• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation on Cooling Effectiveness for Advanced Fan-shaped Film Cooling

    2019-07-23 02:11:44XuLiYanjingQuLiuliSong
    風(fēng)機(jī)技術(shù) 2019年3期

    Xu LiYan-jing Qu Liu-li Song

    (AECC Shenyang Engine Research Institute,Shenyang,China)

    Abstract:As one of the advanced film cooling scheme, fan-shaped hole exhibits significant improvement in filmcooling effectiveness compared with cylindrical holes. In this paper, numerical simulations are applied to predict thecooling effectiveness for fan-shaped hole at various flow conditions. The flow conditions are evaluated at three blowingratios (0.5, 1, 1.5) and four mainstream Mach numbers (0.3, 0.45, 0.6, 0.75). CFD simulations are performed in threeRANS turbulence models namely realizable k-ε model, SST k-ω model and standard k-ε model. Simulation results arecompared with experimental data in terms of centerline adiabatic cooling effectiveness, the realizable k- ε model showsa better agreement in predicting the film cooling performance. Although some agreements are obtained, all the threeturbulence models tend to overpredict the cooling effectiveness compared to experimental data.

    Keywords:Film Cooling, CFD,Turbulence Models,Adiabatic Cooling Effectiveness

    0 Introduction

    During past 70 years,there has been a very significant increase in turbine entry temperature(TET)in order to improve gas turbine performance,currently TET has reached to about 2000°C around year 2010 for the advanced gas turbine,but at the same time,the temperature limit of current Nickel based super-alloy for turbine blade is about 1100°C[1].Currently,blade cooling technology is a complex combination of multiple different cooling techniques,among these,film cooling[2]is one of the most common ways to provide cooled protective layer between the hot gas and the external surfaces of gas turbine blades through discrete film holes by blowing of cooling air extracted from compressor.

    Researches on film cooling have revealed that film hole shapes have significant impacts on film cooling effectiveness.Goldstein et al.(1974)firstly used a cylindrical hole with a conical diffusing section and measured effectiveness downstream of the hole[3].They found that the jet remained near the surface with mainstream flow applied,and the centerline effectiveness was comparable with slot cooling,the lateral variation in effectiveness was significantly reduced compared with conventional cylindrical holes.Haven et al.(1997)found the conical diffuser could also improve film cooling coverage[4].Gritsch et al.(1998)and Thole et al.(1998)present adiabatic cooling effectiveness and flow field measurements for two types shaped holes:fan-shaped hole and laid-back fan-shaped hole[5-6],the exit expansion in these shaped holes reduces the velocity and hence the momentum of the coolant flow,so that the jet penetration is decreased,leads to improve the cooling effectiveness.Sargison et al.(2001)presented that a converging slot hole(console),which showed same cooling performance compared with fanshaped holes,but significantly reduced aerodynamic loss[7].Besides that,investigations are performed for many other shaped film holes[8-11],and numerical simulations are also widely applied to investigate film cooling besides experimental studies[12-15],generally numerical simulations are able to capture visible detailed flow and temperature filed despite of the measurement limitations in the experiments.

    1 Fan-shaped Film Cooling Simulations

    1.1 Geometry of fan-shaped hole

    Gritsch et al(1998)provided measurements on flow field and cooling effectiveness on three different film hole geometries:a cylindrical hole,a fan-shaped hole and a laidback fan-shaped hole[5][16].In this paper,numerical study concerning fan-shaped film hole cooling performance is based on these experiments.

    The detailed schematic of fan-shaped film hole is shown as Fig.1.Single,scale-up fan-shaped hole with a 30°inclination angle α was applied.The fan-shaped film hole included two sections:a cylindrical inlet section and an ex-panded outlet section.At the inlet,the diameter of the cylindrical hole was 10 mm with a length-to-diameter ratio of 2.The lateral expansion angle β for the fan-shaped film hole was 14°,leading to a width of 30mm at the expanded outletsection,the length of the expanded section is 40 mm,resulting an outlet-to-inlet area ratio of 3.0.All the hole geometry parameters were well balanced to enable an increased flow expansion before the coolant flow entering the expansion section hence encourage flow diffusion,and it also limited the flow separation at the outlet so as to improve the coolant flow coverage.

    Fig.1 Schematic of fan-shaped hole geometry

    1.2 Computational domain

    The computational domain in this numerical investigation matches the film cooling test section,according to the test condition,the computational domain mainly consists of three parts:a primary channel which simulates the mainstream,a secondary channel which is adapted to deliver the coolant,the coolant passes through the fan-shaped film hole between the primary channel and secondary channel and then injects into the mainstream.As shown in Fig.2 and Fig.3 the width and height for the primary channel are 90 mm and 41 mm,respectively,and the secondary channel is 60 mm in width and 20 mm in height.The diameter of the fan-shaped film hole at the inlet section is 10 mm,resulting in a 3.0 owclet-to-entry area ratio of the fan-shaped film hole.The outlet plane of the mainstream is located at 15D downstream the centre of the hole outlet.

    Fig.2 Schematic structure of computational domain

    1.3 Grid

    In this study,commercial software ICEM CFD was applied to generate multi-block structured grid.Grid independence was obtained through solution-based adaption,the medium mesh with a total element number of 3 288 744 was selected for all the simulations,for the whole computational domain,the mesh quality for all the cells are above 0.3,which indicates the mesh quality are reasonable for the simulation,the first point above the bottom wall of the primary channel is about 0.004mm,which results in the average Y plus value around 1 at this surface.Fig.4 shows the overview of the final grid used in this study,boundary layer refinement are also detailed in the near wall regions of the side walls of the primary channel,the side walls of the film coolant channel,and the walls of the fan-shaped film hole.

    1.4 Turbulence models and test cases

    The simulations were carried out by applying the commercial CFD codes Fluent 14.0 software.The particular solver was pressure correction to achieve the pressure-velocity coupling by multi-grid acceleration.In the three dimensional computational domain with structured grid,steady,time-averaged Navier-Stokes equations were processed and pressurebased SIMPLEC solver with second-order upwind discretization schemes were used.

    Fig.3 Solid model of computational domain

    Fig.4 Mesh overview of the computational domain and mesh details in the film hole region

    The flow parameters investigated in a matrix in this study are shown in Table 1,in order to obtain the basic flow characters and film cooling mechanism for fan-shaped film hole,a baseline case is set at selected flow condition(Mac=0.6,Mac=0,M=1),here Macand Macare main stream and coolant flow Mach number respectively,and M refers to blowing ratio.Besides that,seven other test cases are classified into three groups to investigate the effects of flow parameters on film cooling effectiveness.

    In order to evaluate the performance from different turbulence models to predict fan-shaped hole cooling perfor-mance,three RANS turbulence models,namely the standard k-ε(SKE)with enhanced wall treatment,the SST k-ω model and realizable k-ε(RKE)model are examined in various flow conditions in this study and compared with published experimental data[5].

    Tab.1 Test case matrix

    1.5 Boundary Conditions

    All the other surfaces of the computational domain were set to isothermal no-slip wall condition where the heat flux through the wall was specified to be zero.The inlet turbulence intensities for the mainstream and coolant channel are specified to 1.5%and 1%respectively.

    In order to achieve the expected flow conditions include and blowing ratio M,pressure inlets are adopted both for the primary channel(mainstream)and secondary channel(coolant),likewise,pressure outlets were specified at the outlet of the both channels,static pressures and total temperatures were given at the outlets.In the baseline case,mainstream inlet total pressure is 93800Pa and static pressure at the outlet is 68000Pa,coolant flow inlet total pressure is 100520Pa,for the other test cases,both the primary channel and secondary channel pressure at the inlets varies to satisfy the determined flow conditions.In all test cases,the coolant Tcand the mainstream total temperatures T∞are selected to be 290K and 540 K respectively and consistent with experiment condition[5],hence the temperature ratio(Tc/T∞)is set to 0.54 and kept constant,which represents for typical gas turbine air cooled blade operational condition.

    2 Results and Discussion

    2.1 Baseline case

    Since the flow field directly affects the interaction between the mainstream and coolant and hence influences film cooling performance,flow field hence is a very important issue in film cooling simulation.

    In the baseline condition(Mam=0.6,Mac=0,M=1),three turbulence models are applied to run the simulations.Results show complicated flow structure in the film hole and the near hole region.It is clear that all the three turbulence models are able to predict the jetting region with high momentum at the leading edge within film hole,the relatively high momentum jet does not pass through the film hole with fully expansion.Besides that,the flow separation due to the large turning at the trailing edge of the inlet is observed and hence a low momentum region appears along the trailing edge(See Fig.5).

    Fig.5 Near hole region velocity magnitude contour(m/s)for the central plane(Y=0)at baseline case(Mam=0.6,Mac=0,M=1)

    Fig.6 and Fig.7 clearly reveal that the coolant jet interaction with the mainstream along the stream-wise distance.Thanks to the laterally diffusion within the fan-shaped hole,the jet lift-off effect is not as pronounced as conventional cylindrical film holes,the counter-rotating vortex pair(CVP)is restrained by the anti-CVP and hence delays jet lift-off and penetration into the mainstream.The effect of CVP on film cooling effectiveness was reported by Haven et al(1997)[17].

    Firstly,increased lateral separation reduces the mutual induction between the counter-rotating vortices and delays the jet lift-off.Second,fan-shaped holes are found to generate anti-counter-rotating vortex pair(anti-CVP with an opposite rotation sense relative to CVP.The anti-CVP,the presence and the formation of anti-CVP can cancel the adverse effect of the CVP so as to prevent the jet lift-off.

    The centerline and laterally averaged film cooling effectiveness over the downstream surfaces are calculated in three different turbulence models:a)RKE,b)SST,c)SKE model.These computed results are compared with experimental data in this section.As it is shown in Fig.8,the two dimensional local effectiveness predicted by RKE and SKE are very similar to each other,results from all three model are different from the experimental data to some extent,where adiabatic cooling effectiveness is relatively high along the centreline in the experiment,the difference possibly because of they are not conjugate simulations and only fluid domains are solved[15].Besides that,on average,the predicted cooling effectiveness distributions in present study are higher than the experimental data.

    Fig.6 Velocity vector in Y direction at x/D=0 plane obtained by RKE model at baseline case

    Fig.7 Total temperature contour predicted by RKE model at baseline case

    The centerline cooling effectiveness results predicted by three turbulence models are shown in Fig.9.All the three models show the same tendency of centerline cooling effectiveness,it decreases steadily along the stream-wise distance,due to the jet lifts off the wall and mixes with the mainstream gradually.But compared with the experimental data,all the three turbulence models over-predict the centerline cooling effectiveness,especially at the near film hole region(x/D<3).That may be due to the fact that the conduction in the experiment cannot be neglected.

    Fig.8 Local cooling effectiveness predicted by three different turbulence and comparisons with experimental data

    2.2 Effect of blowing ratio on cooling effectiveness

    The effects of blowing ratio on the film cooling performance are simulated at three different blowing ratios(M=0.5,1.0,1.5),where the mainstream and secondary channel flow condition remain the same(Mam=0.6,Mac=0).Three turbulence models(RKE,SKE,and SST)are applied to predict the cooling effectiveness and compared with experimental data.

    As shown in Fig.10 to Fig.12,at all three blowing ratios,the same as the experimental data,three turbulence models predict a consistence reduce in the cooling effectiveness downstream the coolant ejection.Moreover,with the increase of the blowing ratio from 0.5 to 1.5,the coolant tends to concentrate on the centerline,causing larger cooling effectiveness gradient at lateral directions.Generally,fan-shaped hole provides a better coverage and lateral spreading than the cylindrical hole at all blowing ratios,mainly because only limited jet separation happens near the film hole compared with conventional cylindrical hole.

    According to the experiment conditions,for fan-shaped hole,the centerline cooling effectivenessηis influenced by the blowing ratio,at low blowing ratio(M=0.5),the centerline cooling effectiveness decreases dramatically,increasing the blowing ratio from 0.5 to 1.0 results in improved cooling effectiveness,but further increasing the blowing ratio from 1.0 to 1.5 slightly reduces the effectiveness in the x/D<8 region.

    Generally,the predictions of RKE provide better agreements with the experimental data relative to other two turbulence models.Although the predicted values are much higher than the experiment results,the main tendency of the RKE simulation results match the experimental data well,the effect of blowing ratio on the centerline cooling effectiveness is revealed clearly in the simulation.The overall deviation of cooling effectiveness is about 0.1 at higher blowing ratio(M=1.0,1.5)and about 0.2 at lower blowing ratio(M=0.5).

    Fig.9 Centreline local adiabatic cooling effectiveness for three turbulence models at baseline case

    Fig.10 Centreline adiabatic cooling effectivenessforRKE simulation at different blowing ratios

    Fig.11 Centreline adiabatic cooling effectiveness forSST simulation at different blowing ratios

    Fig.12 Centreline adiabatic cooling effectiveness for SKE simulation at different blowing ratios

    2.3 Effect of mainstream on cooling effectiveness

    To evaluate the effect of mainstream Mach number on the film cooling performance,four representative mainstream flow conditions(Mam=0.3,0.45,0.6,0.79)are selected in present study.Three turbulence models are applied at each mainstream flow condition with the same coolant channel flow condition and blowing ratio(Mac=0,M=1),the performance in predicting cooling effectiveness for three turbulence models are compared.

    Theoretically,as the mainstream flow Mach number increases,the coolant-to-mainstream pressure ratio needs to be increase correspondingly,resulting in that more coolant is injected along the centerline of the fan-shaped hole,which means lateral expansion of the coolant jet is decreased,consequently,the lateral cooling effectiveness is reduced as the mainstream Mach number increases.

    Generally,higher coolant-to-mainstream pressure ratio is needed to maintain the same blowing ratio as the mainstream flow Mach number increases from 0.3 to 0.79,as a result,much more coolant is injected along centerline of the film hole.Hence,the centerline cooling effectiveness is improved gradually as the mainstream flow Mach number increases.The simulation results of centerline cooling effectiveness obtained by both RKE model and SKE model match the trends well.

    Fig.13 Centerline local adiabatic cooling effectivenessηfor RKE simulation at different mainstream Mach numbers

    3 Conclusions

    The effects of flow parameters on fan-shaped film cooling effectiveness have been numerically investigated based on three turbulence models:RKE,SST and SKE.The performances to predict film cooling effectiveness for three models are also evaluated by comparing with experimental data.

    1)Simulation results show that all the three turbulence models are able to predict the main trends of the film cooling effectiveness along the streamwise distance,and the effects of evaluated blowing ratios,mainstream Mach numbers and coolant flow Mach numbers are not pronounced as conventional cylindrical hole.

    2)Generally,the RKE model has a better performance in predicting cooling effectiveness at evaluated test cases.

    3)Although a few agreements are obtained between the simulation results and the experimental data,all the three turbulence models tend to overpredict the cooling effectiveness downstream the film hole exit and the deviation is about 0.1~0.2.

    在线天堂中文资源库| 日韩三级视频一区二区三区| 一边摸一边做爽爽视频免费| 麻豆一二三区av精品| 亚洲欧美激情综合另类| 午夜免费观看网址| 国产一级毛片七仙女欲春2 | 麻豆一二三区av精品| 欧美乱妇无乱码| 亚洲精品一区av在线观看| 中文字幕最新亚洲高清| 欧美日韩乱码在线| 国产三级黄色录像| 88av欧美| 国产三级在线视频| 欧美日本视频| 午夜成年电影在线免费观看| 亚洲七黄色美女视频| 女人高潮潮喷娇喘18禁视频| 国产1区2区3区精品| 欧美成狂野欧美在线观看| 亚洲一码二码三码区别大吗| 久久久久久免费高清国产稀缺| 人妻久久中文字幕网| 亚洲人成电影观看| 国产成人精品在线电影| 少妇被粗大的猛进出69影院| 国产高清视频在线播放一区| 两个人看的免费小视频| 非洲黑人性xxxx精品又粗又长| www.www免费av| 久久亚洲精品不卡| 嫩草影视91久久| 岛国在线观看网站| 色综合欧美亚洲国产小说| 亚洲av第一区精品v没综合| 国产又色又爽无遮挡免费看| 国产亚洲精品综合一区在线观看 | 90打野战视频偷拍视频| 人人妻,人人澡人人爽秒播| 欧美不卡视频在线免费观看 | 99精品欧美一区二区三区四区| netflix在线观看网站| 久久国产精品人妻蜜桃| 少妇的丰满在线观看| 两性夫妻黄色片| 国产亚洲精品久久久久5区| 欧美黄色片欧美黄色片| 丁香欧美五月| 国产成人欧美| 成人国产综合亚洲| 国产成人免费无遮挡视频| 精品日产1卡2卡| 麻豆国产av国片精品| 黄频高清免费视频| 天堂动漫精品| 一区福利在线观看| x7x7x7水蜜桃| 黄色视频,在线免费观看| 午夜免费观看网址| 国产真人三级小视频在线观看| 999久久久国产精品视频| 老熟妇乱子伦视频在线观看| 久久精品国产综合久久久| 精品国内亚洲2022精品成人| 极品人妻少妇av视频| 操出白浆在线播放| 午夜福利在线观看吧| 在线天堂中文资源库| 18禁国产床啪视频网站| 精品国产一区二区三区四区第35| 每晚都被弄得嗷嗷叫到高潮| 黄色成人免费大全| 99国产精品99久久久久| 正在播放国产对白刺激| 亚洲第一欧美日韩一区二区三区| 一级作爱视频免费观看| 亚洲精品久久国产高清桃花| 嫩草影院精品99| 天堂√8在线中文| 99热只有精品国产| 精品人妻在线不人妻| 成人三级黄色视频| 老熟妇仑乱视频hdxx| 精品少妇一区二区三区视频日本电影| 欧美国产精品va在线观看不卡| 国产在线精品亚洲第一网站| 99riav亚洲国产免费| 一夜夜www| 99精品欧美一区二区三区四区| 久久亚洲精品不卡| 在线视频色国产色| 亚洲成人久久性| 美女国产高潮福利片在线看| 日本三级黄在线观看| av视频在线观看入口| 男女午夜视频在线观看| 91在线观看av| 亚洲一卡2卡3卡4卡5卡精品中文| 熟妇人妻久久中文字幕3abv| 在线播放国产精品三级| 国语自产精品视频在线第100页| 国产免费av片在线观看野外av| 国产欧美日韩精品亚洲av| 99国产极品粉嫩在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美国产精品va在线观看不卡| 黑人欧美特级aaaaaa片| 国产成人欧美在线观看| 国产成人av教育| 久99久视频精品免费| 给我免费播放毛片高清在线观看| 男女下面插进去视频免费观看| 少妇裸体淫交视频免费看高清 | 狂野欧美激情性xxxx| 亚洲av第一区精品v没综合| 国产黄a三级三级三级人| 一进一出好大好爽视频| 国产精品香港三级国产av潘金莲| 亚洲伊人色综图| 老熟妇仑乱视频hdxx| 午夜福利高清视频| 亚洲一区二区三区色噜噜| 女人被躁到高潮嗷嗷叫费观| 国产精品综合久久久久久久免费 | 人人妻,人人澡人人爽秒播| 亚洲中文字幕日韩| 亚洲三区欧美一区| 色老头精品视频在线观看| 国产精品国产高清国产av| 成人精品一区二区免费| 淫妇啪啪啪对白视频| 久久伊人香网站| 成年人黄色毛片网站| 亚洲国产欧美一区二区综合| а√天堂www在线а√下载| 免费女性裸体啪啪无遮挡网站| 狠狠狠狠99中文字幕| 婷婷六月久久综合丁香| 在线视频色国产色| 精品久久久久久,| 巨乳人妻的诱惑在线观看| 午夜免费成人在线视频| 女人被躁到高潮嗷嗷叫费观| 纯流量卡能插随身wifi吗| 日本黄色视频三级网站网址| ponron亚洲| 男女午夜视频在线观看| 亚洲成人久久性| 免费在线观看影片大全网站| 757午夜福利合集在线观看| 岛国在线观看网站| netflix在线观看网站| 精品国产国语对白av| 欧美日本视频| 老熟妇乱子伦视频在线观看| 超碰成人久久| 国产免费男女视频| 中文字幕高清在线视频| 男男h啪啪无遮挡| 男男h啪啪无遮挡| 欧美日本视频| 国产亚洲精品一区二区www| 熟妇人妻久久中文字幕3abv| 无限看片的www在线观看| 精品国产乱子伦一区二区三区| 成人18禁高潮啪啪吃奶动态图| 多毛熟女@视频| 级片在线观看| 色av中文字幕| 精品日产1卡2卡| 国产成人一区二区三区免费视频网站| 97超级碰碰碰精品色视频在线观看| 国产av又大| 丝袜人妻中文字幕| 99riav亚洲国产免费| 一级,二级,三级黄色视频| 日韩高清综合在线| 久久性视频一级片| 亚洲国产欧美一区二区综合| 色播亚洲综合网| 久久精品国产亚洲av高清一级| 久久久久久久精品吃奶| 国产精品久久久久久人妻精品电影| 久久久久久久久久久久大奶| 青草久久国产| 日韩欧美免费精品| 国产一区二区激情短视频| 97人妻精品一区二区三区麻豆 | 日韩视频一区二区在线观看| 涩涩av久久男人的天堂| 精品国产超薄肉色丝袜足j| 老熟妇仑乱视频hdxx| 变态另类成人亚洲欧美熟女 | 国产精品久久久人人做人人爽| 久久欧美精品欧美久久欧美| 神马国产精品三级电影在线观看 | 12—13女人毛片做爰片一| www.自偷自拍.com| 国产一区在线观看成人免费| 欧美黑人精品巨大| 国产不卡一卡二| 在线永久观看黄色视频| 亚洲,欧美精品.| 在线天堂中文资源库| 露出奶头的视频| 老鸭窝网址在线观看| 欧美色视频一区免费| 久久这里只有精品19| 日本撒尿小便嘘嘘汇集6| 首页视频小说图片口味搜索| 国产成人欧美在线观看| 日本在线视频免费播放| 色尼玛亚洲综合影院| 欧美久久黑人一区二区| 怎么达到女性高潮| 亚洲国产日韩欧美精品在线观看 | 麻豆国产av国片精品| 成人手机av| 日本撒尿小便嘘嘘汇集6| 啦啦啦韩国在线观看视频| 老司机在亚洲福利影院| 婷婷精品国产亚洲av在线| 亚洲av成人av| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 久久精品国产综合久久久| 午夜两性在线视频| 亚洲国产欧美日韩在线播放| 亚洲伊人色综图| 亚洲国产精品999在线| 久久久精品欧美日韩精品| 人成视频在线观看免费观看| 久久天躁狠狠躁夜夜2o2o| tocl精华| 午夜老司机福利片| 人人妻人人澡人人看| 婷婷丁香在线五月| 国产精品一区二区在线不卡| 韩国av一区二区三区四区| 亚洲午夜精品一区,二区,三区| 亚洲 欧美 日韩 在线 免费| 亚洲伊人色综图| 欧美av亚洲av综合av国产av| 黄片小视频在线播放| 国产91精品成人一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产精品爽爽va在线观看网站 | 亚洲一码二码三码区别大吗| 欧美成人一区二区免费高清观看 | 亚洲一区二区三区不卡视频| 亚洲国产欧美网| 黄色丝袜av网址大全| 亚洲av成人一区二区三| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区| 亚洲五月天丁香| 亚洲成国产人片在线观看| 91在线观看av| 精品电影一区二区在线| 亚洲成av片中文字幕在线观看| 青草久久国产| 久久久久精品国产欧美久久久| 精品福利观看| 久久中文看片网| 日韩高清综合在线| 国产成人啪精品午夜网站| 亚洲色图av天堂| 男女午夜视频在线观看| 日本免费a在线| 亚洲国产欧美一区二区综合| 亚洲人成电影免费在线| 国产在线精品亚洲第一网站| 久久精品亚洲熟妇少妇任你| 亚洲三区欧美一区| 色在线成人网| 国产精品二区激情视频| 99国产精品一区二区蜜桃av| 免费女性裸体啪啪无遮挡网站| 日本 欧美在线| 女警被强在线播放| 法律面前人人平等表现在哪些方面| 午夜久久久久精精品| av电影中文网址| 亚洲精品中文字幕在线视频| 日韩精品免费视频一区二区三区| www.999成人在线观看| cao死你这个sao货| 在线观看日韩欧美| 亚洲男人的天堂狠狠| 亚洲中文日韩欧美视频| 色婷婷久久久亚洲欧美| 亚洲成人久久性| 欧美在线黄色| 久久久久久久午夜电影| 1024视频免费在线观看| 久久久国产成人精品二区| 久久热在线av| 国产免费男女视频| 手机成人av网站| 亚洲 欧美 日韩 在线 免费| 亚洲自拍偷在线| 午夜福利,免费看| 黑丝袜美女国产一区| 久久久国产成人免费| 成人18禁在线播放| 老司机深夜福利视频在线观看| 国产成人欧美| 男人舔女人下体高潮全视频| 亚洲精品国产精品久久久不卡| а√天堂www在线а√下载| 日韩有码中文字幕| 亚洲情色 制服丝袜| 午夜日韩欧美国产| 一级黄色大片毛片| 村上凉子中文字幕在线| 91精品三级在线观看| 狠狠狠狠99中文字幕| bbb黄色大片| 人妻久久中文字幕网| 精品第一国产精品| 香蕉久久夜色| 欧美一区二区精品小视频在线| 美女午夜性视频免费| 色综合站精品国产| 国产精品久久久久久人妻精品电影| bbb黄色大片| 最新美女视频免费是黄的| 好看av亚洲va欧美ⅴa在| 不卡一级毛片| 一区二区日韩欧美中文字幕| 免费看美女性在线毛片视频| 国产麻豆成人av免费视频| 色尼玛亚洲综合影院| 搡老熟女国产l中国老女人| 妹子高潮喷水视频| av在线播放免费不卡| 91成年电影在线观看| 亚洲五月婷婷丁香| svipshipincom国产片| 亚洲国产精品合色在线| 免费看a级黄色片| 日本精品一区二区三区蜜桃| 国产精品一区二区精品视频观看| 国产亚洲av高清不卡| 午夜福利欧美成人| 黑丝袜美女国产一区| 后天国语完整版免费观看| 中出人妻视频一区二区| 国产1区2区3区精品| 咕卡用的链子| 亚洲精品中文字幕在线视频| 久久婷婷人人爽人人干人人爱 | 亚洲av成人av| 亚洲熟妇熟女久久| 啪啪无遮挡十八禁网站| 精品欧美国产一区二区三| 在线av久久热| 免费一级毛片在线播放高清视频 | 少妇的丰满在线观看| 欧美日韩福利视频一区二区| 亚洲无线在线观看| 久久人妻福利社区极品人妻图片| 黄片大片在线免费观看| 日韩欧美在线二视频| 国产亚洲精品综合一区在线观看 | 国产av又大| 国产精品秋霞免费鲁丝片| 高潮久久久久久久久久久不卡| 在线观看免费视频日本深夜| 国产一区在线观看成人免费| 一二三四社区在线视频社区8| 亚洲国产精品成人综合色| 两性夫妻黄色片| 国产成人欧美在线观看| 成人精品一区二区免费| 亚洲国产高清在线一区二区三 | 国产麻豆69| 国产精品国产高清国产av| 国产亚洲av嫩草精品影院| 久久国产精品男人的天堂亚洲| 国产午夜福利久久久久久| 黄色视频不卡| 欧美丝袜亚洲另类 | av超薄肉色丝袜交足视频| 亚洲av电影不卡..在线观看| 看片在线看免费视频| 最好的美女福利视频网| 欧美日本中文国产一区发布| 国内精品久久久久久久电影| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费观看网址| 黄色片一级片一级黄色片| 少妇熟女aⅴ在线视频| 国产私拍福利视频在线观看| 人人妻人人澡人人看| 777久久人妻少妇嫩草av网站| 亚洲成av片中文字幕在线观看| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 久久久精品欧美日韩精品| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区mp4| 国产精品日韩av在线免费观看 | 国产精品综合久久久久久久免费 | 日韩欧美国产在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美日韩在线播放| 亚洲狠狠婷婷综合久久图片| 久久 成人 亚洲| 亚洲片人在线观看| 午夜福利成人在线免费观看| 国产亚洲精品一区二区www| 成人免费观看视频高清| av天堂久久9| 久久亚洲精品不卡| 国产国语露脸激情在线看| 一区二区三区高清视频在线| 午夜免费激情av| av福利片在线| 午夜精品国产一区二区电影| 久久香蕉激情| 悠悠久久av| 亚洲成av人片免费观看| 在线观看免费视频日本深夜| 满18在线观看网站| 欧美大码av| 国产欧美日韩一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 黑人巨大精品欧美一区二区蜜桃| 国产国语露脸激情在线看| 亚洲精品在线美女| 久久精品91无色码中文字幕| 国产精品98久久久久久宅男小说| 亚洲av成人不卡在线观看播放网| 18禁裸乳无遮挡免费网站照片 | 免费在线观看黄色视频的| 99久久久亚洲精品蜜臀av| 久久久久九九精品影院| 欧美精品啪啪一区二区三区| 搡老妇女老女人老熟妇| 亚洲自偷自拍图片 自拍| 黄色视频,在线免费观看| 丁香六月欧美| 久久国产乱子伦精品免费另类| 国产精品秋霞免费鲁丝片| 亚洲一区二区三区色噜噜| 日韩大码丰满熟妇| 欧美绝顶高潮抽搐喷水| 欧美日韩亚洲综合一区二区三区_| 欧美最黄视频在线播放免费| 欧美激情 高清一区二区三区| 在线播放国产精品三级| 国产精品,欧美在线| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| 操出白浆在线播放| 侵犯人妻中文字幕一二三四区| 老汉色av国产亚洲站长工具| 精品日产1卡2卡| 麻豆成人av在线观看| 性色av乱码一区二区三区2| 看免费av毛片| 日本 av在线| 国产亚洲欧美98| 91字幕亚洲| 又大又爽又粗| 国产免费男女视频| 欧美激情极品国产一区二区三区| 正在播放国产对白刺激| 国产精品久久久av美女十八| 99在线视频只有这里精品首页| 9热在线视频观看99| 国产成人精品在线电影| 久久人妻av系列| 欧美在线黄色| 国产亚洲欧美98| 欧美一区二区精品小视频在线| 亚洲国产精品成人综合色| 一本综合久久免费| 国产午夜精品久久久久久| 国内久久婷婷六月综合欲色啪| 免费看a级黄色片| 91国产中文字幕| 亚洲国产精品合色在线| 欧美激情高清一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 久久精品91蜜桃| 欧美成人性av电影在线观看| 国产成人免费无遮挡视频| 国产私拍福利视频在线观看| 狂野欧美激情性xxxx| 嫩草影视91久久| 精品熟女少妇八av免费久了| 亚洲精品在线美女| 最近最新免费中文字幕在线| 老司机深夜福利视频在线观看| 美女高潮到喷水免费观看| 最近最新中文字幕大全电影3 | 国产av一区在线观看免费| 男女午夜视频在线观看| 欧美日韩一级在线毛片| 变态另类成人亚洲欧美熟女 | 在线十欧美十亚洲十日本专区| 制服丝袜大香蕉在线| 我的亚洲天堂| 欧美老熟妇乱子伦牲交| 女警被强在线播放| 色老头精品视频在线观看| 久久中文字幕一级| 一区二区三区国产精品乱码| 精品乱码久久久久久99久播| svipshipincom国产片| 免费少妇av软件| 99久久精品国产亚洲精品| 不卡一级毛片| 久久精品91无色码中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 制服丝袜大香蕉在线| 国产精品亚洲美女久久久| 琪琪午夜伦伦电影理论片6080| 欧美一级a爱片免费观看看 | 国产精品永久免费网站| 国产又爽黄色视频| 精品久久蜜臀av无| 国产三级在线视频| 两人在一起打扑克的视频| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 妹子高潮喷水视频| 18禁裸乳无遮挡免费网站照片 | 黄色a级毛片大全视频| 一进一出好大好爽视频| 黄色丝袜av网址大全| 久久精品aⅴ一区二区三区四区| 精品欧美一区二区三区在线| 国产成人系列免费观看| 精品日产1卡2卡| 日韩精品免费视频一区二区三区| 精品日产1卡2卡| 久热这里只有精品99| 老司机午夜福利在线观看视频| 搡老岳熟女国产| 久久草成人影院| 亚洲少妇的诱惑av| 欧美色欧美亚洲另类二区 | 在线观看日韩欧美| 国产精品综合久久久久久久免费 | 亚洲国产中文字幕在线视频| 久热这里只有精品99| 中文字幕最新亚洲高清| 午夜福利一区二区在线看| 女人被狂操c到高潮| 午夜福利高清视频| 99香蕉大伊视频| 亚洲熟女毛片儿| 99国产综合亚洲精品| 国产极品粉嫩免费观看在线| 操出白浆在线播放| 丰满人妻熟妇乱又伦精品不卡| 身体一侧抽搐| 深夜精品福利| 高清毛片免费观看视频网站| 亚洲精品av麻豆狂野| 久久国产精品男人的天堂亚洲| 99精品久久久久人妻精品| 动漫黄色视频在线观看| 大型av网站在线播放| 岛国在线观看网站| 亚洲五月天丁香| 在线观看66精品国产| 18禁裸乳无遮挡免费网站照片 | 日日夜夜操网爽| 成人免费观看视频高清| 黑人操中国人逼视频| 国产精品av久久久久免费| 美国免费a级毛片| 免费观看人在逋| 国产精品亚洲美女久久久| 国产亚洲精品久久久久5区| 欧美日韩瑟瑟在线播放| 欧美在线一区亚洲| 麻豆成人av在线观看| 后天国语完整版免费观看| 成人国产一区最新在线观看| 性少妇av在线| 国产又爽黄色视频| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 久久人人爽av亚洲精品天堂| 变态另类丝袜制服| 丝袜美足系列| 欧美激情高清一区二区三区| 欧美国产精品va在线观看不卡| 人成视频在线观看免费观看| 超碰成人久久| 色精品久久人妻99蜜桃| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看 | 18禁观看日本| 性少妇av在线| 成人三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久亚洲精品不卡| 天堂影院成人在线观看| 国产91精品成人一区二区三区| 免费观看精品视频网站| 欧美日韩中文字幕国产精品一区二区三区 | 美女高潮喷水抽搐中文字幕| 久久 成人 亚洲| 久久人妻熟女aⅴ| 在线观看免费视频日本深夜| 亚洲色图 男人天堂 中文字幕|