 1—3s. The recordings are sampled at 50kHz with 16-bit resolution. Each voice recording was labeled normal or deficient by two experienced and professional TCM doctors. We removed all the recordings which have inconsistent labels.

    Tab.1 Detailed information of our dataset

    Considering the different acoustic characteristics between genders, we split the dataset into female dataset and male dataset. Finally, we got a collection of 959 voice recordings, containing 346 males and 613 females. More detailed information of our dataset is listed in Tab.1.

    Modern people are mostly of a sub-optimal health. The number of deficient people in our dataset is also much higher than that of normal people, which corresponds to our expectations. However, the imbalanced ratio between normal and deficient groups is an important issue we need to solve.

    3.2 Evaluation metrics

    Considering different acoustic characteristics between genders, we perform experiments with female and male samples separately. We use a 10-fold cross-validation method and utilize the indicators of accuracy, precision, recall, and F1 value to measure the performance of our results. The indicators are calculated as follows:

    (1)

    (2)

    (3)

    (4)

    whereTPrepresents true positive number,TNrepresents true negative number,FPrepresents false positive number andFNrepresents false negative number.

    The dataset is divided into a training set and a testing set containing 70% and 30% samples respectively.

    3.3 Hyper-parameter setting

    We utilize PyTorch framework to build and train our DACNN on GPU with a NVIDIA GTX1070. The dataset is split into mini-batches (50). Adam Optimizer is chosen with learning rate of 0.000 5. The decay weight ofL2 regularization is set to 0.000 1 and the maximum epochs of training is set to 100.

    3.4 Experimental results

    3.4.1 Comparison of two data balancing methods

    Consistent with previous experiments, commonly used features such as zero-crossing rate, energy, jitter, shimmer, MFCC, LPCC and LSP are extracted and combined into an 89-dimentional feature representation vector for each voice recording. Then Principal Components Analysis(PCA) is used to remove irrelevant features and avoid over-fitting. Most previous studies utilize SVM as the classifier; here we also choose SVM (with no parameter tuning) as the baseline method to compare two data balancing methods (weighting unbalanced data and data augmentation) with na?ve baseline model.

    Tab.2 Detailed information of augmented dataset

    For data augmentation method, we “create” some data for training as described in Section 2.1. Note that there is no augmented data in the testing set in order to evaluate the proposed method more accurately. The detail of augmented dataset can be seen in Tab.2.

    The results of baseline model and two proposed models can be seen in Tab.3.

    Tab.3 The comparison of data balancing methods

    From the results we find that, with data balancing, almost all the indicators improve, which indicates that both data balancing methods work. The data augmentation method has better performance, especially for accuracy; hence we will use this method for our later experiments.

    3.4.2 Comparison of proposed DACNN with traditional machine learning methods

    Our baseline models are commonly used machine learning methods with extracted features.Firstly, we extract features that are the same as Section 3.4.1. For comparison, we choose various commonly used traditional machine learning algorithms, such as SVM, GMM, adaboost, random forest and AANN with optimal parameter settings. The comparison of different classifiers (with optimal parameters) is shown in Tab.4.

    Tab.4 The comparison of data balancing method

    From the table we find that, by using CNN, we achieved 97.25% diagnosis accuracy for females and 95.12% diagnosis accuracy for males, compared to 95.15% diagnosis accuracy for females and 94.29% diagnosis accuracy for males by using best performance traditional methods. Among traditional machine learning methods, SVM’s performance did not demonstrate the highest accuracy (92.79% for females and 92.31% for males). But compared to other methods, it demonstrated good F1 values (0.961 6 for female and 0.940 3 for male), which indicates strong generalization ability. Adaboost and the Random Forest method had high accuracy (95.15%, 93.60% for females and 94.29%, 93.57% for males respectively), both of which can handle samples with high dimensional features well. Owing to its symmetric topology network architecture, AANN performed well (95.13% for females and 90.01% for males).

    The proposed DACNN method observed better performance over traditional machine learning methods on both male and female datasets. Its F1 value is high (0.970 0 for female and 0.950 4 for male), indicating great generalization ability. DACNN learned to recognize high-level features through its convolutional layers, and became adept at differentiating syndromes. Taken together, our results demonstrated the effectiveness of the proposed DACNN method.

    4 Conclusion

    In this paper, we proposed a DACNN method for differentiating the patient’s syndromes into normal and deficient. We perform experiments with female and male samples separately on our newly constructed dataset. We first compare two data balancing methods (data augmentation and weighting unbalanced data), and we demonstrate that data augmentation has better performance for the same classifier. Then we compare our proposed method with several traditional machine learning methods (SVM, GMM, Adaboost, random forest and AANN). The results show that DACNN achieved 97.25% diagnosis accuracy for females and 95.12% diagnosis accuracy for males, with 1%—10% accuracy improvement and slight improvements in other indicators. We demonstrate that, with high-level feature representation ability, the proposed DACNN method is helpful for objective auscultation diagnosis.

    In the future, we plan to expand data set with high quality label. Secondly, considering that recordings with inconsistent labels were removed, the remaining data has better distinguishable degree. It is challenging and meaningful to explore audio with controversial labels. Besides, we will explore to model both local feature and the temporal dependency for auscultation. Furthermore, we will try to differentiate syndromes into normal, Qi-deficient, and Yin-deficient.

    亚洲人与动物交配视频| 丝瓜视频免费看黄片| 亚洲伊人久久精品综合| 国产淫语在线视频| a级毛色黄片| 免费播放大片免费观看视频在线观看| 亚洲电影在线观看av| 欧美极品一区二区三区四区| 性插视频无遮挡在线免费观看| 国产高清不卡午夜福利| 久久精品国产a三级三级三级| 亚洲av免费高清在线观看| 又粗又硬又长又爽又黄的视频| 男的添女的下面高潮视频| 黄色配什么色好看| 国产乱人偷精品视频| 国产亚洲一区二区精品| 国产精品熟女久久久久浪| 日本与韩国留学比较| 欧美激情久久久久久爽电影| 国产中年淑女户外野战色| 在线观看国产h片| 国产成年人精品一区二区| 国产成人精品久久久久久| 狠狠精品人妻久久久久久综合| 国产女主播在线喷水免费视频网站| 一级毛片电影观看| 中文字幕av成人在线电影| 国产精品国产av在线观看| 一级黄片播放器| 美女cb高潮喷水在线观看| 成人漫画全彩无遮挡| 街头女战士在线观看网站| 精品国产露脸久久av麻豆| 亚洲人成网站高清观看| 国产亚洲av嫩草精品影院| 嫩草影院精品99| 亚洲精品久久久久久婷婷小说| 网址你懂的国产日韩在线| 亚洲精品一二三| av在线app专区| 乱系列少妇在线播放| 免费观看无遮挡的男女| 亚洲综合精品二区| 午夜福利网站1000一区二区三区| 不卡视频在线观看欧美| 成人欧美大片| 日韩一区二区三区影片| 一本久久精品| 国内精品宾馆在线| 日韩亚洲欧美综合| 69人妻影院| 国产亚洲午夜精品一区二区久久 | 精品熟女少妇av免费看| 三级男女做爰猛烈吃奶摸视频| 秋霞伦理黄片| 国产一级毛片在线| 人妻系列 视频| 好男人在线观看高清免费视频| 亚洲精品日本国产第一区| 亚洲精品久久午夜乱码| 久久国产乱子免费精品| 寂寞人妻少妇视频99o| 九草在线视频观看| 日日摸夜夜添夜夜添av毛片| 又爽又黄a免费视频| 嘟嘟电影网在线观看| 97精品久久久久久久久久精品| 亚洲欧美日韩卡通动漫| 亚洲自偷自拍三级| 国产精品无大码| 大话2 男鬼变身卡| 亚洲国产日韩一区二区| 在线亚洲精品国产二区图片欧美 | 高清av免费在线| 日本与韩国留学比较| 免费观看在线日韩| 成年版毛片免费区| 中国美白少妇内射xxxbb| 国产精品蜜桃在线观看| 男人爽女人下面视频在线观看| 久久韩国三级中文字幕| 激情五月婷婷亚洲| 亚洲美女视频黄频| 国产精品无大码| 中文字幕av成人在线电影| 男女啪啪激烈高潮av片| 日韩国内少妇激情av| 国产伦精品一区二区三区四那| 观看免费一级毛片| 国产亚洲av嫩草精品影院| 91精品伊人久久大香线蕉| 在线观看一区二区三区| av在线观看视频网站免费| 伦理电影大哥的女人| 欧美老熟妇乱子伦牲交| 午夜免费观看性视频| 日韩欧美一区视频在线观看 | 亚洲无线观看免费| 又黄又爽又刺激的免费视频.| 香蕉精品网在线| 51国产日韩欧美| 精品人妻熟女av久视频| 最近手机中文字幕大全| 精品少妇久久久久久888优播| 日本wwww免费看| 男的添女的下面高潮视频| 亚洲色图av天堂| 国产欧美日韩精品一区二区| 国产爽快片一区二区三区| 简卡轻食公司| 婷婷色av中文字幕| 国产精品久久久久久精品电影小说 | 久久久久精品性色| 欧美一区二区亚洲| 狂野欧美激情性xxxx在线观看| 国产成年人精品一区二区| 日日撸夜夜添| 国产精品一及| 亚洲精品色激情综合| 五月玫瑰六月丁香| 久久久国产一区二区| 大片电影免费在线观看免费| 亚洲av.av天堂| 国产永久视频网站| 交换朋友夫妻互换小说| 制服丝袜香蕉在线| 久久久久久久久久人人人人人人| 白带黄色成豆腐渣| 成人综合一区亚洲| 免费黄色在线免费观看| 日韩一区二区三区影片| 午夜激情福利司机影院| 久久99热6这里只有精品| 亚洲天堂国产精品一区在线| 99热这里只有是精品在线观看| 乱系列少妇在线播放| 99热全是精品| 亚洲欧美中文字幕日韩二区| 韩国av在线不卡| 久热久热在线精品观看| 国产精品久久久久久精品古装| 中文字幕制服av| 免费黄网站久久成人精品| 亚洲精品一区蜜桃| 观看免费一级毛片| 中文字幕久久专区| 亚洲av中文字字幕乱码综合| 可以在线观看毛片的网站| 国产淫语在线视频| 99久久精品一区二区三区| 联通29元200g的流量卡| 国产伦在线观看视频一区| 伦精品一区二区三区| 天天一区二区日本电影三级| 久久久久国产网址| 国产毛片a区久久久久| 看十八女毛片水多多多| 天堂中文最新版在线下载 | 日韩一本色道免费dvd| 22中文网久久字幕| 日日啪夜夜撸| 五月伊人婷婷丁香| 成人国产麻豆网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品三级大全| 欧美另类一区| 超碰av人人做人人爽久久| 国产精品爽爽va在线观看网站| 国产综合精华液| 久久影院123| 午夜福利视频精品| 午夜老司机福利剧场| 精品一区二区三区视频在线| 国产黄色视频一区二区在线观看| a级毛色黄片| 一级黄片播放器| 韩国高清视频一区二区三区| 国产欧美日韩一区二区三区在线 | 在现免费观看毛片| 国产精品99久久99久久久不卡 | 成人一区二区视频在线观看| 日韩电影二区| 亚洲丝袜综合中文字幕| 高清在线视频一区二区三区| videos熟女内射| 国产成人a区在线观看| 秋霞伦理黄片| 人妻一区二区av| 亚洲,欧美,日韩| 亚洲成色77777| 国产黄片美女视频| 亚洲av二区三区四区| 边亲边吃奶的免费视频| 日韩中字成人| 午夜激情久久久久久久| 成人漫画全彩无遮挡| 丝袜美腿在线中文| 亚洲欧美中文字幕日韩二区| 秋霞在线观看毛片| 在线亚洲精品国产二区图片欧美 | 午夜激情福利司机影院| 国产91av在线免费观看| 新久久久久国产一级毛片| 国产伦精品一区二区三区四那| 网址你懂的国产日韩在线| av在线蜜桃| 婷婷色综合大香蕉| 少妇的逼好多水| 日韩成人av中文字幕在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲av欧美aⅴ国产| 青春草视频在线免费观看| 午夜免费观看性视频| av专区在线播放| 十八禁网站网址无遮挡 | 国国产精品蜜臀av免费| 精品久久久久久久末码| 91久久精品国产一区二区成人| 国产在视频线精品| 国产一级毛片在线| 波多野结衣巨乳人妻| 欧美日韩综合久久久久久| 亚洲av欧美aⅴ国产| 国产一区二区在线观看日韩| 少妇的逼好多水| 国产免费视频播放在线视频| 老司机影院成人| 国产精品一二三区在线看| av线在线观看网站| 精品久久久久久久人妻蜜臀av| 五月开心婷婷网| 午夜福利网站1000一区二区三区| 又大又黄又爽视频免费| 日韩av免费高清视频| 丝袜美腿在线中文| 少妇熟女欧美另类| 久久精品国产a三级三级三级| 国产午夜精品一二区理论片| 三级男女做爰猛烈吃奶摸视频| 免费高清在线观看视频在线观看| 99久久精品热视频| 欧美一区二区亚洲| 成人国产麻豆网| 久久久色成人| 干丝袜人妻中文字幕| 观看免费一级毛片| 欧美老熟妇乱子伦牲交| 两个人的视频大全免费| 久久精品国产自在天天线| 97在线视频观看| 国产成人a∨麻豆精品| 少妇熟女欧美另类| 最近最新中文字幕大全电影3| 亚洲精华国产精华液的使用体验| 亚洲国产日韩一区二区| 大话2 男鬼变身卡| 九九久久精品国产亚洲av麻豆| 噜噜噜噜噜久久久久久91| 国产精品熟女久久久久浪| 狠狠精品人妻久久久久久综合| av专区在线播放| 人人妻人人澡人人爽人人夜夜| 日韩av在线免费看完整版不卡| 精华霜和精华液先用哪个| 亚洲av免费在线观看| 久久99热这里只频精品6学生| 最近的中文字幕免费完整| 亚洲久久久久久中文字幕| 在线精品无人区一区二区三 | 免费看av在线观看网站| 亚洲不卡免费看| 国产伦在线观看视频一区| 永久免费av网站大全| 成人国产麻豆网| 69av精品久久久久久| 在现免费观看毛片| 中文字幕人妻熟人妻熟丝袜美| 在线精品无人区一区二区三 | 亚洲国产日韩一区二区| 亚洲av日韩在线播放| 五月天丁香电影| 偷拍熟女少妇极品色| 美女cb高潮喷水在线观看| 热re99久久精品国产66热6| 大又大粗又爽又黄少妇毛片口| 三级经典国产精品| 91aial.com中文字幕在线观看| 国产一区二区亚洲精品在线观看| 一本久久精品| 直男gayav资源| 国产成人精品福利久久| 亚洲成人精品中文字幕电影| 深爱激情五月婷婷| 韩国av在线不卡| 日韩欧美一区视频在线观看 | 国产精品精品国产色婷婷| 深爱激情五月婷婷| 99久国产av精品国产电影| 亚洲不卡免费看| 伊人久久精品亚洲午夜| 欧美精品人与动牲交sv欧美| 在线观看国产h片| 香蕉精品网在线| 久久鲁丝午夜福利片| 深夜a级毛片| 亚洲av电影在线观看一区二区三区 | 国产成人免费无遮挡视频| 三级国产精品片| 日韩视频在线欧美| 1000部很黄的大片| 一级毛片久久久久久久久女| 直男gayav资源| 纵有疾风起免费观看全集完整版| 亚洲av免费在线观看| 国产 精品1| av在线老鸭窝| 精品国产露脸久久av麻豆| 亚洲国产av新网站| 亚洲国产精品成人综合色| 蜜桃亚洲精品一区二区三区| 欧美日本视频| 日韩av在线免费看完整版不卡| 搡老乐熟女国产| 国产黄色视频一区二区在线观看| 观看免费一级毛片| 亚洲第一区二区三区不卡| 五月玫瑰六月丁香| 五月天丁香电影| 久久精品熟女亚洲av麻豆精品| 国产乱人视频| 色哟哟·www| 精品人妻熟女av久视频| 国产色爽女视频免费观看| 91狼人影院| 哪个播放器可以免费观看大片| 色视频在线一区二区三区| 久热久热在线精品观看| 99re6热这里在线精品视频| 亚洲精品成人久久久久久| 国产一区二区亚洲精品在线观看| 国产中年淑女户外野战色| 国产成人一区二区在线| eeuss影院久久| 男男h啪啪无遮挡| 久久精品久久久久久久性| 亚洲国产精品999| 只有这里有精品99| 日本av手机在线免费观看| 国产精品蜜桃在线观看| 内射极品少妇av片p| 只有这里有精品99| 69人妻影院| 熟妇人妻不卡中文字幕| 色综合色国产| 日日撸夜夜添| 免费观看的影片在线观看| 亚洲国产精品国产精品| 亚洲经典国产精华液单| xxx大片免费视频| 国产精品久久久久久精品电影小说 | 免费不卡的大黄色大毛片视频在线观看| 午夜老司机福利剧场| 亚洲天堂国产精品一区在线| 精品国产露脸久久av麻豆| 少妇的逼好多水| 精品一区二区三区视频在线| 国产免费又黄又爽又色| 麻豆久久精品国产亚洲av| 国产亚洲午夜精品一区二区久久 | 欧美最新免费一区二区三区| 久久精品久久久久久噜噜老黄| 久久精品久久精品一区二区三区| 欧美成人精品欧美一级黄| 在线精品无人区一区二区三 | 国产精品国产三级专区第一集| 嫩草影院精品99| 麻豆乱淫一区二区| 久久久久久久久久成人| 亚洲精品成人久久久久久| 卡戴珊不雅视频在线播放| 久久久a久久爽久久v久久| 国产女主播在线喷水免费视频网站| 色哟哟·www| 韩国av在线不卡| 亚洲精品一二三| 美女主播在线视频| 午夜福利视频精品| 高清毛片免费看| 国产女主播在线喷水免费视频网站| 精品久久国产蜜桃| 狂野欧美激情性bbbbbb| 日韩在线高清观看一区二区三区| av在线观看视频网站免费| 国产黄片视频在线免费观看| 欧美成人午夜免费资源| 少妇高潮的动态图| 日韩制服骚丝袜av| 老司机影院成人| a级一级毛片免费在线观看| 亚洲真实伦在线观看| 91精品伊人久久大香线蕉| 久久久a久久爽久久v久久| 三级国产精品欧美在线观看| 日韩av免费高清视频| 国产乱来视频区| 不卡视频在线观看欧美| 菩萨蛮人人尽说江南好唐韦庄| 日韩亚洲欧美综合| 美女被艹到高潮喷水动态| 2022亚洲国产成人精品| 校园人妻丝袜中文字幕| 最近最新中文字幕大全电影3| 国产精品一区二区性色av| 久久精品综合一区二区三区| 建设人人有责人人尽责人人享有的 | 亚洲自拍偷在线| 欧美xxxx黑人xx丫x性爽| 国产成人精品一,二区| 欧美精品一区二区大全| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| 99热6这里只有精品| 国产精品一区二区三区四区免费观看| 一本色道久久久久久精品综合| 欧美3d第一页| 国产老妇女一区| 免费大片18禁| 国产综合懂色| 成人国产麻豆网| 三级国产精品片| 1000部很黄的大片| 亚洲精品国产av成人精品| 成人美女网站在线观看视频| 天天躁夜夜躁狠狠久久av| 97超视频在线观看视频| 中文乱码字字幕精品一区二区三区| 欧美老熟妇乱子伦牲交| 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 中文字幕久久专区| 久久久午夜欧美精品| 国产免费一区二区三区四区乱码| 亚洲在线观看片| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 秋霞伦理黄片| av免费观看日本| 亚洲四区av| 欧美+日韩+精品| 亚洲怡红院男人天堂| 亚洲欧美中文字幕日韩二区| 亚洲性久久影院| 最近最新中文字幕免费大全7| 亚洲精品第二区| 成人高潮视频无遮挡免费网站| 亚洲av男天堂| 麻豆精品久久久久久蜜桃| 网址你懂的国产日韩在线| 久久久国产一区二区| 久热久热在线精品观看| 免费观看av网站的网址| 一级毛片久久久久久久久女| 中文在线观看免费www的网站| 午夜日本视频在线| 九九在线视频观看精品| 永久免费av网站大全| 日日摸夜夜添夜夜爱| videos熟女内射| 又大又黄又爽视频免费| 青春草国产在线视频| 亚洲国产高清在线一区二区三| av国产精品久久久久影院| 人人妻人人看人人澡| 国产精品国产三级国产av玫瑰| 欧美成人精品欧美一级黄| 午夜福利网站1000一区二区三区| 少妇裸体淫交视频免费看高清| 免费少妇av软件| 精品国产乱码久久久久久小说| 精品一区二区三区视频在线| 国产精品一区二区三区四区免费观看| 午夜激情久久久久久久| 99久久人妻综合| 中文欧美无线码| 精品一区二区三区视频在线| 精品国产露脸久久av麻豆| 视频中文字幕在线观看| 免费人成在线观看视频色| 精品一区二区免费观看| 极品教师在线视频| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡免费网站照片| 搞女人的毛片| 国产亚洲午夜精品一区二区久久 | 交换朋友夫妻互换小说| 好男人视频免费观看在线| 一个人看视频在线观看www免费| 又粗又硬又长又爽又黄的视频| 国产欧美日韩一区二区三区在线 | 亚洲精品亚洲一区二区| 男人和女人高潮做爰伦理| 一级毛片黄色毛片免费观看视频| 亚洲,一卡二卡三卡| 在线播放无遮挡| 亚洲精品乱久久久久久| 国产爽快片一区二区三区| 中文欧美无线码| 人妻少妇偷人精品九色| 你懂的网址亚洲精品在线观看| 在线观看美女被高潮喷水网站| 尾随美女入室| 男女国产视频网站| 日韩视频在线欧美| 亚洲精品乱久久久久久| 高清毛片免费看| 免费观看a级毛片全部| 99热全是精品| 91午夜精品亚洲一区二区三区| 春色校园在线视频观看| 亚洲色图av天堂| 日韩成人av中文字幕在线观看| 波多野结衣巨乳人妻| 各种免费的搞黄视频| 高清在线视频一区二区三区| 哪个播放器可以免费观看大片| 在线免费观看不下载黄p国产| 免费观看av网站的网址| 天天躁日日操中文字幕| 内射极品少妇av片p| 国产亚洲最大av| 成年女人在线观看亚洲视频 | 91精品国产九色| 国产精品福利在线免费观看| 黄色视频在线播放观看不卡| 1000部很黄的大片| 久久久久九九精品影院| 亚洲色图av天堂| 天美传媒精品一区二区| 在线播放无遮挡| 一级毛片电影观看| 久热这里只有精品99| 久久久国产一区二区| 国产大屁股一区二区在线视频| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 欧美精品一区二区大全| 午夜老司机福利剧场| 在线精品无人区一区二区三 | 一边亲一边摸免费视频| 久久精品国产鲁丝片午夜精品| 欧美bdsm另类| 国产91av在线免费观看| 免费看a级黄色片| 午夜激情福利司机影院| 日韩av在线免费看完整版不卡| 久久久久九九精品影院| 一个人看的www免费观看视频| 在线看a的网站| 综合色丁香网| 欧美高清成人免费视频www| 国产精品三级大全| 黄色欧美视频在线观看| 国产成年人精品一区二区| 乱码一卡2卡4卡精品| 精品国产三级普通话版| 99热全是精品| 只有这里有精品99| 男人狂女人下面高潮的视频| 神马国产精品三级电影在线观看| 在线 av 中文字幕| 九九在线视频观看精品| 国语对白做爰xxxⅹ性视频网站| 女人久久www免费人成看片| 69人妻影院| 99久久九九国产精品国产免费| 久久97久久精品| av福利片在线观看| 欧美日韩国产mv在线观看视频 | 亚洲精品一二三| 激情 狠狠 欧美| 尾随美女入室| 国产精品精品国产色婷婷| 国产在线男女| 国产精品爽爽va在线观看网站| 午夜视频国产福利| 男女边吃奶边做爰视频| 日韩一区二区视频免费看| 有码 亚洲区| 亚洲三级黄色毛片| 国产成人精品婷婷| 亚洲丝袜综合中文字幕| 有码 亚洲区| 午夜免费观看性视频| 国产黄a三级三级三级人| 亚洲丝袜综合中文字幕| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 精品久久国产蜜桃| 国产伦理片在线播放av一区| 狂野欧美激情性xxxx在线观看| 欧美老熟妇乱子伦牲交| 亚洲欧美日韩卡通动漫| .国产精品久久| 欧美日韩国产mv在线观看视频 | 国产熟女欧美一区二区| 男人爽女人下面视频在线观看| 在线观看av片永久免费下载| 女人被狂操c到高潮| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| 国产成人精品婷婷| 免费看不卡的av| 成人漫画全彩无遮挡| 精品酒店卫生间|