• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation on Cooling Effectiveness for Advanced Fan-shaped Film Cooling

    2019-07-23 02:11:44XuLiYanjingQuLiuliSong
    風(fēng)機(jī)技術(shù) 2019年3期

    Xu LiYan-jing Qu Liu-li Song

    (AECC Shenyang Engine Research Institute,Shenyang,China)

    Abstract:As one of the advanced film cooling scheme, fan-shaped hole exhibits significant improvement in filmcooling effectiveness compared with cylindrical holes. In this paper, numerical simulations are applied to predict thecooling effectiveness for fan-shaped hole at various flow conditions. The flow conditions are evaluated at three blowingratios (0.5, 1, 1.5) and four mainstream Mach numbers (0.3, 0.45, 0.6, 0.75). CFD simulations are performed in threeRANS turbulence models namely realizable k-ε model, SST k-ω model and standard k-ε model. Simulation results arecompared with experimental data in terms of centerline adiabatic cooling effectiveness, the realizable k- ε model showsa better agreement in predicting the film cooling performance. Although some agreements are obtained, all the threeturbulence models tend to overpredict the cooling effectiveness compared to experimental data.

    Keywords:Film Cooling, CFD,Turbulence Models,Adiabatic Cooling Effectiveness

    0 Introduction

    During past 70 years,there has been a very significant increase in turbine entry temperature(TET)in order to improve gas turbine performance,currently TET has reached to about 2000°C around year 2010 for the advanced gas turbine,but at the same time,the temperature limit of current Nickel based super-alloy for turbine blade is about 1100°C[1].Currently,blade cooling technology is a complex combination of multiple different cooling techniques,among these,film cooling[2]is one of the most common ways to provide cooled protective layer between the hot gas and the external surfaces of gas turbine blades through discrete film holes by blowing of cooling air extracted from compressor.

    Researches on film cooling have revealed that film hole shapes have significant impacts on film cooling effectiveness.Goldstein et al.(1974)firstly used a cylindrical hole with a conical diffusing section and measured effectiveness downstream of the hole[3].They found that the jet remained near the surface with mainstream flow applied,and the centerline effectiveness was comparable with slot cooling,the lateral variation in effectiveness was significantly reduced compared with conventional cylindrical holes.Haven et al.(1997)found the conical diffuser could also improve film cooling coverage[4].Gritsch et al.(1998)and Thole et al.(1998)present adiabatic cooling effectiveness and flow field measurements for two types shaped holes:fan-shaped hole and laid-back fan-shaped hole[5-6],the exit expansion in these shaped holes reduces the velocity and hence the momentum of the coolant flow,so that the jet penetration is decreased,leads to improve the cooling effectiveness.Sargison et al.(2001)presented that a converging slot hole(console),which showed same cooling performance compared with fanshaped holes,but significantly reduced aerodynamic loss[7].Besides that,investigations are performed for many other shaped film holes[8-11],and numerical simulations are also widely applied to investigate film cooling besides experimental studies[12-15],generally numerical simulations are able to capture visible detailed flow and temperature filed despite of the measurement limitations in the experiments.

    1 Fan-shaped Film Cooling Simulations

    1.1 Geometry of fan-shaped hole

    Gritsch et al(1998)provided measurements on flow field and cooling effectiveness on three different film hole geometries:a cylindrical hole,a fan-shaped hole and a laidback fan-shaped hole[5][16].In this paper,numerical study concerning fan-shaped film hole cooling performance is based on these experiments.

    The detailed schematic of fan-shaped film hole is shown as Fig.1.Single,scale-up fan-shaped hole with a 30°inclination angle α was applied.The fan-shaped film hole included two sections:a cylindrical inlet section and an ex-panded outlet section.At the inlet,the diameter of the cylindrical hole was 10 mm with a length-to-diameter ratio of 2.The lateral expansion angle β for the fan-shaped film hole was 14°,leading to a width of 30mm at the expanded outletsection,the length of the expanded section is 40 mm,resulting an outlet-to-inlet area ratio of 3.0.All the hole geometry parameters were well balanced to enable an increased flow expansion before the coolant flow entering the expansion section hence encourage flow diffusion,and it also limited the flow separation at the outlet so as to improve the coolant flow coverage.

    Fig.1 Schematic of fan-shaped hole geometry

    1.2 Computational domain

    The computational domain in this numerical investigation matches the film cooling test section,according to the test condition,the computational domain mainly consists of three parts:a primary channel which simulates the mainstream,a secondary channel which is adapted to deliver the coolant,the coolant passes through the fan-shaped film hole between the primary channel and secondary channel and then injects into the mainstream.As shown in Fig.2 and Fig.3 the width and height for the primary channel are 90 mm and 41 mm,respectively,and the secondary channel is 60 mm in width and 20 mm in height.The diameter of the fan-shaped film hole at the inlet section is 10 mm,resulting in a 3.0 owclet-to-entry area ratio of the fan-shaped film hole.The outlet plane of the mainstream is located at 15D downstream the centre of the hole outlet.

    Fig.2 Schematic structure of computational domain

    1.3 Grid

    In this study,commercial software ICEM CFD was applied to generate multi-block structured grid.Grid independence was obtained through solution-based adaption,the medium mesh with a total element number of 3 288 744 was selected for all the simulations,for the whole computational domain,the mesh quality for all the cells are above 0.3,which indicates the mesh quality are reasonable for the simulation,the first point above the bottom wall of the primary channel is about 0.004mm,which results in the average Y plus value around 1 at this surface.Fig.4 shows the overview of the final grid used in this study,boundary layer refinement are also detailed in the near wall regions of the side walls of the primary channel,the side walls of the film coolant channel,and the walls of the fan-shaped film hole.

    1.4 Turbulence models and test cases

    The simulations were carried out by applying the commercial CFD codes Fluent 14.0 software.The particular solver was pressure correction to achieve the pressure-velocity coupling by multi-grid acceleration.In the three dimensional computational domain with structured grid,steady,time-averaged Navier-Stokes equations were processed and pressurebased SIMPLEC solver with second-order upwind discretization schemes were used.

    Fig.3 Solid model of computational domain

    Fig.4 Mesh overview of the computational domain and mesh details in the film hole region

    The flow parameters investigated in a matrix in this study are shown in Table 1,in order to obtain the basic flow characters and film cooling mechanism for fan-shaped film hole,a baseline case is set at selected flow condition(Mac=0.6,Mac=0,M=1),here Macand Macare main stream and coolant flow Mach number respectively,and M refers to blowing ratio.Besides that,seven other test cases are classified into three groups to investigate the effects of flow parameters on film cooling effectiveness.

    In order to evaluate the performance from different turbulence models to predict fan-shaped hole cooling perfor-mance,three RANS turbulence models,namely the standard k-ε(SKE)with enhanced wall treatment,the SST k-ω model and realizable k-ε(RKE)model are examined in various flow conditions in this study and compared with published experimental data[5].

    Tab.1 Test case matrix

    1.5 Boundary Conditions

    All the other surfaces of the computational domain were set to isothermal no-slip wall condition where the heat flux through the wall was specified to be zero.The inlet turbulence intensities for the mainstream and coolant channel are specified to 1.5%and 1%respectively.

    In order to achieve the expected flow conditions include and blowing ratio M,pressure inlets are adopted both for the primary channel(mainstream)and secondary channel(coolant),likewise,pressure outlets were specified at the outlet of the both channels,static pressures and total temperatures were given at the outlets.In the baseline case,mainstream inlet total pressure is 93800Pa and static pressure at the outlet is 68000Pa,coolant flow inlet total pressure is 100520Pa,for the other test cases,both the primary channel and secondary channel pressure at the inlets varies to satisfy the determined flow conditions.In all test cases,the coolant Tcand the mainstream total temperatures T∞are selected to be 290K and 540 K respectively and consistent with experiment condition[5],hence the temperature ratio(Tc/T∞)is set to 0.54 and kept constant,which represents for typical gas turbine air cooled blade operational condition.

    2 Results and Discussion

    2.1 Baseline case

    Since the flow field directly affects the interaction between the mainstream and coolant and hence influences film cooling performance,flow field hence is a very important issue in film cooling simulation.

    In the baseline condition(Mam=0.6,Mac=0,M=1),three turbulence models are applied to run the simulations.Results show complicated flow structure in the film hole and the near hole region.It is clear that all the three turbulence models are able to predict the jetting region with high momentum at the leading edge within film hole,the relatively high momentum jet does not pass through the film hole with fully expansion.Besides that,the flow separation due to the large turning at the trailing edge of the inlet is observed and hence a low momentum region appears along the trailing edge(See Fig.5).

    Fig.5 Near hole region velocity magnitude contour(m/s)for the central plane(Y=0)at baseline case(Mam=0.6,Mac=0,M=1)

    Fig.6 and Fig.7 clearly reveal that the coolant jet interaction with the mainstream along the stream-wise distance.Thanks to the laterally diffusion within the fan-shaped hole,the jet lift-off effect is not as pronounced as conventional cylindrical film holes,the counter-rotating vortex pair(CVP)is restrained by the anti-CVP and hence delays jet lift-off and penetration into the mainstream.The effect of CVP on film cooling effectiveness was reported by Haven et al(1997)[17].

    Firstly,increased lateral separation reduces the mutual induction between the counter-rotating vortices and delays the jet lift-off.Second,fan-shaped holes are found to generate anti-counter-rotating vortex pair(anti-CVP with an opposite rotation sense relative to CVP.The anti-CVP,the presence and the formation of anti-CVP can cancel the adverse effect of the CVP so as to prevent the jet lift-off.

    The centerline and laterally averaged film cooling effectiveness over the downstream surfaces are calculated in three different turbulence models:a)RKE,b)SST,c)SKE model.These computed results are compared with experimental data in this section.As it is shown in Fig.8,the two dimensional local effectiveness predicted by RKE and SKE are very similar to each other,results from all three model are different from the experimental data to some extent,where adiabatic cooling effectiveness is relatively high along the centreline in the experiment,the difference possibly because of they are not conjugate simulations and only fluid domains are solved[15].Besides that,on average,the predicted cooling effectiveness distributions in present study are higher than the experimental data.

    Fig.6 Velocity vector in Y direction at x/D=0 plane obtained by RKE model at baseline case

    Fig.7 Total temperature contour predicted by RKE model at baseline case

    The centerline cooling effectiveness results predicted by three turbulence models are shown in Fig.9.All the three models show the same tendency of centerline cooling effectiveness,it decreases steadily along the stream-wise distance,due to the jet lifts off the wall and mixes with the mainstream gradually.But compared with the experimental data,all the three turbulence models over-predict the centerline cooling effectiveness,especially at the near film hole region(x/D<3).That may be due to the fact that the conduction in the experiment cannot be neglected.

    Fig.8 Local cooling effectiveness predicted by three different turbulence and comparisons with experimental data

    2.2 Effect of blowing ratio on cooling effectiveness

    The effects of blowing ratio on the film cooling performance are simulated at three different blowing ratios(M=0.5,1.0,1.5),where the mainstream and secondary channel flow condition remain the same(Mam=0.6,Mac=0).Three turbulence models(RKE,SKE,and SST)are applied to predict the cooling effectiveness and compared with experimental data.

    As shown in Fig.10 to Fig.12,at all three blowing ratios,the same as the experimental data,three turbulence models predict a consistence reduce in the cooling effectiveness downstream the coolant ejection.Moreover,with the increase of the blowing ratio from 0.5 to 1.5,the coolant tends to concentrate on the centerline,causing larger cooling effectiveness gradient at lateral directions.Generally,fan-shaped hole provides a better coverage and lateral spreading than the cylindrical hole at all blowing ratios,mainly because only limited jet separation happens near the film hole compared with conventional cylindrical hole.

    According to the experiment conditions,for fan-shaped hole,the centerline cooling effectivenessηis influenced by the blowing ratio,at low blowing ratio(M=0.5),the centerline cooling effectiveness decreases dramatically,increasing the blowing ratio from 0.5 to 1.0 results in improved cooling effectiveness,but further increasing the blowing ratio from 1.0 to 1.5 slightly reduces the effectiveness in the x/D<8 region.

    Generally,the predictions of RKE provide better agreements with the experimental data relative to other two turbulence models.Although the predicted values are much higher than the experiment results,the main tendency of the RKE simulation results match the experimental data well,the effect of blowing ratio on the centerline cooling effectiveness is revealed clearly in the simulation.The overall deviation of cooling effectiveness is about 0.1 at higher blowing ratio(M=1.0,1.5)and about 0.2 at lower blowing ratio(M=0.5).

    Fig.9 Centreline local adiabatic cooling effectiveness for three turbulence models at baseline case

    Fig.10 Centreline adiabatic cooling effectivenessforRKE simulation at different blowing ratios

    Fig.11 Centreline adiabatic cooling effectiveness forSST simulation at different blowing ratios

    Fig.12 Centreline adiabatic cooling effectiveness for SKE simulation at different blowing ratios

    2.3 Effect of mainstream on cooling effectiveness

    To evaluate the effect of mainstream Mach number on the film cooling performance,four representative mainstream flow conditions(Mam=0.3,0.45,0.6,0.79)are selected in present study.Three turbulence models are applied at each mainstream flow condition with the same coolant channel flow condition and blowing ratio(Mac=0,M=1),the performance in predicting cooling effectiveness for three turbulence models are compared.

    Theoretically,as the mainstream flow Mach number increases,the coolant-to-mainstream pressure ratio needs to be increase correspondingly,resulting in that more coolant is injected along the centerline of the fan-shaped hole,which means lateral expansion of the coolant jet is decreased,consequently,the lateral cooling effectiveness is reduced as the mainstream Mach number increases.

    Generally,higher coolant-to-mainstream pressure ratio is needed to maintain the same blowing ratio as the mainstream flow Mach number increases from 0.3 to 0.79,as a result,much more coolant is injected along centerline of the film hole.Hence,the centerline cooling effectiveness is improved gradually as the mainstream flow Mach number increases.The simulation results of centerline cooling effectiveness obtained by both RKE model and SKE model match the trends well.

    Fig.13 Centerline local adiabatic cooling effectivenessηfor RKE simulation at different mainstream Mach numbers

    3 Conclusions

    The effects of flow parameters on fan-shaped film cooling effectiveness have been numerically investigated based on three turbulence models:RKE,SST and SKE.The performances to predict film cooling effectiveness for three models are also evaluated by comparing with experimental data.

    1)Simulation results show that all the three turbulence models are able to predict the main trends of the film cooling effectiveness along the streamwise distance,and the effects of evaluated blowing ratios,mainstream Mach numbers and coolant flow Mach numbers are not pronounced as conventional cylindrical hole.

    2)Generally,the RKE model has a better performance in predicting cooling effectiveness at evaluated test cases.

    3)Although a few agreements are obtained between the simulation results and the experimental data,all the three turbulence models tend to overpredict the cooling effectiveness downstream the film hole exit and the deviation is about 0.1~0.2.

    国产伦在线观看视频一区| 亚洲国产欧美一区二区综合| 老司机午夜十八禁免费视频| 国产成人av激情在线播放| 757午夜福利合集在线观看| 日韩免费av在线播放| 国产精品一及| 黄片大片在线免费观看| 中文在线观看免费www的网站| 欧美日韩瑟瑟在线播放| 亚洲乱码一区二区免费版| 亚洲熟妇熟女久久| 一进一出抽搐动态| 91在线观看av| 人人妻人人澡欧美一区二区| 香蕉丝袜av| 精品一区二区三区四区五区乱码| 成人一区二区视频在线观看| 午夜福利高清视频| 视频区欧美日本亚洲| 两性夫妻黄色片| 级片在线观看| av在线蜜桃| 免费电影在线观看免费观看| 两性夫妻黄色片| 久久国产精品人妻蜜桃| 黑人巨大精品欧美一区二区mp4| 久久精品aⅴ一区二区三区四区| 国产高清有码在线观看视频| 亚洲精品乱码久久久v下载方式 | 久久久成人免费电影| 我要搜黄色片| 最新在线观看一区二区三区| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 最近最新中文字幕大全免费视频| 午夜成年电影在线免费观看| 久久国产精品影院| 欧美黄色片欧美黄色片| 禁无遮挡网站| 久久久久久久久免费视频了| 午夜福利在线观看免费完整高清在 | 欧美一级a爱片免费观看看| 久久国产精品影院| 亚洲熟妇中文字幕五十中出| 精品一区二区三区视频在线 | 国内精品美女久久久久久| 亚洲,欧美精品.| 亚洲五月天丁香| 校园春色视频在线观看| 精品不卡国产一区二区三区| 精品乱码久久久久久99久播| 麻豆国产av国片精品| 亚洲人成网站高清观看| 不卡一级毛片| 亚洲无线在线观看| 欧美3d第一页| 婷婷亚洲欧美| 久久天堂一区二区三区四区| 一本一本综合久久| 国产成人精品久久二区二区免费| 久久人人精品亚洲av| 99国产综合亚洲精品| 国产日本99.免费观看| 欧美高清成人免费视频www| 又粗又爽又猛毛片免费看| 国产一区二区激情短视频| 99精品久久久久人妻精品| 精品国内亚洲2022精品成人| 久久欧美精品欧美久久欧美| 国产伦人伦偷精品视频| 国产97色在线日韩免费| 国产精品国产高清国产av| 亚洲国产看品久久| 久久久久国内视频| 看免费av毛片| 色在线成人网| 国产精品一及| 国产欧美日韩一区二区精品| 久久精品国产综合久久久| av天堂在线播放| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 免费无遮挡裸体视频| 色噜噜av男人的天堂激情| 亚洲欧美日韩卡通动漫| 久久午夜综合久久蜜桃| 日本黄色视频三级网站网址| 视频区欧美日本亚洲| 免费在线观看亚洲国产| 亚洲成av人片在线播放无| 久久国产乱子伦精品免费另类| 亚洲九九香蕉| 亚洲精品乱码久久久v下载方式 | 视频区欧美日本亚洲| 欧美色欧美亚洲另类二区| 亚洲一区二区三区不卡视频| 少妇丰满av| 免费人成视频x8x8入口观看| 亚洲av成人精品一区久久| 午夜激情欧美在线| 真人做人爱边吃奶动态| 久久久久亚洲av毛片大全| av在线天堂中文字幕| 免费看日本二区| 欧美精品啪啪一区二区三区| 久久中文看片网| 精品欧美国产一区二区三| 窝窝影院91人妻| 91字幕亚洲| 欧美黑人欧美精品刺激| 精品无人区乱码1区二区| 成人永久免费在线观看视频| 国产精品一及| 国产精品美女特级片免费视频播放器 | 草草在线视频免费看| 麻豆av在线久日| 最新美女视频免费是黄的| 免费在线观看影片大全网站| 人人妻人人澡欧美一区二区| 午夜亚洲福利在线播放| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 99riav亚洲国产免费| 久久久久久久久免费视频了| 亚洲美女黄片视频| 久久久久九九精品影院| 中文资源天堂在线| 在线永久观看黄色视频| 18禁黄网站禁片午夜丰满| 欧美日本视频| 他把我摸到了高潮在线观看| 精品熟女少妇八av免费久了| 免费看光身美女| 欧美午夜高清在线| 久99久视频精品免费| 亚洲av成人一区二区三| 啦啦啦免费观看视频1| 母亲3免费完整高清在线观看| 午夜久久久久精精品| 身体一侧抽搐| а√天堂www在线а√下载| www.熟女人妻精品国产| 1000部很黄的大片| а√天堂www在线а√下载| 级片在线观看| 日本五十路高清| 国产成人精品久久二区二区91| 中文在线观看免费www的网站| 老熟妇仑乱视频hdxx| 国产精品精品国产色婷婷| 亚洲欧美精品综合久久99| 又紧又爽又黄一区二区| 噜噜噜噜噜久久久久久91| www国产在线视频色| av天堂中文字幕网| 国产精品爽爽va在线观看网站| 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av| 男女床上黄色一级片免费看| 欧美一级毛片孕妇| 又紧又爽又黄一区二区| 国产精品女同一区二区软件 | 哪里可以看免费的av片| 久久久久国产一级毛片高清牌| 小说图片视频综合网站| 成在线人永久免费视频| 制服人妻中文乱码| 国产av在哪里看| 亚洲国产欧美一区二区综合| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 在线观看免费午夜福利视频| 麻豆成人av在线观看| 变态另类丝袜制服| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 亚洲欧美日韩卡通动漫| 色综合婷婷激情| 巨乳人妻的诱惑在线观看| 国产亚洲av嫩草精品影院| 久久久久久久久中文| 成人三级黄色视频| 一进一出抽搐动态| 国产精品久久久久久久电影 | 中文字幕精品亚洲无线码一区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美午夜高清在线| 国产成人欧美在线观看| 麻豆久久精品国产亚洲av| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| 国产精品久久久久久亚洲av鲁大| 免费看十八禁软件| 日韩国内少妇激情av| 亚洲精品色激情综合| 免费在线观看亚洲国产| 身体一侧抽搐| 欧美成人一区二区免费高清观看 | 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 亚洲人成电影免费在线| 在线观看66精品国产| 露出奶头的视频| 亚洲国产中文字幕在线视频| 午夜影院日韩av| 美女cb高潮喷水在线观看 | 国产精品久久视频播放| 色综合婷婷激情| 在线永久观看黄色视频| 久久久久国产一级毛片高清牌| 国产一级毛片七仙女欲春2| 国产黄色小视频在线观看| 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| 午夜精品久久久久久毛片777| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| www.熟女人妻精品国产| 欧美绝顶高潮抽搐喷水| 国产成人福利小说| 日韩欧美国产在线观看| 在线观看一区二区三区| 欧美日韩一级在线毛片| 欧美三级亚洲精品| 免费人成视频x8x8入口观看| 无限看片的www在线观看| 亚洲av美国av| 欧美中文综合在线视频| 午夜影院日韩av| 久久久久九九精品影院| 亚洲色图av天堂| 亚洲中文av在线| www.精华液| 麻豆久久精品国产亚洲av| 欧美zozozo另类| 麻豆一二三区av精品| 热99在线观看视频| 欧美丝袜亚洲另类 | 后天国语完整版免费观看| 亚洲无线观看免费| 久久久久久久午夜电影| 日本一本二区三区精品| 国产精品av视频在线免费观看| 黄色片一级片一级黄色片| 网址你懂的国产日韩在线| 成人特级av手机在线观看| 成人18禁在线播放| 成人三级黄色视频| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| 欧美zozozo另类| 在线国产一区二区在线| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| av国产免费在线观看| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 亚洲七黄色美女视频| 久久久精品大字幕| 美女黄网站色视频| 伦理电影免费视频| 久久精品aⅴ一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 成人特级黄色片久久久久久久| 国产黄色小视频在线观看| 国产精品野战在线观看| 五月玫瑰六月丁香| 中文字幕最新亚洲高清| 男女下面进入的视频免费午夜| 女警被强在线播放| 我的老师免费观看完整版| 色精品久久人妻99蜜桃| 欧美日韩精品网址| 亚洲av第一区精品v没综合| 可以在线观看毛片的网站| 免费av毛片视频| 99久久综合精品五月天人人| 最好的美女福利视频网| x7x7x7水蜜桃| 国产三级中文精品| 亚洲人与动物交配视频| 1000部很黄的大片| 后天国语完整版免费观看| 在线a可以看的网站| 在线观看美女被高潮喷水网站 | 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片| 国产伦人伦偷精品视频| 国产伦在线观看视频一区| 亚洲精品国产精品久久久不卡| 最新美女视频免费是黄的| 男人舔女人下体高潮全视频| 欧美一级毛片孕妇| 18禁黄网站禁片免费观看直播| 99热6这里只有精品| 亚洲精品在线美女| 俺也久久电影网| 免费无遮挡裸体视频| 免费观看人在逋| 小蜜桃在线观看免费完整版高清| 国产亚洲欧美在线一区二区| 免费观看精品视频网站| 天堂动漫精品| 精品国产乱子伦一区二区三区| 亚洲美女视频黄频| 国产单亲对白刺激| 亚洲美女黄片视频| 国产单亲对白刺激| 一级a爱片免费观看的视频| 亚洲人成伊人成综合网2020| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 久久精品人妻少妇| 日韩有码中文字幕| 大型黄色视频在线免费观看| 成人性生交大片免费视频hd| 黄色 视频免费看| 午夜福利视频1000在线观看| 亚洲中文字幕日韩| 十八禁人妻一区二区| h日本视频在线播放| 两个人视频免费观看高清| 亚洲成av人片在线播放无| 亚洲中文av在线| 国产探花在线观看一区二区| 波多野结衣高清作品| 久久午夜综合久久蜜桃| 97超视频在线观看视频| 天堂网av新在线| 丰满的人妻完整版| 99久久成人亚洲精品观看| 啦啦啦免费观看视频1| 性欧美人与动物交配| 97碰自拍视频| 在线看三级毛片| 日韩精品青青久久久久久| 亚洲人成电影免费在线| 成人国产一区最新在线观看| bbb黄色大片| 黄色 视频免费看| 香蕉国产在线看| 在线a可以看的网站| 母亲3免费完整高清在线观看| 757午夜福利合集在线观看| 黄频高清免费视频| 日韩国内少妇激情av| 91av网站免费观看| 熟妇人妻久久中文字幕3abv| 两个人视频免费观看高清| 一个人看视频在线观看www免费 | 午夜成年电影在线免费观看| 亚洲国产看品久久| 色尼玛亚洲综合影院| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品456在线播放app | 伦理电影免费视频| 在线免费观看的www视频| 国产av一区在线观看免费| 男女做爰动态图高潮gif福利片| 婷婷丁香在线五月| 国产高清激情床上av| 亚洲国产精品久久男人天堂| 1024香蕉在线观看| 国产 一区 欧美 日韩| 色吧在线观看| 精品国产乱子伦一区二区三区| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清在线视频| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 欧美性猛交黑人性爽| 一级毛片精品| 国产精品自产拍在线观看55亚洲| 特级一级黄色大片| 免费搜索国产男女视频| 国产精品一区二区精品视频观看| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 一本久久中文字幕| 999久久久精品免费观看国产| 国产亚洲av嫩草精品影院| 999久久久精品免费观看国产| 成年人黄色毛片网站| 身体一侧抽搐| 无人区码免费观看不卡| 亚洲真实伦在线观看| 老司机午夜十八禁免费视频| 亚洲国产精品sss在线观看| 欧美一级毛片孕妇| 国产免费av片在线观看野外av| 中文字幕最新亚洲高清| АⅤ资源中文在线天堂| 亚洲av中文字字幕乱码综合| 亚洲狠狠婷婷综合久久图片| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美一区二区综合| 亚洲电影在线观看av| 美女cb高潮喷水在线观看 | 久久久国产成人精品二区| 国产免费av片在线观看野外av| 日本三级黄在线观看| 亚洲美女视频黄频| 日本一本二区三区精品| 久久精品综合一区二区三区| 国产亚洲精品av在线| 免费观看人在逋| 色老头精品视频在线观看| 亚洲国产欧美一区二区综合| 精品国产亚洲在线| 99久久国产精品久久久| 亚洲国产精品999在线| 欧美另类亚洲清纯唯美| 国产精品一及| 亚洲在线自拍视频| 淫秽高清视频在线观看| 老司机深夜福利视频在线观看| 欧美zozozo另类| 在线观看66精品国产| 国产亚洲精品久久久com| 亚洲一区二区三区色噜噜| 最近在线观看免费完整版| 一进一出抽搐gif免费好疼| 亚洲成人久久爱视频| 亚洲精品一区av在线观看| 精品久久蜜臀av无| 亚洲欧美日韩无卡精品| 欧美中文综合在线视频| 亚洲18禁久久av| 国产伦精品一区二区三区四那| 嫩草影院精品99| 亚洲专区字幕在线| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区视频在线观看免费| 欧美日韩福利视频一区二区| 日韩欧美精品v在线| 亚洲欧美精品综合久久99| 黄色女人牲交| 成人一区二区视频在线观看| 我要搜黄色片| 亚洲专区国产一区二区| 久久午夜亚洲精品久久| 嫩草影视91久久| 国产单亲对白刺激| 香蕉av资源在线| 成人一区二区视频在线观看| 日韩欧美免费精品| 色老头精品视频在线观看| 99riav亚洲国产免费| 日韩欧美 国产精品| 美女 人体艺术 gogo| 久久人人精品亚洲av| 亚洲国产中文字幕在线视频| 亚洲国产欧洲综合997久久,| 看黄色毛片网站| 亚洲精品中文字幕一二三四区| 在线观看66精品国产| 1024手机看黄色片| 国产精品一区二区精品视频观看| 久久久久九九精品影院| www.自偷自拍.com| 亚洲av电影不卡..在线观看| 深夜精品福利| 国产熟女xx| 母亲3免费完整高清在线观看| 国产极品精品免费视频能看的| 操出白浆在线播放| 中文字幕人成人乱码亚洲影| 国产aⅴ精品一区二区三区波| 19禁男女啪啪无遮挡网站| 成人永久免费在线观看视频| 一边摸一边抽搐一进一小说| 每晚都被弄得嗷嗷叫到高潮| 色视频www国产| 99久久精品热视频| 天堂av国产一区二区熟女人妻| 久久中文字幕人妻熟女| h日本视频在线播放| 亚洲色图 男人天堂 中文字幕| av天堂在线播放| 法律面前人人平等表现在哪些方面| 久久中文看片网| 中文字幕av在线有码专区| 国产伦人伦偷精品视频| 一区二区三区激情视频| 非洲黑人性xxxx精品又粗又长| 美女午夜性视频免费| 高清在线国产一区| 视频区欧美日本亚洲| 久久精品亚洲精品国产色婷小说| 在线观看美女被高潮喷水网站 | 国产精华一区二区三区| 日韩中文字幕欧美一区二区| 欧美日韩一级在线毛片| 中文字幕人成人乱码亚洲影| 怎么达到女性高潮| 亚洲av第一区精品v没综合| 国产精品久久久久久久电影 | 在线观看舔阴道视频| 亚洲五月天丁香| 久久久久久九九精品二区国产| 美女高潮的动态| 欧美午夜高清在线| 亚洲成av人片在线播放无| 嫩草影院入口| 日本免费一区二区三区高清不卡| 99久国产av精品| 日韩欧美三级三区| 一本综合久久免费| 黄片大片在线免费观看| 2021天堂中文幕一二区在线观| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧美人成| 老司机在亚洲福利影院| 可以在线观看的亚洲视频| 欧美在线黄色| 欧美一级a爱片免费观看看| 日本免费a在线| 亚洲电影在线观看av| 日本黄色片子视频| 久久久久久久久久黄片| 中文资源天堂在线| 男插女下体视频免费在线播放| 最好的美女福利视频网| 中文在线观看免费www的网站| 国产一区二区三区在线臀色熟女| 三级男女做爰猛烈吃奶摸视频| 国产成人一区二区三区免费视频网站| 男女做爰动态图高潮gif福利片| 天堂av国产一区二区熟女人妻| 日韩av在线大香蕉| 日韩欧美 国产精品| 午夜福利成人在线免费观看| 一二三四社区在线视频社区8| 免费在线观看视频国产中文字幕亚洲| 亚洲五月婷婷丁香| 无遮挡黄片免费观看| 久久久久久久久免费视频了| 男女之事视频高清在线观看| 999精品在线视频| 91麻豆av在线| 麻豆国产97在线/欧美| 亚洲最大成人中文| 亚洲人成电影免费在线| 久久这里只有精品中国| 小蜜桃在线观看免费完整版高清| 麻豆av在线久日| 精品人妻1区二区| 最近最新中文字幕大全电影3| 琪琪午夜伦伦电影理论片6080| 人人妻人人看人人澡| 男女之事视频高清在线观看| 亚洲国产中文字幕在线视频| 国内精品一区二区在线观看| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 久久久久久久精品吃奶| av福利片在线观看| 欧美成狂野欧美在线观看| 日本黄大片高清| 国产淫片久久久久久久久 | 成人特级av手机在线观看| 欧美日本视频| 狠狠狠狠99中文字幕| 岛国在线观看网站| 免费搜索国产男女视频| 在线观看66精品国产| 久久久久国内视频| 999精品在线视频| 老司机午夜十八禁免费视频| 欧美av亚洲av综合av国产av| 亚洲av电影不卡..在线观看| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 亚洲精品美女久久久久99蜜臀| 国产探花在线观看一区二区| 国产一区二区三区在线臀色熟女| 不卡av一区二区三区| 亚洲国产精品成人综合色| 国产三级中文精品| 国产高清三级在线| 91在线精品国自产拍蜜月 | 亚洲性夜色夜夜综合| 亚洲成人免费电影在线观看| 99久国产av精品| 亚洲av日韩精品久久久久久密| 亚洲人成网站在线播放欧美日韩| 中出人妻视频一区二区| 久久久久久国产a免费观看| 国产亚洲av高清不卡| 精品久久蜜臀av无| 视频区欧美日本亚洲| 成人特级黄色片久久久久久久| 特大巨黑吊av在线直播| 九九热线精品视视频播放| 亚洲电影在线观看av| 一卡2卡三卡四卡精品乱码亚洲| 一个人免费在线观看的高清视频| 动漫黄色视频在线观看| 精品久久久久久成人av| 精品久久久久久久毛片微露脸| 国产一级毛片七仙女欲春2| 国产成人啪精品午夜网站| 国内毛片毛片毛片毛片毛片| 国产高清视频在线播放一区| 天堂影院成人在线观看| 国产高清有码在线观看视频| 成人国产一区最新在线观看| 99热这里只有是精品50| 欧美zozozo另类| 最好的美女福利视频网| 日日夜夜操网爽| 俺也久久电影网| 少妇丰满av|