• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cubic Auto-Catalysis Reactions in Three-Dimensional Nanofluid Flow Considering Viscous and Joule Dissipations Under Thermal Jump

    2019-07-25 02:00:46RakeshKumarRavinderKumarReenaKoundalSabirAliShehzadandMohsenSheikholeslami
    Communications in Theoretical Physics 2019年7期

    Rakesh Kumar, Ravinder Kumar, Reena Koundal, Sabir Ali Shehzad,and Mohsen Sheikholeslami

    1Department of Mathematics,Central University of Himachal Pradesh,Dharamshala,India

    2Department of Mathematics,COMSATS University Islamabad,Sahiwal 57000,Pakistan

    3Department of Mechanical Engineering,Babol Noshirvani University of Technology,Babol,Iran

    Abstract In this problem,simultaneous effects of Joule and viscous dissipation in three-dimensional flow of nanoliquid have been addressed in slip flow regime under time dependent rotational oscillations.Silver nanoparticles are submerged in the base fluid (water) due to their chemical and biological features.To increment the novelty,effects of cubic autocatalysis chemical reactions and radiative heat transfer have been incorporated in the related boundary layer equations.Dimensionless partial differential system is solved by employing the proposed implicit finite difference approach.Convergence conditions and stability criteria are obtained to ensure the convergence and accuracy of solutions.A comparative analysis is proposed for no-slip nanofluid flow (NSNF) and slip nanofluid flow (SNF).Variations in skin-friction coefficients,Sherwood and Nusselt numbers against physical parameters are tabulated.It is investigated that velocity slip and temperature jump significantly control drag forces and rate of heat transfer.

    Key words: cubic autocatalysis reactions,viscous dissipation,Joule heating,rotating-fluctuating environment,slip flow regime

    Nomenclature

    (Continued)

    1 Introduction

    In recent years,scientists and engineers who worked in the field of nanoscience and nanotechnology have revived their interest in exploring the new applications of nanomaterials (1 nm–100 nm) and nanostructures.The use of these materials can provide solutions to numerous environmental and technological challenges such as solar energy conversion,medicine,catalysis and water purification as pointed out by Anstas and Warner.[1]In this direction,silver colloids have a point of attraction because of their unique features include good conductivity,chemical stability,antibacterial nature and catalytic activity.[2]There exists number of method for the preparation and synthesis of silver colloids like chemical,photochemical,and physical but the disadvantages like hazardous waste,expensiveness and toxic substances have unmotivated researchers to use these techniques.Therefore,the focus of researchers in present time is to use green synthesis methods through nontoxic chemicals and environment friendly solvents (water).Sharmaet al.[3]in their review report elaborated different green synthesis techniques (Tollens method and polysaccharide method,biological method,irradiation method,and polyoxometalates method) for Ag-NPs.They also incorporated Ag-NPs into other materials (silver-doped hydroxyapatite,polymer-Ag-NPs,poly(vinul alcohol)-Ag-NPs,Ag-NPs on TiO2),and illustrated their applications in antibacterial water filter,antimicrobial air filter and treatment of HIV.

    Silver nanoparticles find their common applications in bone cement,wound dressing,house cleaning chemicals,washing machines,bactericidal coatings in water filters,sprays,respirators and many more (Prabhu and Poulose[4]).Tranet al.[5]described the use of silver nanoparticles in controlling antibacterial,antifungal,antiviral activities,and environmental treatments such as air disinfection,water disinfection (drinking water,groundwater,biological waste water),surface disinfection (plastic catheters antimicrobial surface functionalization,antimicrobial paints,food preservation through antimicrobial packing of paper and silver-impregnated fabrics for clinical clothing).He further demonstrated that in future silver nanoparticles can prove powerful in controlling and preventing microbial infections,waterbrone diseases through magnetic disinfectant system,environmental pollution through effective sorbent and catalyst etc.Carboneet al.[6]explained the role of silver nanoparticles for fresh food packaging in the polymeric matrices.Zhanget al.[7]illustrated various properties of Ag-NPs including antiangiogenic and anti-cancer agents.Seyhanet al.[8]presented an experimental analysis to examine the influence of functionalized silver nanopaticles over thermal conductivity of water,hexane and ethylene glycol.Peristaltic movement of silver nanofluid through a symmetric channel was analyzed by Abassiet al.[9]Zinet al.[10]reported silver nanofluid flow induced by the oscillation of vertical plate.

    On the other hand,nanofluid flows over deformable surfaces with time dependent rotational oscillations have been the concern of several researchers due to the broader spectrum of their applications in food processing,fiber technology,polymer industry,and metallurgical sciences.Matched asymptotic expansion scheme for higher suction was exploited by Wang[11]to understand the flow created by the oscillatory stretching velocities of the sheet.Slip effects in oscillatory environment were investigated by Abbaset al.[12]Impacts of Dufour and Soret on fluctuating flows were analyzed through homotopy analysis method by Zhenget al.[13]Keller box method was employed by Javedet al.[14]to discuss the oblique stagnant flow due to fluctuating plate.Khanet al.[15]accomplished numerical solution for the Bodewadt nanofluid flow caused by a deformable disk.Kumar and Sood[16]explored the unidirectional surface stretching conditions under rotating,oscillatory,and radiating and reacting environment.Impact of rotational oscillations in stretchable nanofluid flow under cubic auto-catalysis reaction environment is illustrated by Kumaret al.[17]

    In addition to this,work done by velocity against viscous stresses (transformation of mechanical energy into thermal energy) is termed as viscous heating of energy.Viscous dissipation mechanism is dominating in those regions where large velocity gradients exist,for example,in boundary layers or where large variations in buoyancy force exists or devices which move at high speeds.Also,dissipation term cannot be ignored in the flow of highly viscous fluids (polymers,oils),and further,presence of fluctuating velocities on the surface can significantly alter the dissipative heat.Therefore,it becomes important to examine the influence of rotational oscillations on the dissipative heat through the Eckert number.The pioneering work of Brinkman on viscous dissipation led the researchers to investigate the various aspects of the influence of dissipation.On the other hand,when the energy is transferred from conduction electrons to conductor’s atoms via the collision process,heat is always generated.This type of transformation gives rise to an important term called as Joule heating.It plays a healthy role in the design of numerous devices.Singh and Kumar[18]elaborated the combined importance of viscous heating in hydromagnetic fluid flow over hot vertical surface.Ramet al.[19]discussed the work of Ref.[18]by adding the aspect of solar radiation.Simultaneous impacts of viscous and Joule heating in nanofluid flow near the stretchable stagnation region are discussed by Nandkeolyaret al.[20]Ahmad and Iqbal[21]inspected the reactions of reactions(heterogeneous/homogeneous) in ferrofluid flow with viscous heating.Recently,Khanet al.[22]presented a modified model for heterogeneous and homogeneous reactions in flow of MHD fluid with viscous/Ohmic dissipations.

    Though no-slip boundary conditions have been widely used to analyze Navier-Stokes equations yet there are some situations where these conditions fail to predict the exact dynamics of flow field such as thin film flow of light oil relative to the moving plates,thick monolayer of hydrophobic octadecyltrichlorosilane coated on surface,multiple interface problems,non-Newtonian fluid (polymeric materials) flows and flows involving the suspensions of nanoparticles.Rao and Rajagopal[23]represented different models available for the description of slip flows,and they observed that rectilinear and fully developed flow is impossible if velocity has strong dependence on normal stresses.Mehmood and Ali[24]inspected slip condition effects on oscillatory flow in a planer channel.Singh and Kumar[25]investigated fluctuating flow of of reacting and radiating liquid along vertical porous plate with slip-flow.Kumar and Chand[26]revealed the influences of Hall currents and velocity slip interface conditions on viscoelastic fluid flow over flat surface.Darcy and rarefaction impacts on radiative-reactive flows inside channel were examined by Chandet al.[27]For more relevant works,readers can look through (Refs.[28–36]).

    The role of Joule and viscous dissipation in the design of various equipments and devices motived us to examine their effects on the nanofluid flow past surfaces for rotational oscillations (time dependent) under slip interface condition environment.To enhance the impact of the analysis,radiation(heat transfer)and cubic autocatalysis chemical reaction effects are also added to the energy and mass diffusion equations respectively.

    2 Geometrical Description and Governing Equations

    Here we focus ourselves on an unsteady flow of convective nanofluid which is viscous,electrically conducting and incompressible.The nanofluid is formed by the suspension of silver nanoparticles and the flow is subjected to time dependent rotational oscillations of the deforming sheet.In the flow field we consider isothermal cubic homogeneous chemical reaction and on the catalyst surface we consider single isothermal first order heterogeneous chemical reaction (Fig.1).

    Fig.1 (Color online)Schematic description of the problem.

    The homogeneous chemical reaction is defined as:

    and heterogeneous reaction on the catalyst surface as

    wherea,bdenote the chemical species.

    The stretchable sheet in this problem executes oscillations and preserves velocity jumps in normal direction.This effect is mathematically defined as

    The sheet temperature is considered to vary periodically along difference of mean temperature of surface and free-stream temperature.the temperature jump is assumed in normal direction.Mathematical form of such temperature is

    Following Tiwari and Das[37]and Merkin,[38]the governing radiating and reacting boundary layer equations subjected to velocity/temperature jumps and viscous/Ohmic dissipations under time dependent rotational oscillations can be written as:

    Further,the conditions (initial/boundary) have the following mathematical presentation:

    For the complete construction of mathematical model elaborating the flow,and heat and mass transfer mechanisms under rotational oscillatory environment,following models are employed (Tiwari and Das model,[37]Hamilton-Crosser model,[39]Makinde and Animasaun,[40]Makinde and Animasaun[41]):

    In the dynamics of fluid flows we are interested in those results which are independent from dimensions and thus we introduce the following non-dimensional quantities which will reduce Eqs.(5)–(10) along with Eq.(11)into dimensionless form:

    After utilization of these dimensionless quantities,following set of coupled partial differential equations is achieved:

    where

    The dimensionless transformations convert the initial and boundary conditions into

    The emerging dimensionless parameters are defined as follows:

    The coefficients which attract engineers most are skinfrictions,Nusselt number and reactant Sherwood numbers.These have the following respective forms in fluid dynamics:

    where

    These coefficients in dimensionless pattern can be readily decided as:

    3 Numerical Scheme

    An explicit finite difference approach has been exploited to compute the solutions of involve mathematical expressions.Using explicit finite difference approximation,Eqs.(14)–(19) are written in the following finite difference form:

    The corresponding boundary conditions are

    In the above proposed scheme,l,m,n(subscripts)andk(superscripts) represent the grid nodes in the directions ofX,Y,Zandt′respectively.We selected(Xmax,Ymax,Zmax,t′max)=(100,100,10,10) after confirming that the conditions may not change outside this range.Here the step-size is considered to be(?t′,?X,?Y,?Z)=(0.005,10,10,0.1).The algorithm is presented as follows:

    (i) Initially (t′=0),we assume thatare known.

    (iii) At first,we findat every node.

    (iv)At second,at every node is computed using

    (vi)Lastly,are calculated through the equation of continuity (22).

    4 Stability and Convergence

    To obtain the stability conditions,we take Fourier expansions for all the quantities (U,V,θ,A,andB) at timet′and constant grid sizes as(Von Neumann stability analysis):

    After single time step,these quantities have the forms:

    Now,we substitute these assumptions into Eqs.(22)–(27),and obtain the following equations after trivial simplifications:

    Further simplification gives rise to a following set of equations:

    which in matrix form can be written asAX=BBB.The entries of the coefficient matrixAAAare:

    HereWis non-positive andUandVare non-negative everywhere.Eigenvalues of this matrix (AAA) areλ1=(A21+A22)/A1,λ2=A1,λ3=A4,λ4=A7,andλ5=A8.For stability of present scheme,we should receive|λi|≤1 fori=1,...,5.Letp1,p2,andp3are odd integers,maximum modulus of above mentioned eigenvalues takes place whenα3△Z=p3π,α2△Y=p2π,andα1△X=p1π.To satisfy|λi| ≤1,the most negative admissible value isλi=?1.Hence stability conditions are

    Hereχ=U(△t′/△X) +V(△t′/△Y) +|W|(△t′/△Z).Keeping in mind these stability conditions,computations have been carried out to accomplish numerical quantities (U,V,W,θ,A,B) and (cfX,cfY,NuX,ShAX,ShBX)which will be presented and analyzed in next section.

    5 Results and Discussion

    To acquaint with the mechanisms of heat and mass transportation in the nanofluid flow subjected to viscous and Joule dissipation past deforming surfaces in slip flow regime,numerical quantities obtained in previous section are analyzed through plots and tables for different values of emerging parameters.Thermophysical qualities of silver (Ag) and water (H2O) nanoparticles are presented in Table 1.Accuracy/validation of present outcomes have been portrayed in Table 2.Results of primary and secondary velocity(U,V),temperature(θ),homogeneous concentration (A) and heterogeneous concentration (B) are presented graphically.The skin-friction(coefficients) inXandYdirections (cfXandcfY),local Nusselt number (NuX) and reactant Sherwood numbers(ShAX,ShBX) evaluated through tables.Figures and tables are prepared to exhibit the relative importance of two cases to name as NSNF (no-slip nanofluid flow) and SNF (slip nanofluid flow).If not mentioned differently,then values assigned to different parameters are:ω=0.1,?=0.1,n=3,Ec=0.01,M=3,K=3,R=1,Ra=0.4,Ks=1,Kc=0.5,Vs=1,Ts=1,Gr=15,Sc=3.5,δ=1.2,andPr=6.07.

    Table 1 Properties of H2O and Ag at 25?C.

    Table 2 Comparison of the variability of skin friction coefficients(cfX/cfY)and local Nusselt number NuX for different Ra at ω=0,Vs=1,Ts=0,R=0.5,M=1,K=1.5,Ks=3,Kc=0.5,Ec=0.001,?=0.1,and Gr=10.

    5.1 Effect of Oscillation Frequencies (ω)

    Fig.2 (Color online) Outcomes of frequency of oscillation (ω).

    Figures 2(a)–2(e) illustrate the influence ofωon the profiles of (U,V),θandAandB.Under both the cases,Uandθare reduced withωbutVis enhanced with it.As magnitude of frequency of oscillation is raised,primary velocity starts to behave as secondary velocity and reverse flow patterns start to appear inUcomponent.Thus to curtail reverse flow,optimal value ofωcan be exploited.Further,with the increasingω,negative temperature profiles appear owing to inverted Boltzmann distribution.Same negative profiles have been obtained by Kumar and Sood.[16]In the vicinity of the sheet velocity is higher in SNF situation in comparison to NSNF case.Therefore in SNF case,more heat will be transferred by this augmented velocity component and the result will be reduced temperature.That is why,temperature profiles are lowered in SNF case.Homogeneous concentration (A) is reduced whereas a growth is noticed in heterogeneous concentrationBwith increasing oscillation frequency.

    Fig.3 (Color online) Outcomes of frequency of oscillation (ω) against t′.

    Figures 3(a)–3(e)portray the control of frequency of oscillation oncfX,cfY,NuX,ShAX,andShBX.As expected,fluctuating nature ofcfX,cfY,andNuXis encountered when time constraint is varied.Whereas prominent oscillations inShAXandShBXare disclosed fort′>2.Interesting part prevails atω=(52/100)πwhere|cfX|is not altered by time,but minima ofcfYis augmented for higher values oft′.Peak points ofNuXexist atω=(53/100)π,which get uplifted witht′by maintaining constant minima.

    5.2 Effect of Eckert Number (Ec)

    Figures 4(a)–4(c) determine the effect of Eckert number on (U,V) andθin the boundary layer.Magnitudes of primary and secondary velocities as well as temperature are elevated with the heightened values ofEcin both the cases.Since,Eckert number is the ratio of the product of stretching rate and kinematic viscosity to temperature difference,therefore asEcis boosted up,physically fluid velocity should increase.On the other hand,higher values ofEcincrease viscous dissipation impact therefore fluid temperature is augmented.

    5.3 Effect of Volume Fraction of Nanoparticles (?)

    Figures 5(a)–5(c) elucidate variations in the profiles ofU,V,andθwith respect to?in SNF and NSNF cases.It is noted that magnitude ofVandθare strengthened with?everywhere inside the boundary layer,howeverUis diminished in the vicinity of sheet.The behavior ofUis altered after crossing the point of inflections in the flow field.Physically this is true because increasing values of?raise nanofluid viscosity which hampers the resultant velocity,that is why,Uis compressed.

    Fig.4 (Color online) Outcomes of Eckert number (Ec).

    Fig.5 (Color online) Outcomes of nanoparticles volume fraction (?).

    5.4 Effect of Homogeneous/Heterogeneous Reaction Parameters (Kc/Ks)

    Figures 6(a)–6(d) highlight the importance ofKcandKson the concentrations profilesAandB.It is examined that homogeneous concentration enhances and heterogeneous concentration retards with the increasing generative homogeneous reactions (Kc<0).However,opposite trends are noticed with respect to destructive homogeneous reactions(Kc>0).It is also deduced from mentioned figures that constructive and destructive heterogeneous reactions(Ks<0,Ks>0) have similar effects onAandBasKc<0 andKc>0 have onAandB.

    5.5 Effect of Schmidt Number (Sc)

    Figures 7(a)–7(d) accentuate the relevance of Schmidt numberScin the distribution of homogeneous and heterogeneous concentrations profiles.Schmidt number tends to raise the homogeneous concentration profiles (A) in both the cases of generative and destructive homogeneous reaction parameters,on the other hand,it tends to lower the heterogeneous concentration profiles (B).An interesting effect ofSchas been noticed in the case of heterogeneous reactions.Homogeneous concentration profiles (A) are diminished with respect toKs<0 and elevated withKs>0.However,opposite behavior has been detected in the case of heterogeneous concentration profiles (B).

    Fig.6 (Color online) Outcomes of Kc and Ks on concentrations (A and B).

    Fig.7 (Color online) Outcomes of Schmidt number (Sc) on concentrations on A and B for different Ks and Kc.

    5.6 Effect on Skin-Friction,Reactant Sherwood Numbers and Nusselt Number

    Effects ofM,K,andRon skin friction factors (cfX,cfY),reactant Sherwood numbers (ShAX,ShBX) and Nusselt number(NuX)are presented in Table 3 and Table 4 to emphasize the relative importance of slip nanofluid flow(SNF)over no slip nanofluid flow (NSNF).In SNF case,magnitudes ofcfXandcfYare reduced withMandK,whereas,RreducescfXand enhancescfYin magnitudes.NuXis aggrandized byK,butMandRcurtail it.Magnitudes ofShAXandShBXare lowered withM,K,andR.In general,increasingMandKhave the tendency to raise skin friction coefficients,but here time dependent rotational oscillations have played a predominant role in inverting this physical phenomenon.It is pertinent to mention here that in NSNF case,the quality of trends are same as that of SNF case but the major difference is that the magnitudes of skin-friction coefficients are much smaller and rates of heat transfer are much higher in SNF situation in comparison to NSNF case.

    Table 3 Variability of skin friction coefficients (cfX/cfY),local Nusselt number NuX and Sherwood numbers(ShAX/ShBX) for different values of M,K and R in SNF case (Vs=Ts ≠0).

    Table 4 Variability of skin friction coefficients (cfX/cfY),local Nusselt number (NuX) and Sherwood numbers(ShAX/ShBX) for different values of M,K and R in NSNF case (Vs=Ts=0).

    Table 5 Variability of skin friction coefficients (cfX/cfY),local Nusselt number (NuX) and Sherwood numbers(ShAX/ShBX) for different values of Ra,ω and Ec in SNF case (Vs=Ts ≠0).

    Influences ofRa,ω,andEcon (cfX,cfY),(NuX),and (ShAX,ShBX) are highlighted in Table 5 and Table 6.In SNF case,magnitudes of (cfX,cfY) and (ShA,ShB) are hiked up byRaandEc,howeverNuXis depressed withRaandEc.Magnitudes of reactant Sherwood numbers (ShAX,ShBX) are also hampered withω.The most interesting phenomenon is created by the rotational oscillations of the stretching surface.For lower values of frequency of oscillations,skin-friction coefficients are raised but for broader values ofωthese coefficients (cfX,cfY) are reduced.Same trends can be seen in Table 6 for NSNF case.It is worthy to indicate that frequency of oscillation (ω=0.2) can be exploited to turn the behaviour of skin friction coefficients and Nusselt number.Maxima of rate of heat transfer(NuX) exists atω=0.2.Here,the point of interest is that magnitudes ofcfX,cfYandShAX,ShBXare smaller,andNuXare larger in SNF case than in NSNF case.

    Table 6 Variability of skin friction coefficients (cfX/cfY),local Nusselt number (NuX) and Sherwood numbers(ShAX/ShBX) for different values of Ra,ω and Ec in NSNF case (Vs=Ts=0).

    6 Conclusions

    Three-dimensional boundary layer equations for the nanofluid flow under time dependent rotational oscillations are proposed considering viscous/ohmic dissipations,and slip conditions on the interface (wall-fluid).For novelty,cubic auto-catalysis chemical reactions in mass diffusion equations and radiative heat transfer in energy equation are incorporated.The assumptions and algorithm for the solution of governing equations are presented.Based on above results captured from this study,following conclusions are made:

    ?Increasing values ofωtend to reverse the flow behaviour as well as distribution of temperature inside the boundary layer.

    ?Eckert numberEcaugments nano-fluid velocity as well as its temperature.

    ?Nano-fluid temperature is lesser in SNF case in contrast to NSNF case,whereas (U,V) are larger in SNF problem as compared NSNF situation.

    ?HighercfXandcfYdue toMandKcan be curtailed by introducing time dependent rotational oscillations on the surface.

    ?Interface slip conditions help in reducing skinfriction (coefficients),and in enhancing multiple transfer rates.

    ?Critical frequencyω=(52/100)πorω=(53/100)πis useful for enhanced transfer rates (heat/mass).

    Thus we can say that interface velocity slip and temperature jump in presence of viscous/Ohmic dissipations play a substantial role in controlling skin-friction (coefficients) and heat/mass transportation rates when treated as a function of time.

    国产爱豆传媒在线观看| 免费无遮挡裸体视频| 日韩大尺度精品在线看网址| 国产精品一区二区免费欧美| 看片在线看免费视频| 成人精品一区二区免费| 亚洲性久久影院| 熟女人妻精品中文字幕| 男人的好看免费观看在线视频| 性插视频无遮挡在线免费观看| 久久久久久久久久黄片| а√天堂www在线а√下载| 男女视频在线观看网站免费| 国产亚洲av嫩草精品影院| 日日干狠狠操夜夜爽| 国产精品人妻久久久影院| 在线观看一区二区三区| 国产 一区精品| 久久亚洲精品不卡| 免费av毛片视频| 哪里可以看免费的av片| or卡值多少钱| 亚洲国产精品成人综合色| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产色片| 高清毛片免费观看视频网站| 亚洲av免费高清在线观看| 一进一出抽搐动态| 黄色丝袜av网址大全| 亚洲男人的天堂狠狠| 国内精品久久久久久久电影| 久久草成人影院| 精品久久久噜噜| 熟妇人妻久久中文字幕3abv| 少妇熟女aⅴ在线视频| 亚洲中文字幕一区二区三区有码在线看| 欧美三级亚洲精品| 亚洲成人精品中文字幕电影| 91av网一区二区| 亚洲精品色激情综合| 精品一区二区免费观看| 久久中文看片网| 国产不卡一卡二| 丰满的人妻完整版| 最近视频中文字幕2019在线8| 国内毛片毛片毛片毛片毛片| 男插女下体视频免费在线播放| 简卡轻食公司| 麻豆av噜噜一区二区三区| 高清在线国产一区| 欧美国产日韩亚洲一区| 亚洲在线观看片| 久久久久免费精品人妻一区二区| 伦理电影大哥的女人| 国产高清视频在线播放一区| 午夜影院日韩av| 国产乱人伦免费视频| 国产精品1区2区在线观看.| .国产精品久久| av福利片在线观看| 国产高潮美女av| 日韩精品青青久久久久久| 少妇丰满av| 国产高清激情床上av| 久久这里只有精品中国| 亚洲av美国av| 亚洲18禁久久av| 美女大奶头视频| 三级国产精品欧美在线观看| 日本与韩国留学比较| 久久婷婷人人爽人人干人人爱| 高清日韩中文字幕在线| 少妇被粗大猛烈的视频| 国产精品福利在线免费观看| 欧美人与善性xxx| 又黄又爽又免费观看的视频| 欧美日韩国产亚洲二区| 国产精品野战在线观看| 国产真实乱freesex| 熟女人妻精品中文字幕| 国产v大片淫在线免费观看| 内地一区二区视频在线| 国产单亲对白刺激| 亚洲国产精品合色在线| 国产私拍福利视频在线观看| 男人的好看免费观看在线视频| 久久国产精品人妻蜜桃| 国内少妇人妻偷人精品xxx网站| 国产一区二区激情短视频| 18禁黄网站禁片午夜丰满| 看黄色毛片网站| 在线观看av片永久免费下载| 亚洲av一区综合| 亚洲精品456在线播放app | АⅤ资源中文在线天堂| 久99久视频精品免费| 成人精品一区二区免费| 久久国产乱子免费精品| 嫩草影院精品99| 嫩草影院新地址| 欧美黑人巨大hd| 乱系列少妇在线播放| 偷拍熟女少妇极品色| 偷拍熟女少妇极品色| 97热精品久久久久久| 99热6这里只有精品| av黄色大香蕉| 亚洲,欧美,日韩| 在线观看av片永久免费下载| 国产精品日韩av在线免费观看| 在现免费观看毛片| 啦啦啦韩国在线观看视频| 亚洲一区二区三区色噜噜| 有码 亚洲区| 国产成人av教育| 九色国产91popny在线| 大又大粗又爽又黄少妇毛片口| 九九热线精品视视频播放| 国产精品日韩av在线免费观看| 搡老岳熟女国产| 搡女人真爽免费视频火全软件 | 亚洲精品粉嫩美女一区| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 成熟少妇高潮喷水视频| 国产精品伦人一区二区| 可以在线观看的亚洲视频| 91在线精品国自产拍蜜月| 色吧在线观看| 欧美黑人欧美精品刺激| 99久久中文字幕三级久久日本| 精品一区二区三区视频在线观看免费| 国产成人av教育| 欧美高清性xxxxhd video| 国产亚洲精品久久久久久毛片| 亚洲国产欧洲综合997久久,| 男人狂女人下面高潮的视频| .国产精品久久| 国产高清视频在线观看网站| 人妻少妇偷人精品九色| 可以在线观看毛片的网站| 自拍偷自拍亚洲精品老妇| 高清日韩中文字幕在线| 亚洲人与动物交配视频| 午夜精品在线福利| 国产免费男女视频| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 高清在线国产一区| 又紧又爽又黄一区二区| 精品日产1卡2卡| 人妻夜夜爽99麻豆av| 成熟少妇高潮喷水视频| 一本一本综合久久| 无遮挡黄片免费观看| 99热6这里只有精品| 内地一区二区视频在线| 久久久久性生活片| 少妇的逼好多水| 日韩精品有码人妻一区| 婷婷六月久久综合丁香| 免费电影在线观看免费观看| 校园春色视频在线观看| 色视频www国产| 别揉我奶头 嗯啊视频| 免费在线观看日本一区| 在线播放无遮挡| 12—13女人毛片做爰片一| 国产极品精品免费视频能看的| 免费在线观看影片大全网站| 波多野结衣高清无吗| 精品久久久久久久久亚洲 | eeuss影院久久| 国产精品久久久久久av不卡| 可以在线观看的亚洲视频| 成人鲁丝片一二三区免费| 国产男靠女视频免费网站| 国产亚洲精品综合一区在线观看| 成年版毛片免费区| 久久精品国产自在天天线| 午夜亚洲福利在线播放| 简卡轻食公司| 麻豆成人av在线观看| 男女做爰动态图高潮gif福利片| 亚洲七黄色美女视频| 国产成人a区在线观看| 九九在线视频观看精品| 麻豆国产97在线/欧美| 如何舔出高潮| 免费av不卡在线播放| 亚洲第一区二区三区不卡| 亚洲性夜色夜夜综合| 亚洲欧美日韩高清专用| 欧美成人a在线观看| 尾随美女入室| 国产在线精品亚洲第一网站| 成人亚洲精品av一区二区| 好男人在线观看高清免费视频| 日韩欧美免费精品| 久久精品综合一区二区三区| 我要搜黄色片| av在线天堂中文字幕| 亚洲黑人精品在线| 1024手机看黄色片| 人妻久久中文字幕网| 老司机福利观看| 久久久国产成人免费| 69av精品久久久久久| 久9热在线精品视频| 国产亚洲av嫩草精品影院| 亚洲av成人av| 嫩草影院新地址| 69人妻影院| 亚洲精品影视一区二区三区av| 99久久无色码亚洲精品果冻| 精品久久久久久久末码| 性色avwww在线观看| 欧美xxxx性猛交bbbb| 欧美另类亚洲清纯唯美| 黄色配什么色好看| 在线观看av片永久免费下载| 国产精品免费一区二区三区在线| 久久久久久久午夜电影| 亚洲精品456在线播放app | 日韩欧美精品v在线| or卡值多少钱| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| 欧美一区二区亚洲| 亚洲欧美激情综合另类| 亚洲中文字幕一区二区三区有码在线看| 欧美黑人欧美精品刺激| 国产中年淑女户外野战色| 又黄又爽又免费观看的视频| 99热只有精品国产| 直男gayav资源| 亚洲人成网站在线播放欧美日韩| 我要搜黄色片| 亚洲天堂国产精品一区在线| avwww免费| 嫩草影院新地址| 99久久精品一区二区三区| 国产三级在线视频| 91av网一区二区| 国产国拍精品亚洲av在线观看| 中国美白少妇内射xxxbb| 99久久九九国产精品国产免费| 精品不卡国产一区二区三区| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件 | 欧美中文日本在线观看视频| av天堂中文字幕网| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 国产精品一区二区性色av| 久久久久久国产a免费观看| 国产欧美日韩一区二区精品| 欧美不卡视频在线免费观看| 美女免费视频网站| 男人和女人高潮做爰伦理| 精品福利观看| 长腿黑丝高跟| 久久精品国产亚洲网站| 国产熟女欧美一区二区| 色综合站精品国产| 可以在线观看毛片的网站| av天堂在线播放| 69人妻影院| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 最近最新免费中文字幕在线| 观看免费一级毛片| 亚洲综合色惰| 亚洲avbb在线观看| 日韩人妻高清精品专区| 色精品久久人妻99蜜桃| 国产在线男女| 99热只有精品国产| 麻豆av噜噜一区二区三区| 久久精品国产亚洲av涩爱 | 国产黄色小视频在线观看| 色av中文字幕| 国产爱豆传媒在线观看| 日本一二三区视频观看| netflix在线观看网站| 黄色日韩在线| 日韩欧美免费精品| 国产在视频线在精品| 黄色配什么色好看| 美女 人体艺术 gogo| 国产色爽女视频免费观看| 亚洲av二区三区四区| 日韩欧美免费精品| 一级av片app| av福利片在线观看| 男女下面进入的视频免费午夜| 久久午夜福利片| 日本三级黄在线观看| 午夜免费男女啪啪视频观看 | 欧美日韩国产亚洲二区| 久久人人精品亚洲av| 午夜精品久久久久久毛片777| 国产探花在线观看一区二区| 欧美黑人欧美精品刺激| 国产成人av教育| 国产精品一区二区性色av| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 国内揄拍国产精品人妻在线| 日韩 亚洲 欧美在线| 国产一区二区三区视频了| 嫩草影院精品99| 麻豆国产av国片精品| 熟女电影av网| 欧美日韩中文字幕国产精品一区二区三区| 亚洲三级黄色毛片| 欧美又色又爽又黄视频| 亚洲欧美激情综合另类| .国产精品久久| 我要搜黄色片| 欧美最黄视频在线播放免费| 亚洲内射少妇av| 国产日本99.免费观看| 日韩人妻高清精品专区| 最近最新免费中文字幕在线| h日本视频在线播放| 免费电影在线观看免费观看| 日本 欧美在线| 欧美激情在线99| 长腿黑丝高跟| 亚洲专区中文字幕在线| 精品国产三级普通话版| av视频在线观看入口| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 2021天堂中文幕一二区在线观| 免费大片18禁| 亚洲国产色片| 午夜精品一区二区三区免费看| 一区二区三区激情视频| 国产一区二区激情短视频| 禁无遮挡网站| 国产又黄又爽又无遮挡在线| 欧美日韩综合久久久久久 | 日本-黄色视频高清免费观看| www日本黄色视频网| 听说在线观看完整版免费高清| 国内精品宾馆在线| 九九爱精品视频在线观看| 在线国产一区二区在线| 黄色日韩在线| 婷婷色综合大香蕉| 日日干狠狠操夜夜爽| 性色avwww在线观看| 国产单亲对白刺激| 尾随美女入室| 精品不卡国产一区二区三区| 国产爱豆传媒在线观看| 国产免费av片在线观看野外av| 国产精品三级大全| 成人特级av手机在线观看| 国产精品久久视频播放| 欧洲精品卡2卡3卡4卡5卡区| 日韩在线高清观看一区二区三区 | 中出人妻视频一区二区| 一卡2卡三卡四卡精品乱码亚洲| 久久久久免费精品人妻一区二区| 婷婷色综合大香蕉| 午夜福利在线观看吧| 国产久久久一区二区三区| 欧美人与善性xxx| 国产一区二区在线观看日韩| 一个人观看的视频www高清免费观看| 一本精品99久久精品77| 不卡一级毛片| 精品久久久久久久久av| 国产美女午夜福利| 午夜视频国产福利| 日韩欧美国产一区二区入口| 99九九线精品视频在线观看视频| 久久精品国产亚洲网站| 免费av观看视频| 精品久久久久久,| av视频在线观看入口| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 美女高潮喷水抽搐中文字幕| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 日本免费a在线| 国产v大片淫在线免费观看| 亚洲成av人片在线播放无| 男女啪啪激烈高潮av片| 亚洲无线在线观看| 在线免费观看不下载黄p国产 | 国产精品亚洲美女久久久| 国产乱人视频| 大型黄色视频在线免费观看| 日韩精品有码人妻一区| 一进一出好大好爽视频| 嫩草影院入口| 亚洲精品乱码久久久v下载方式| 国产白丝娇喘喷水9色精品| 他把我摸到了高潮在线观看| 欧美黑人巨大hd| 蜜桃久久精品国产亚洲av| 网址你懂的国产日韩在线| 国产精品久久久久久精品电影| 午夜福利在线观看吧| 久久精品国产亚洲网站| 人妻丰满熟妇av一区二区三区| 在线观看66精品国产| 国产精品久久久久久精品电影| 99久久无色码亚洲精品果冻| 亚洲欧美精品综合久久99| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 精品午夜福利在线看| 亚洲av成人精品一区久久| 亚洲内射少妇av| 亚洲美女搞黄在线观看 | 亚洲国产高清在线一区二区三| 亚洲av一区综合| 国产精品电影一区二区三区| 国产免费av片在线观看野外av| 日韩欧美国产在线观看| 美女大奶头视频| 99精品久久久久人妻精品| 日本成人三级电影网站| 一夜夜www| 国产毛片a区久久久久| 91久久精品国产一区二区三区| 亚洲图色成人| 久久国产乱子免费精品| 性色avwww在线观看| 人妻夜夜爽99麻豆av| 少妇猛男粗大的猛烈进出视频 | 在线观看舔阴道视频| 我要搜黄色片| 成人欧美大片| 婷婷精品国产亚洲av在线| 91在线精品国自产拍蜜月| 久久草成人影院| 此物有八面人人有两片| 午夜爱爱视频在线播放| 亚洲精品一区av在线观看| av女优亚洲男人天堂| 又黄又爽又免费观看的视频| 亚洲精品国产成人久久av| 免费不卡的大黄色大毛片视频在线观看 | 波野结衣二区三区在线| 我要看日韩黄色一级片| 人妻久久中文字幕网| 亚洲真实伦在线观看| 成人亚洲精品av一区二区| av中文乱码字幕在线| 国产亚洲av嫩草精品影院| 亚洲 国产 在线| 日韩亚洲欧美综合| av在线观看视频网站免费| 无人区码免费观看不卡| 全区人妻精品视频| 99热6这里只有精品| 两个人的视频大全免费| 欧美色欧美亚洲另类二区| 97碰自拍视频| 亚洲欧美清纯卡通| 久久欧美精品欧美久久欧美| 给我免费播放毛片高清在线观看| 国产精品亚洲一级av第二区| 一个人免费在线观看电影| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 亚洲av一区综合| 午夜日韩欧美国产| 69av精品久久久久久| 成人高潮视频无遮挡免费网站| 国产精品爽爽va在线观看网站| 久久久色成人| 色5月婷婷丁香| 十八禁网站免费在线| 免费av观看视频| 亚洲国产欧美人成| 大又大粗又爽又黄少妇毛片口| 国产三级中文精品| 午夜福利在线观看吧| 成人av一区二区三区在线看| 少妇裸体淫交视频免费看高清| 直男gayav资源| 美女大奶头视频| 桃色一区二区三区在线观看| 悠悠久久av| 久久久国产成人精品二区| 色在线成人网| 热99re8久久精品国产| 永久网站在线| 欧美成人a在线观看| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清| 国产av一区在线观看免费| 亚洲国产欧美人成| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线| 中文字幕免费在线视频6| 波多野结衣高清作品| 日本一本二区三区精品| 高清日韩中文字幕在线| 天堂影院成人在线观看| 国产一区二区三区在线臀色熟女| 欧美潮喷喷水| 国产一区二区在线av高清观看| 午夜精品一区二区三区免费看| 国产精品日韩av在线免费观看| 亚洲在线自拍视频| 午夜亚洲福利在线播放| 波野结衣二区三区在线| 极品教师在线免费播放| 中文亚洲av片在线观看爽| 韩国av在线不卡| 神马国产精品三级电影在线观看| 日本在线视频免费播放| 一a级毛片在线观看| 男女那种视频在线观看| or卡值多少钱| 欧美日韩国产亚洲二区| 性色avwww在线观看| 小说图片视频综合网站| 欧美在线一区亚洲| 日本成人三级电影网站| 久久久久九九精品影院| 人人妻,人人澡人人爽秒播| 99精品久久久久人妻精品| 亚洲经典国产精华液单| 国产精品美女特级片免费视频播放器| 亚洲专区中文字幕在线| 色av中文字幕| 精华霜和精华液先用哪个| 熟女人妻精品中文字幕| 欧美日韩精品成人综合77777| 性欧美人与动物交配| 国产私拍福利视频在线观看| 久久人妻av系列| 嫩草影院精品99| 老司机福利观看| 男女下面进入的视频免费午夜| 成人av在线播放网站| 午夜a级毛片| 亚洲av不卡在线观看| 天堂动漫精品| 亚洲精品乱码久久久v下载方式| 欧美一区二区国产精品久久精品| 一级av片app| 长腿黑丝高跟| 欧美最黄视频在线播放免费| 色播亚洲综合网| 人妻制服诱惑在线中文字幕| 1024手机看黄色片| 日本免费一区二区三区高清不卡| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久精品电影| 国产亚洲精品av在线| 少妇裸体淫交视频免费看高清| 亚洲va日本ⅴa欧美va伊人久久| 精品一区二区三区视频在线| 久久热精品热| 在线看三级毛片| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 欧美黑人欧美精品刺激| 黄色配什么色好看| 精品久久久久久久末码| .国产精品久久| 久久99热6这里只有精品| 亚洲国产精品sss在线观看| 一级av片app| 九色成人免费人妻av| 精品国内亚洲2022精品成人| 久久精品综合一区二区三区| 国产伦精品一区二区三区四那| 国产精品久久视频播放| 亚洲第一区二区三区不卡| 免费观看的影片在线观看| 久久久午夜欧美精品| 日韩av在线大香蕉| 国产精品不卡视频一区二区| 久久精品久久久久久噜噜老黄 | 国产女主播在线喷水免费视频网站 | 国产乱人视频| 久9热在线精品视频| 国产精品人妻久久久久久| 丰满的人妻完整版| 成年免费大片在线观看| 国产高潮美女av| 美女cb高潮喷水在线观看| 成人国产综合亚洲| 极品教师在线免费播放| 免费人成在线观看视频色| 亚洲综合色惰| 精品午夜福利视频在线观看一区| 国产三级中文精品| 男人和女人高潮做爰伦理| 免费av不卡在线播放| 亚洲熟妇熟女久久| 精品日产1卡2卡| 国产精品,欧美在线| 亚洲在线观看片| 免费电影在线观看免费观看| 国产精品野战在线观看| 噜噜噜噜噜久久久久久91| 白带黄色成豆腐渣| 亚洲av免费高清在线观看| 日本免费一区二区三区高清不卡| 国产亚洲av嫩草精品影院| 日本 av在线|