• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Speech Enhancement with Nonnegative Dictionary Training and RPCA

    2019-07-30 08:52:32,,,
    復旦學報(自然科學版) 2019年3期

    , , ,

    (1. First Military Representative Office of Air Force Equipment Department in Changsha, Changsha 410100, China; 2. College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; 3. College of Information Science and Engineering, Yanshan University, Qinhuangdao 066000, China; 4. Shanghai Nanhui Senior High School, Shanghai 201300, China; 5. Institute of Command and Control Engineering, Arm Engineering University, Nanjing 210007, China)

    Abstract: An unsupervised single channel speech enhancement algorithm is proposed. It combines both the nonnegative dictionary training and Robust Principal Component Analysis(RPCA) so that we name it as NRPCA in short. The combination is accomplished by incorporating the nonnegative speech dictionary into the RPCA model, which can be learned via Nonnegative Matrix Factorization(NMF). With the NRPCA model, the method of Alternating Direction Method of Multipliers(ADMM) is applied for optimized solutions. Objective evaluations using Perceptual Evaluation of Speech Quality(PESQ) on TIMIT with 20 noise types at various Signal-to-Noise Ratio(SNR) levels demonstrate that the proposed NRPCA model yields superior results over the conventional NMF and RPCA methods.

    Keywords: speech enhancement; robust principal component analysis; nonnegative dictionary training

    Working as a pre-processor in speech recognition, speech coding, etc., speech enhancement has been a challenging research topic for decades[1]. It attempts to improve the quality of noisy speech and suppress speech distortion caused by interfering noise. Over the years, a large number of speech enhancement approaches, generally divided into two broad classes of unsupervised and supervised, have been proposed[2].

    Unsupervised approaches include a wide range of algorithms, such as Spectral Subtraction(SS)[3], Wiener[4]and Kalman filtering[5], Short-Time Spectral Amplitude(STSA) estimation[6]and methods based on statistical mathematical models of speech and noise signals[7]. Among those algorithms, one well-known type is the Robust Principal Component Analysis(RPCA)[8]model-based methods and their improved versions[9-10]. Under the hypothesis that the spectrogram of speech is sparse and the noise is low-rank, the RPCA-based approaches work by decomposing the noisy spectrogram into the sparse and low-rank components, which corresponding to the speech and noise parts of the noisy mixture, respectively. Under specific constraints, the separation of the sparse and low-rank components can be accomplished by solving an optimization problem of the mathematical model for RPCA with the proper optimization algorithm. These approaches have a significant advantage that they neither need to explicitly model nor require any prior knowledge of the noisy speech to be enhanced. Such an advantage makes the unsupervised approaches easily performed in real-world scenarios. However, its performance degrades severely in non-stationary noisy environments.

    Supervised speech enhancement algorithms[11]have been proposed to overcome this limitation and gain competitive superiority by making proper use of the prior knowledge of the speech or noise signal available. In particular, the Nonnegative Matrix Factorization(NMF) algorithm, one of the most powerful machine learning algorithms successfully applied in signal processing area, has been proved to be a popular tool for supervised speech enhancement[12-13]. The NMF theory is proposed by Lee and Seung[14]and it aims to project the magnitude/power spectrogram of speech onto a space spanned by a linear combination of a set of basis vectors and activation coefficients.

    With various types of speech enhancement algorithms, the combinations or fusions of different methods in a proper way can be effective for better performance[15]. In this paper, an unsupervised speech enhancement algorithm is proposed by combining the techniques of nonnegative dictionary training and RPCA. The proposed speech enhancement algorithm is unsupervised since we know nothing of the noisy mixture to be enhanced. Under the circumstances, we can make an assumption that its performance can be improved, if we can take some advantage of properly which is prior available. The nonnegative speech dictionary traditionally used in the NMF-based speech enhancement can be such prior, which is learned by using the sufficient training samples chosen from public datasets randomly. It is necessary to mention that the speech training samples are unrelated to the noisy speech to be enhanced. The combination of the proposed model (NRPCA) is accomplished by incorporating the nonnegative speech dictionary into the RPCA model. To decompose the noisy spectrogram into the speech and noise parts, mathematical model for the NRPCA is established with the constraint of the sparse and low-rank conditions. Finally, the enhancement process will be finished by solving the optimization problem of the NRPCA model via Alternating Direction Method of Multipliers(ADMM)[16]. Different from the multiplicative updates in the NMF, the ADMM is the optimization algorithm that can update variables separately and alternately by solving the corresponding sub-problems within its framework. Detailed analysis and comparisons of the convergence performance of the proposed NRPCA model with some state-of-the-art approaches will be executed in this paper.

    1 Framework of the proposed algorithm

    The proposed NRPCA-based speech enhancement scheme combines the techniques of RPCA and NMF. The overall diagram is illustrated in Fig.1, which mainly consists of a noise bases training process and an enhancement stage. In the beginning, the input noisy mixture is chopped into frames and Fast

    Fig.1 The processing flowchart of the proposed speech enhancement algorithm

    Fourier Transformation(FFT) is applied to compute the magnitude spectrogramYand its phase ∠Y. In the training process, the nonnegative speech dictionaryWsis learned by conducting NMF on magnitude spectrogram of the speech samples used for training. In the enhancement stage, the enhanced spectrogram of speech and noise are separated via the RPCA model combined with the trained nonnegative speech dictionaryWs. Finally, the time-domain speechsand noisencan be reconstructed by inverse FFT and overlap-add method.

    2 Nonnegative dictionary training via NMF

    (1)

    Variables off(1≤f≤F),r(1≤r≤R) andm(1≤m≤M) above represent the indices of frequency bins, speech bases and frames, respectively.F,RandMcorrespond to the total number of frequency bins, speech bases and frames, respectively.

    (2)

    3 Proposed RPCA model and its optimization problem solved via ADMM

    For speech enhancement, it is a common practice to assume that the clean speech is contaminated by an additive uncorrelated noise. Lets(t) andl(t) represent the clean speech and noise signal, respectively. The noisy speech can be computed as,

    y(t)=s(t)+l(t).

    (3)

    The technique of Short-Time Fourier Transform(STFT) will be applied to transform the signal of Equation (3) into the time-frequency domain:

    Y=S+L.

    (4)

    Then, according to the sparse and low-rank hypothesis for speech and noises, the RPCA can be employed to decompose the spectrogram of noisy speechYinto the sparse speech termSand the low-rank noise termL[18].

    (5)

    (6)

    With the assumption that better performance can be achieved if prior knowledge can be utilized properly, the nonnegative speech dictionaryWstrained via NMF, exactly the same nonnegative speech dictionary trained in the Section 2, is incorporated into the RPCA model in the form below:

    (7)

    (8)

    The Equation (8) can be rewritten with augmented Lagrangian function using Euclidean distance as below:

    (9)

    where,ΩY,ΩS,ΩHsandΩLare the scaled dual variables,ρis the scaling parameter that controls the convergence rate. As shown in Fig.2, the objective function shown in Equation (9) can be efficiently solved by the ADMM algorithm[8]. The value ofλis set in the same way with previous research[9]. The symbols ofS(·) is the soft-threshold operator. TheS+(·) denotes the nonnegative operation of the corresponding soft-threshold operatorS(·).

    Fig.2 The program code of the algorithm

    4 Experiments and results

    4.1 Experiments preparations

    The test clean speech examples consisting of samples lasting 25 seconds spoken by 2 males and 2 females are chosen randomly from the TIMIT dataset[19]. 20 types of noise from the Noizeus-92 dataset[20],babble,birds,buccaneer1,buccaneer2,casino,eatingchips,f16,factory1,factory2,hfchannel,jungle,leopard,m109,ocean,pink,rain,stream,thunder,white, are included. The signals are mixed at five different Signal-to-Noise Ratios(SNRs) levels from -10 to 10dB spaced by 5dB. The nonnegative speech dictionary is learned using 1000 clean utterances produced by 20 different speakers. The number of speech and noise bases is 40 each. All files are sampled at 8kHz sampling rate. To calculate the spectrograms, a window length of 64ms (512 points) and a frame shift of 16ms (128 points) are used.

    4.2 The chosen baselines and evaluation metrics

    In order to compare the performance of the proposed approaches, four unsupervised speech enhancement algorithms, including the Semi-supervised NMF(SNMF), one improved version of the traditional RPCA method in the magnitude spectrogram domain[9], the well-known SS[3], and a state-of-the-art Noise Estimation(NE) algorithm[21], are chosen as the baselines. The number of iterations for SNMF and RPCA is 200 where convergence can be observed in all the experiments. To evaluate the performance of the speech enhancement algorithms, the most frequently used criterion of Perceptual Evaluation of Speech Quality(PESQ) score is used to measure the speech quality. A higher score of the PESQ indicates better speech enhancement performance.

    4.3 Enhancement performance of the algorithms

    From the scores that all the algorithms reach in Fig.3(see page 368), we can find that the combination of nonnegative speech dictionary and RPCA makes a significant improvement for the metric of PESQ, scoring higher values than the traditional semi-supervised NMF-based speech enhancement and the baseline of RPCA. Compared with well-known unsupervised algorithms of SS and NE, the proposed algorithm has shown better performance for most of the considered 20 noise types. In terms of the performance of the noise estimation in Ref.[21], it outperforms the algorithms of SS, SNMF, RPCA and gains competitive results with the proposed algorithm.

    Fig.3 The PESQ values of all the algorithmsRemarks: The numbers are the mean values over five input SNR conditions

    The numbers in Tab.1(see page 368) are the average values of the five methods for 20 noise types at different SNR levels. We can see that proposed algorithm substantially achieves higher values than the SS, SNMF and RPCA methods under all SNR levels. Additionally, our proposed algorithm outperforms the NE algorithm at low SNR conditions (-10dB, -5dB, 0dB) while the performance degrades when the SNR condition improves (10dB). Moreover, when computing the improvements of the proposed method and RPCA over the SS at all SNR levels, we can see the improvement is more obvious at low SNR conditions (-10dB, -5dB, 0dB) than that at high SNR conditions (5dB, 10dB). It may be explained that the speech parts of the noisy mixture will be sparser at low SNR conditions, which makes the RPCA model more effective. Additionally, for some types of noise, such asfactory2, leopard andm109, the proposed algorithm may not improve greatly. The robustness may be different in various noise environments and the property of such noise may not fit the sparse and low rank assumption well in the proposed model.

    Tab.1 Average PESQ values of all methods for 20 noise types

    Remarks: 1) denote input SNR

    5 Conclusion

    This paper proposes an unsupervised speech enhancement algorithm by combining the techniques of robust principal component analysis and nonnegative dictionary training. The prior knowledge of the nonnegative speech dictionary trained via nonnegative matrix factorization is incorporated into the algorithm of robust principal component analysis. The optimization problem of the mathematical model describing the proposed algorithm is efficiently solved by the alternating direction method of multipliers. Experimental results under 20 noise types at different SNR levels demonstrate that the incorporation of nonnegative speech dictionary into the RPCA model may be a proper way for better performance. However, compared to the proposed algorithm with state-of-the-art algorithms, future research will be devoted to improve the performance of the proposed algorithm at high SNR levels.

    无人区码免费观看不卡| 亚洲熟妇熟女久久| 亚洲精品在线观看二区| 国产高清视频在线观看网站| 高清毛片免费观看视频网站| 天堂影院成人在线观看| av福利片在线观看| 国产一区在线观看成人免费| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 国产探花在线观看一区二区| 12—13女人毛片做爰片一| 免费av毛片视频| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 国产1区2区3区精品| 一区二区三区激情视频| 国产欧美日韩一区二区三| 最近最新中文字幕大全免费视频| e午夜精品久久久久久久| 丁香六月欧美| 大型黄色视频在线免费观看| 熟女电影av网| av欧美777| 精品久久久久久久久久久久久| 美女扒开内裤让男人捅视频| 99在线视频只有这里精品首页| 天堂动漫精品| av天堂中文字幕网| 国产高清三级在线| 亚洲色图 男人天堂 中文字幕| 久久亚洲精品不卡| 欧美日韩综合久久久久久 | bbb黄色大片| 久久精品夜夜夜夜夜久久蜜豆| 黑人欧美特级aaaaaa片| 一级毛片精品| 欧美性猛交黑人性爽| 搡老熟女国产l中国老女人| 亚洲五月婷婷丁香| 亚洲国产欧美人成| 日韩成人在线观看一区二区三区| 国产熟女xx| 久久午夜综合久久蜜桃| 91久久精品国产一区二区成人 | 国内精品久久久久精免费| 两个人视频免费观看高清| 亚洲黑人精品在线| 天天躁狠狠躁夜夜躁狠狠躁| 日本一本二区三区精品| 一二三四社区在线视频社区8| 国产精品乱码一区二三区的特点| 岛国在线免费视频观看| 国产极品精品免费视频能看的| 欧美成狂野欧美在线观看| 亚洲av成人一区二区三| 国产精品,欧美在线| 国内精品一区二区在线观看| 精品国内亚洲2022精品成人| 欧美中文日本在线观看视频| 国内毛片毛片毛片毛片毛片| 久久久精品大字幕| 欧美日本亚洲视频在线播放| 亚洲自拍偷在线| 亚洲 国产 在线| 成年版毛片免费区| 亚洲成av人片在线播放无| 久久人妻av系列| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看成人毛片| 无人区码免费观看不卡| 国产精品美女特级片免费视频播放器 | 亚洲成人精品中文字幕电影| 国产免费男女视频| 国产伦人伦偷精品视频| 亚洲av第一区精品v没综合| 国产精品 国内视频| 国模一区二区三区四区视频 | 精品久久久久久久人妻蜜臀av| 老司机在亚洲福利影院| 国产精品久久久久久久电影 | 极品教师在线免费播放| 国产成人av教育| 久久人妻av系列| 日本熟妇午夜| 欧美av亚洲av综合av国产av| 久久中文看片网| 中国美女看黄片| 国产69精品久久久久777片 | www日本黄色视频网| 日日干狠狠操夜夜爽| 国产亚洲精品久久久com| 成年免费大片在线观看| 国产成人欧美在线观看| 免费一级毛片在线播放高清视频| 国产亚洲精品久久久久久毛片| 亚洲欧美精品综合一区二区三区| 免费看光身美女| 村上凉子中文字幕在线| 午夜福利免费观看在线| 嫁个100分男人电影在线观看| 亚洲第一欧美日韩一区二区三区| 99热这里只有精品一区 | 亚洲成人久久性| 小说图片视频综合网站| 少妇熟女aⅴ在线视频| 最近视频中文字幕2019在线8| 国产aⅴ精品一区二区三区波| 老鸭窝网址在线观看| 91老司机精品| 久久性视频一级片| 亚洲欧美日韩东京热| 好男人在线观看高清免费视频| 中文字幕人成人乱码亚洲影| 国内精品久久久久精免费| 久久香蕉国产精品| 欧美日韩国产亚洲二区| 日韩欧美在线乱码| 亚洲精品456在线播放app | 黄色片一级片一级黄色片| 母亲3免费完整高清在线观看| a在线观看视频网站| 国产黄色小视频在线观看| 床上黄色一级片| 在线永久观看黄色视频| 国产爱豆传媒在线观看| 国产成人av激情在线播放| 国产成人一区二区三区免费视频网站| 变态另类丝袜制服| 老汉色∧v一级毛片| 精品国产乱子伦一区二区三区| 日本 av在线| 99热精品在线国产| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区在线臀色熟女| 1024香蕉在线观看| 中文亚洲av片在线观看爽| 波多野结衣巨乳人妻| 男人和女人高潮做爰伦理| 色综合亚洲欧美另类图片| 午夜福利在线在线| 一级毛片高清免费大全| 别揉我奶头~嗯~啊~动态视频| 夜夜爽天天搞| 国产精品免费一区二区三区在线| 欧美一区二区精品小视频在线| 久久久久久久久中文| 国内久久婷婷六月综合欲色啪| 青草久久国产| 午夜两性在线视频| 99国产精品99久久久久| 精品熟女少妇八av免费久了| 噜噜噜噜噜久久久久久91| 草草在线视频免费看| 村上凉子中文字幕在线| 亚洲欧美精品综合久久99| 十八禁网站免费在线| 男人舔女人的私密视频| 国产1区2区3区精品| 亚洲一区高清亚洲精品| 成人特级av手机在线观看| 成年版毛片免费区| 中出人妻视频一区二区| 露出奶头的视频| a级毛片a级免费在线| 国产三级在线视频| 成人精品一区二区免费| aaaaa片日本免费| 一个人免费在线观看的高清视频| 午夜福利18| 老汉色∧v一级毛片| 欧美最黄视频在线播放免费| 精品午夜福利视频在线观看一区| 亚洲色图 男人天堂 中文字幕| 舔av片在线| 欧美日韩黄片免| 看片在线看免费视频| 成人18禁在线播放| 国产精华一区二区三区| 国产精品精品国产色婷婷| 小说图片视频综合网站| 1000部很黄的大片| 国产成人系列免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产69精品久久久久777片 | e午夜精品久久久久久久| 亚洲九九香蕉| 我的老师免费观看完整版| 成人国产综合亚洲| 中文字幕久久专区| 女人高潮潮喷娇喘18禁视频| 搡老熟女国产l中国老女人| 国产激情久久老熟女| 欧美成狂野欧美在线观看| 亚洲五月天丁香| 日韩三级视频一区二区三区| 日韩人妻高清精品专区| 一本一本综合久久| 一本久久中文字幕| 国产淫片久久久久久久久 | 午夜福利成人在线免费观看| 男女之事视频高清在线观看| 国产乱人视频| 一二三四在线观看免费中文在| 国产精品乱码一区二三区的特点| 久久久精品大字幕| 蜜桃久久精品国产亚洲av| 欧美成人一区二区免费高清观看 | 日韩欧美免费精品| 黄频高清免费视频| 99久久精品热视频| 亚洲激情在线av| 美女免费视频网站| 99国产极品粉嫩在线观看| 亚洲专区国产一区二区| 婷婷精品国产亚洲av在线| 亚洲最大成人中文| 人妻丰满熟妇av一区二区三区| 欧美色欧美亚洲另类二区| 国产亚洲精品久久久com| 亚洲欧美一区二区三区黑人| 一二三四社区在线视频社区8| 国产主播在线观看一区二区| 熟女电影av网| 淫妇啪啪啪对白视频| 日本三级黄在线观看| 老司机午夜十八禁免费视频| 国产高清有码在线观看视频| 18禁美女被吸乳视频| 婷婷六月久久综合丁香| 婷婷精品国产亚洲av在线| 欧美三级亚洲精品| svipshipincom国产片| 日本熟妇午夜| 女警被强在线播放| 免费搜索国产男女视频| 欧美日韩中文字幕国产精品一区二区三区| 国产又色又爽无遮挡免费看| 亚洲国产精品sss在线观看| 国产爱豆传媒在线观看| 国产黄片美女视频| 无限看片的www在线观看| 国产精品野战在线观看| 国产探花在线观看一区二区| 亚洲avbb在线观看| 欧美成狂野欧美在线观看| 欧美在线一区亚洲| 国产成人精品无人区| 嫩草影院入口| 偷拍熟女少妇极品色| 每晚都被弄得嗷嗷叫到高潮| 久久久久国产精品人妻aⅴ院| 亚洲成av人片在线播放无| 久久国产精品人妻蜜桃| 99久国产av精品| 嫩草影院精品99| 夜夜爽天天搞| 中文字幕人成人乱码亚洲影| 国产爱豆传媒在线观看| 国产毛片a区久久久久| 国语自产精品视频在线第100页| 亚洲欧美日韩东京热| 日韩中文字幕欧美一区二区| 精品不卡国产一区二区三区| 色老头精品视频在线观看| 国产亚洲精品av在线| 色综合婷婷激情| 久久午夜综合久久蜜桃| 亚洲国产中文字幕在线视频| 国产v大片淫在线免费观看| 最近在线观看免费完整版| 欧美成狂野欧美在线观看| 亚洲国产精品成人综合色| 国产成人精品无人区| 国模一区二区三区四区视频 | 欧美成人性av电影在线观看| 香蕉丝袜av| 日本免费a在线| 亚洲av电影在线进入| 久久中文字幕一级| 老汉色av国产亚洲站长工具| 九色成人免费人妻av| 国产av不卡久久| 偷拍熟女少妇极品色| 久久香蕉国产精品| 免费观看人在逋| 午夜亚洲福利在线播放| www.www免费av| 51午夜福利影视在线观看| 色播亚洲综合网| 国产欧美日韩精品亚洲av| 琪琪午夜伦伦电影理论片6080| 黄色视频,在线免费观看| 制服丝袜大香蕉在线| 性色av乱码一区二区三区2| 日韩av在线大香蕉| 日日干狠狠操夜夜爽| 男人和女人高潮做爰伦理| 国产精品永久免费网站| 国内久久婷婷六月综合欲色啪| 国产成人av激情在线播放| 窝窝影院91人妻| 精品久久久久久久久久免费视频| 国产av麻豆久久久久久久| 免费看光身美女| 免费无遮挡裸体视频| 又黄又爽又免费观看的视频| 成人国产一区最新在线观看| 悠悠久久av| 18禁黄网站禁片免费观看直播| 色综合亚洲欧美另类图片| 黄片小视频在线播放| 国产精品爽爽va在线观看网站| 色综合站精品国产| 99国产综合亚洲精品| 色综合站精品国产| cao死你这个sao货| 亚洲av第一区精品v没综合| 91久久精品国产一区二区成人 | 精品人妻1区二区| 久久中文字幕人妻熟女| 成人av在线播放网站| 天堂影院成人在线观看| 老熟妇乱子伦视频在线观看| 欧美+亚洲+日韩+国产| 国产av不卡久久| 1024手机看黄色片| 午夜精品一区二区三区免费看| h日本视频在线播放| 亚洲片人在线观看| 狠狠狠狠99中文字幕| 精品一区二区三区四区五区乱码| 久久这里只有精品19| 成人亚洲精品av一区二区| 久久久久精品国产欧美久久久| 美女被艹到高潮喷水动态| 国产伦在线观看视频一区| 亚洲成人免费电影在线观看| 999久久久国产精品视频| 色噜噜av男人的天堂激情| 老汉色av国产亚洲站长工具| 日韩精品青青久久久久久| 久久人人精品亚洲av| 亚洲精品美女久久av网站| 香蕉丝袜av| 色播亚洲综合网| 午夜激情欧美在线| a级毛片在线看网站| 99在线视频只有这里精品首页| 非洲黑人性xxxx精品又粗又长| 久久精品国产99精品国产亚洲性色| 高清在线国产一区| 黑人操中国人逼视频| 国产乱人伦免费视频| 国产99白浆流出| 无遮挡黄片免费观看| 日韩欧美精品v在线| 亚洲精品色激情综合| 亚洲av电影在线进入| 麻豆国产97在线/欧美| 国产成人精品无人区| 午夜精品久久久久久毛片777| 狂野欧美白嫩少妇大欣赏| 最近最新免费中文字幕在线| 午夜精品在线福利| 久久九九热精品免费| 日本撒尿小便嘘嘘汇集6| 国产久久久一区二区三区| 99精品在免费线老司机午夜| tocl精华| 一边摸一边抽搐一进一小说| 日本在线视频免费播放| 精品不卡国产一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲精华国产精华精| 色av中文字幕| 白带黄色成豆腐渣| 亚洲精品粉嫩美女一区| 很黄的视频免费| 成人一区二区视频在线观看| 久久香蕉精品热| 国产欧美日韩精品亚洲av| 亚洲av免费在线观看| 亚洲国产看品久久| 波多野结衣高清作品| 成人国产一区最新在线观看| 午夜两性在线视频| 一区二区三区激情视频| 99热只有精品国产| 日本a在线网址| 色视频www国产| 亚洲精品乱码久久久v下载方式 | 宅男免费午夜| 免费看美女性在线毛片视频| 国产亚洲精品久久久com| 精品午夜福利视频在线观看一区| 美女被艹到高潮喷水动态| 可以在线观看毛片的网站| 成年版毛片免费区| 国内少妇人妻偷人精品xxx网站 | 麻豆久久精品国产亚洲av| 搡老岳熟女国产| 免费电影在线观看免费观看| 亚洲av日韩精品久久久久久密| 性欧美人与动物交配| 欧美乱色亚洲激情| 欧美一区二区精品小视频在线| 久久久久久久久久黄片| 成人午夜高清在线视频| 国产69精品久久久久777片 | 成年女人看的毛片在线观看| 美女大奶头视频| 99在线人妻在线中文字幕| 18美女黄网站色大片免费观看| 国产视频内射| 夜夜躁狠狠躁天天躁| 欧美不卡视频在线免费观看| 老熟妇仑乱视频hdxx| 最近视频中文字幕2019在线8| 老司机午夜十八禁免费视频| 国产人伦9x9x在线观看| www日本在线高清视频| 婷婷亚洲欧美| 国内精品美女久久久久久| 91av网一区二区| 亚洲精品在线观看二区| 国产欧美日韩一区二区三| 听说在线观看完整版免费高清| 性色avwww在线观看| 成人av在线播放网站| 无人区码免费观看不卡| 99热精品在线国产| 久久久久国产精品人妻aⅴ院| 99视频精品全部免费 在线 | 日本一本二区三区精品| 曰老女人黄片| 亚洲成人精品中文字幕电影| 久久婷婷人人爽人人干人人爱| 欧美成人性av电影在线观看| 亚洲男人的天堂狠狠| 欧美乱码精品一区二区三区| 怎么达到女性高潮| 中文字幕高清在线视频| 成年女人看的毛片在线观看| 国产乱人视频| 久久精品影院6| 午夜精品久久久久久毛片777| av黄色大香蕉| 中文字幕av在线有码专区| 精品国产超薄肉色丝袜足j| 色噜噜av男人的天堂激情| 别揉我奶头~嗯~啊~动态视频| 99国产精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 99久久综合精品五月天人人| 久久欧美精品欧美久久欧美| a级毛片在线看网站| 美女被艹到高潮喷水动态| 91av网一区二区| 成人av在线播放网站| 99热这里只有是精品50| 国产精品98久久久久久宅男小说| 国产高清激情床上av| 性色av乱码一区二区三区2| 国产69精品久久久久777片 | 亚洲欧美精品综合久久99| 99国产精品99久久久久| 国产精品亚洲一级av第二区| 国内揄拍国产精品人妻在线| 在线观看美女被高潮喷水网站 | 美女免费视频网站| 精品久久久久久久毛片微露脸| 成人av在线播放网站| 国产成人精品久久二区二区免费| 国产极品精品免费视频能看的| 午夜免费观看网址| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久成人av| 中文资源天堂在线| 国产三级在线视频| 日本一二三区视频观看| 91在线精品国自产拍蜜月 | 国产精品自产拍在线观看55亚洲| 亚洲国产精品久久男人天堂| av中文乱码字幕在线| 俺也久久电影网| 黄色成人免费大全| 男女视频在线观看网站免费| 免费观看精品视频网站| 国产精品免费一区二区三区在线| 国产亚洲欧美98| 免费av不卡在线播放| 国产精品自产拍在线观看55亚洲| 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 男人和女人高潮做爰伦理| 成人高潮视频无遮挡免费网站| 成年女人永久免费观看视频| 在线播放国产精品三级| 人人妻,人人澡人人爽秒播| 久久久久国内视频| 国产黄片美女视频| 麻豆国产97在线/欧美| 国产精品永久免费网站| 欧美在线黄色| 国产成人aa在线观看| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久| 中文字幕高清在线视频| 日本精品一区二区三区蜜桃| 级片在线观看| 啦啦啦免费观看视频1| 18禁黄网站禁片午夜丰满| 国产视频一区二区在线看| 我要搜黄色片| 啦啦啦观看免费观看视频高清| 日本 av在线| 非洲黑人性xxxx精品又粗又长| 一区二区三区激情视频| 亚洲av熟女| 国产午夜精品论理片| 久久香蕉国产精品| 午夜久久久久精精品| 美女午夜性视频免费| 国产69精品久久久久777片 | 欧美xxxx黑人xx丫x性爽| 国产熟女xx| 久久久国产精品麻豆| 久久久久久久久免费视频了| 他把我摸到了高潮在线观看| 老司机午夜福利在线观看视频| 最好的美女福利视频网| 精品一区二区三区视频在线 | 精品福利观看| 国产精品精品国产色婷婷| 啦啦啦韩国在线观看视频| 久久99热这里只有精品18| 性欧美人与动物交配| 又粗又爽又猛毛片免费看| 女警被强在线播放| 国产高清视频在线播放一区| 亚洲国产色片| 久久久久久久久中文| 日本精品一区二区三区蜜桃| 伦理电影免费视频| 亚洲18禁久久av| 日日摸夜夜添夜夜添小说| 亚洲无线在线观看| 亚洲自偷自拍图片 自拍| av视频在线观看入口| 黄色日韩在线| 在线观看午夜福利视频| 国产99白浆流出| 国产亚洲av嫩草精品影院| 女同久久另类99精品国产91| 久久久久久久精品吃奶| 日韩国内少妇激情av| 国产黄色小视频在线观看| 亚洲午夜理论影院| 国产精品爽爽va在线观看网站| 窝窝影院91人妻| 亚洲中文av在线| 国产精品电影一区二区三区| 在线免费观看的www视频| 亚洲av成人精品一区久久| 精品乱码久久久久久99久播| 亚洲av成人精品一区久久| 1024香蕉在线观看| 国产aⅴ精品一区二区三区波| 久久99热这里只有精品18| 法律面前人人平等表现在哪些方面| 无遮挡黄片免费观看| 99久久精品国产亚洲精品| 97碰自拍视频| 日本撒尿小便嘘嘘汇集6| 日本免费一区二区三区高清不卡| 亚洲国产色片| 亚洲 国产 在线| 亚洲欧美日韩高清专用| 一区二区三区高清视频在线| 后天国语完整版免费观看| 999久久久精品免费观看国产| 亚洲五月婷婷丁香| 身体一侧抽搐| 久9热在线精品视频| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久 | 97超视频在线观看视频| 久久久久久久久免费视频了| 99在线人妻在线中文字幕| 国产探花在线观看一区二区| 五月玫瑰六月丁香| 精品国内亚洲2022精品成人| 视频区欧美日本亚洲| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 亚洲欧美日韩东京热| 国产精品 国内视频| 网址你懂的国产日韩在线| 国产精品久久视频播放| 麻豆成人av在线观看| 青草久久国产| 悠悠久久av| 亚洲成人久久爱视频| 人人妻,人人澡人人爽秒播| 又爽又黄无遮挡网站| avwww免费| 亚洲第一电影网av| 丰满人妻一区二区三区视频av | 亚洲五月天丁香| 亚洲人成网站在线播放欧美日韩| 性色avwww在线观看| 1000部很黄的大片| 一进一出抽搐动态| 欧美日本亚洲视频在线播放|