• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic Design of A Supercritical CO2Brayton Cycle for 40MW Shipboard Application*

    2019-07-23 02:11:44ZhenLiuYapingJuChuhuaZhang
    風(fēng)機(jī)技術(shù) 2019年3期

    Zhen LiuYa-ping JuChu-hua Zhang

    (School of Energy and Power Engineering,Xi'an Jiaotong University,China)

    Abstract:Although much attention has been paid to the supercritical CO2 (S-CO2) Brayton cycle, there are still fewworks on the analysis and design of S-CO2 cycle tailored to the needs of the shipboard propulsion and power system.The primary purpose of this study is to carry out the thermodynamic design of a S-CO2 recompression Brayton cycle forshipboard application with 40MW output power. Particular efforts are devoted to the analysis of the thermodynamicparameters of the cycle. The results show that the efficiency of the designed S-CO2 Brayton cycle with a relativelycomplex recuperation cycle is 45.06 percent, 8.28 percent higher than that of a simple recuperation cycle. This indicatesthe great influence of the recuperation design on the efficiency of the Brayton cycle. Meanwhile, the compressor inletpressure greatly affects the cycle efficiency, and the shunt flow percentage could partly reflect the cycle performance.This work is of important reference value for the development of future nuclear shipboard propulsion and power system.

    Keywords: Supercritical Carbon Dioxide, Recompression Brayton Cycle, Shipboard Propulsion and Power,Thermodynamic Design, Cycle Efficiency

    Nomenclature

    hspecific enthalpy(kJ/kg)

    m˙mass flow rate of working fluid(kg/s)

    ppressure(kPa)

    Qheat(kJ)

    T temperature(K)

    W work(kJ)

    x shun t flow percentage

    Greek symbols

    ηefficiency

    ΔTtemperature difference of recuperator(K)

    Subscript

    Ccompressor

    CEcold end of recuperator

    ininput of heat source

    MCmain compressor

    netnet output of the cycle

    RCrecompressing compressor

    s isentropic process

    T turbine

    thmthermodynamic

    1,2,…,8state point of Figure 1

    Superscript

    *rate(per unit of time)

    1 Introduction

    High-efficiency and clean energy exploitation has become one of the hottest research topics in the area of energy and power engineering due to the increasing energy demand,the limited supply of fossil-fuel,and the associated environmental issues.The shipboard demand for larger propulsion and power,lower detrimental environmental impacts,lower life-cycle cost,and greater maneuverability,safety,and reliability has been rapidly growing[1].The development of Generation IV nuclear reactors makes it possible to improve nuclear shipboard thermal efficiencies,meeting these shipboard propulsion demands.The conventional steam Rankine cycle conversion system cannot fully utilize the advantage of high outlet temperature of reactors,which causes an adverse effect on the cycle performance[2].

    Alternative power conversions to improve cycle efficiency are the helium Brayton cycle,the S-CO2Brayton cycle,and so on.Among these cycles,the S-CO2Brayton cycle is considered to be a good candidate for nuclear reactor power conversion systems because of the special properties of CO2.Firstly,CO2is a promising working fluid as it possesses relatively modest critical temperature and pressure,the non-toxicity and stability,the inertness within the reactor core coolant temperature range,abundance and natural existence,and so on[3].Secondly,as CO2becomes nearly incompressible near the critical point,the compression work can be dramatically decreased,which can substantially promote the thermal efficiency[4].Thirdly,the higher supercritical pressurized conditions are beneficial to a compact design of turbomachinery.This significant reduction in the size of power block is favorable in shipboard application where the space is valuable.

    The concept of S-CO2Brayton power cycle was initially proposed by Feher(1967)[5]and Angelino(1968)[6].But then there was a long time when the closed Brayton cycle was obscured by the improvement of combustion gas turbines.Recently the technology has captured significant attention again and the publications on S-CO2Brayton cycle have risen exponentially[7].Dostal et al.(2004)[8]performed a systematic analysis and multiple-parameter design optimization of the S-CO2Brayton system and the major components.They also pointed out that when the turbine inlet temperature is above 823.15K,the S-CO2recompression Brayton cycle achieves the highest thermal efficiency in comparison with the helium Brayton cycle,the supercritical stream cycle,and the superheated stream cycle.Meanwhile,both the number and size of main components are smallest[2].There were also a series of thermodynamic analysis and optimization studies later[9-15].Along with those thermal analysis,the integral test loops and component experiments were conducted in United States(Sandia National Laboratory[16],Bechtel Marine Propulsion Corporation[17]),Asia(the Nuclear Power Institute of China[18],Tokyo Institute of Technology in Japan[19],Korean Atomic Energy Research Institute and Korea Advanced Institute of Science and Technology[20]),Europe(Research Centre Rez in Prague,Czech Republic[21])and Australia(University of Queensland[22]),demonstrating the technical feasibility of the concept.

    So far,numerous theoretical and experimental works have been devoted to the S-CO2cycle.Nevertheless,the researches concerning the S-CO2cycle in shipboard applications are relatively few.Combs(1977)[23]investigated the performance of a S-CO2engine for propulsion and power in a naval ship using basic thermodynamic approach.Combs(1977)selected the simple recuperation cycle as a primary option from the view of compactness and economics.Nowadays as the continuing requirement of higher efficiency and the emergence of more compact heat exchangers,a more complex cycle layout for shipboard propulsion and power applictions could be put on the agenda.

    The present study aims at the S-CO2thermodynamic cycle design for a 40MW output power of nuclear shipboards.In the next section,the S-CO2cycle description and modeling are illustrated.Then the parameter analysis of the 40MW cycle is discussed along with the thermodynamic analysis.Finally,the design results are presented.

    2 System Description and Modeling

    2.1 S-CO2Brayton Cycle System

    The power conversion of a basic S-CO2Brayton cycle mainly contains four processes:compression,heating,expansion,and cooling.It is similar with gas turbines nevertheless the latter cooling process occurs in the open air condition.In the meantime,the cycle layout resembles a steam Rankine cycle except that in S-CO2Brayton cycle all of the four processes occur above the critical condition.

    In a simple recuperation Brayton cycle,the fluid is compressed in the compressor firstly.Then it passes through the recuperator to be preheated by the turbine exhaust.After the pre-heat,the fluid enters the heater where it achieves the highest temperature from the heat source.Then this high temperature fluid expands in the turbine providing work for the generator and compressor.The remaining heat after expansion is firstly utilized in the recuperator for preheating and then rejected through the precooler,returning to the initial states.

    The recuperation process in the S-CO2Brayton cycle greatly influences the thermal efficiency,since the relatively smaller cycle pressure ratio(because the minimum pressure is high)results in a relatively high turbine outlet temperature,leading to a large amount of heat remaining in the turbine outlet.However,due to the great variation in the specific heat in the cycle,the temperature difference between hot side fluid and cool side fluid in the recuperator is large.This pinch-point problem undermines the recuperation performance.On this account,other cycle layouts such as recompression and pre-compression are considered.

    Among these layouts,the recompressing layout is generally considered to be the most efficient in the conditions of interest.Besides,it is relatively simple and compact.Therefore this cycle layout is chosen for the 40MW cycle of the nuclear-powered shipboard.The S-CO2recompression cycle layout is depicted in Figure 1.Another compressor and recuperator(showed in the red dashed box in Figure 1)are intro-duced compared with the simple recuperation Brayton cycle discussed above.In this cycle,the flow is split before entering the pre-cooler(at point 6)and only a part of the fluid flow rejects the heat.This fraction of fluid flow is compressed in the main compressor and preheated through the low temperature recuperator to the recompressing compressor outlet temperature.While the rest of fluid flow enters recompressing compressor and then it is merged with the flow out of the low temperature recuperator(at point 7).The entire fluid flow is preheated in the high temperature recuperator,and then it passes through heat resources,turbine,high and low temperature recuperator successively.The temperature-entropy diagram of the recompression cycle is shown in Figure 2.

    Fig.2 T-S diagram of S-CO2recompression cycle

    2.2 Thermodynamic Model

    The thermodynamic cycle system contains two main types of components:turbomachinery components and heat exchangers.Its modeling is conducted using Aspen HYSYS V8.4 with REFPROP as the fluid package[24].The detailed modeling of the S-CO2Brayton cycle system is presented with the following assumptions:(1)The cycle is under steady state and the fluid maintains supercritical state in the whole possess.(2)Pressure loss in pipes and mass flow loss in the cycle are negligible.(3)The adiabatic efficiency of turbomachinery components is fixed with given values.

    The thermodynamic model is mainly based on the first law of thermodynamics.The main formulas are described in the following.

    For the compression process in the main compressor,the work consumed can be written as:

    Whereh2,sdenotes the compressor outlet enthalpy under the isentropic compressing assumption which can be obtained by the compressor inlet entropy and the outlet pressure,and x is the ratio of mass flow rate in main compressor to the total mass flow rate.

    Similarly,the compression and expansion process in the recompression compressor and turbine can be expressed respectively as:

    For heat exchangers,the Printed Circuit Heat Exchanger(PCHE)is adopted for its high compactness and favorable heat transfer efficiency.To avoid heat transfer deterioration arising from pinch point problem,the minimum temperature approach between hot side fluid and cool side fluid in the recuperator cold end is stipulated no less than 8K.The energy balance equation in the low and high temperature recuperator can be expressed respectively as:

    In the heater,the energy absorbed from the heat source can be written as:

    Based on the net output power and total absorbed energy from heat source,the thermal efficiency of the S-CO2recompression cycle system can be derived as:

    3 Results and Discussion

    The selections of parameters for the 40MW S-CO2recompression Brayton cycle are mainly based on the components'capacities presented in the literature[8,14].As have been investigated,the key cycle parameters affecting greatly the cycle thermodynamic performance include main compressor inlet temperature,turbine inlet temperature,cycle pressure ratio,pinch temperature difference of heat exchanger.In the considered ranges,a lower compressor inlet temperature is favorable for cycle efficiency,but it has to be above the CO2critical temperature to avoid condensation in the compressor.Thus 305.15K,a little higher than the CO2critical temperature,is chosen for compressor inlet temperature.The higher turbine inlet temperature also leads to a higher thermal efficiency.Considering the nuclear reactor temperatures,it is selected as 823.15K,which is attractive for varieties of advanced nuclear reactor concepts.As Dostal et al.(2004)[8]pointed out,it is reasonable to select 20MPa as the compressor outlet pressure since continuing to increase pressure from 20 to 25MPa obtains negligible cycle efficient improvement while increasing great component cost.Further-more,due to the lower viscosity of S-CO2cycles,the polytropic efficiencies of compressors and turbines are expected to be higher than those of stream gas cycles in the same volumetric flow rate.The selections of these parameters are listed in Table 1.

    Tab.1 Initial Conditions and Equipment Parameters

    The parameters listed in Table 1 mainly affect the cycle efficiency in an almost monotonic manner.Thus those selections are a balanced compromise between the capability of current materials and the technological economics.However,the pressure ratio of the cycle has a non-monotonic effect on the cycle performance,since the turbine output increases as the pressure ratio increases,while the compressor consumption augments at the same time.The cycle generally achieves the best thermodynamic cycle efficiency when the pressure ratio is between 2 and 3 under those preset conditions.Therefore,several selections of main compressor pressure ratio are simulated to find the reasonable value,and the shunt flow percentage is calculated under each pressure ratio to obtain the maximum cycle efficiency.The results are shown in Figure 3.The left part of the red line locates in the supercritical state.

    It can be found from Figure 3 that the cycle efficiency firstly increases and then decreases as the pressure ratio increases,while the shunt flow percentage varies in a nearly opposite way.Besides,the variation becomes more intensely when the inlet pressure is in the vicinity of critical point(around the red line in Figure 3),since the CO2property varies greatly near the critical point.The tendency indicates that the turbine output increment is initially higher and then lower than the compressor work increment with the increase of pressure ratio.Since the maximum pressure of the cycle is fixed with 20MPa,the pressure ratio increases with the decline of main compressor inlet pressure.The fluid tends to be more compact as the inlet pressure is relatively high.Therefore,in the beginning when the pressure ratio is relatively small,an increasing of cycle pressure ratio will not require too much compressing work increment since the fluid density is high,while the turbine can produce more work,making the cycle net output increase.However,as the cycle pressure ratio continuously increases,the compressor inlet pressure approaching the critical point,the fluid density decreases dramatically.This sharp decline of fluid density in the compressor inlet makes the compressor consume greater work than the turbine output increment,the cycle net output decreasing.Therefore the cycle efficiency trend is reversed when the pressure ratio is larger than 2.6.As for the variation of shunt flow percentage,when the pressure ratio is low,the state difference between the hot side fluid and cool side fluid in the recuperator is small since the pressure difference between hot side and cool side fluid is small,reducing the necessity of using bypass flow to ameliorate heat transfer deficiency arising by the big fluid property difference between the hot side fluid and cool side fluid in the recuperator.Therefore fluid flowing in the main compressor is large.And as the cycle pressure ratio increases,the fluid property difference in the recuperator becomes larger,making the shunt flow percentage decrease.When the pressure ratio continuously increases,however,the compressor outlet temperature sharply increases due to the big decline of fluid density.Therefore the pinch point problem in the recuperator also falls down,increasing the shunt flow percentage.Hence the trend of shunt flow percentage is nearly in contrast with the trend of cycle efficiency.

    Fig.3 Thermodynamic cycle efficiency and shunt flow percentage vs.cycle pressure ratio

    From the above analysis,the cycle pressure ratio is selected as 2.6.The state points'data are summarized in Table 2.The thermodynamic cycle efficiency is 36.78%,while the thermal efficiency of corresponding simple recuperator is 36.78%.The former outperforms the latter by 8.07 percent,indicating that the addition of recompressing process is beneficial to the cycle performance.Besides,the efficiency achieved by the designed S-CO2Brayton cycle,i.e.,45.06%,is actually on the same order as the efficiency of a helium Brayton cycle operating at an even higher temperature or a more complex system layout[25].

    Tab.2 Pressure and temperature at typical state points

    Overall,the present design meets the design requirement.The generation IV nuclear reactor with the S-CO2Brayton cycle power conversion system is an appropriate and promising choice for ship propulsion and power application.

    4 Conclusions

    The thermodynamic design of a S-CO2Brayton cycle for shipboard application with 40MW output power is conducted in the present study.In this designed cycle,the cycle performance in different pressure ratio is particularly simulated.From detailed analysis of the selection of thermodynamic parameters of the cycle,compressor inlet conditions are found to significantly affect the compressor performance as well as the whole cycle efficiency.The efficiency achieved by the designed S-CO2recompression cycle is 45.06 percent at 823.15K,which meets the design requirement and superior to the simple recuperation cycle by 8.28 percent.The recuperation process is found to have a dramatic influence on the cycle state.Besides,the shunt flow percentage could partly reflect the cycle performance.The high efficiency and more compact size make S-CO2recompression cycle be well suited for shipboard power conversion system.This work is useful for the design of power conversion system for ship propulsion and power application.

    麻豆成人av在线观看| 天天添夜夜摸| 欧美乱妇无乱码| 国产精品亚洲av一区麻豆| 久久国产精品人妻蜜桃| 女同久久另类99精品国产91| 午夜福利欧美成人| 18禁美女被吸乳视频| 欧美色视频一区免费| 99热这里只有精品一区| 天天一区二区日本电影三级| 人人妻人人澡欧美一区二区| 波多野结衣高清作品| 制服丝袜大香蕉在线| 成人无遮挡网站| 桃色一区二区三区在线观看| 国产精品野战在线观看| 精品一区二区三区人妻视频| 久久中文看片网| 99国产精品一区二区蜜桃av| 欧美中文日本在线观看视频| www.熟女人妻精品国产| 一本综合久久免费| 国产精品久久久久久亚洲av鲁大| 有码 亚洲区| 成年女人永久免费观看视频| 欧美成人a在线观看| 国产成人a区在线观看| 好看av亚洲va欧美ⅴa在| 成年女人看的毛片在线观看| 亚洲,欧美精品.| 天天躁日日操中文字幕| 日韩有码中文字幕| 校园春色视频在线观看| 免费看光身美女| 身体一侧抽搐| 一进一出好大好爽视频| 啪啪无遮挡十八禁网站| 亚洲 国产 在线| 免费电影在线观看免费观看| 十八禁人妻一区二区| 亚洲av不卡在线观看| 99久久99久久久精品蜜桃| 国产极品精品免费视频能看的| 国产精品av视频在线免费观看| 超碰av人人做人人爽久久 | 色av中文字幕| 亚洲欧美日韩东京热| 日韩精品青青久久久久久| 欧美黑人欧美精品刺激| tocl精华| 国产在线精品亚洲第一网站| 国产99白浆流出| 久久精品国产清高在天天线| 成年人黄色毛片网站| 国产精品一区二区免费欧美| 成人特级黄色片久久久久久久| 精品国产三级普通话版| 亚洲五月天丁香| 国产久久久一区二区三区| 又黄又爽又免费观看的视频| 国产精品香港三级国产av潘金莲| 两个人视频免费观看高清| 又爽又黄无遮挡网站| 亚洲av中文字字幕乱码综合| 日韩欧美国产一区二区入口| 香蕉丝袜av| 两人在一起打扑克的视频| 看免费av毛片| 老熟妇仑乱视频hdxx| 国产高清视频在线观看网站| 日韩欧美精品免费久久 | 免费看光身美女| 亚洲美女黄片视频| 51午夜福利影视在线观看| 最新在线观看一区二区三区| 国产成+人综合+亚洲专区| 神马国产精品三级电影在线观看| 国产三级黄色录像| 一级黄片播放器| 99久久精品一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲av美国av| 精品熟女少妇八av免费久了| 亚洲成av人片在线播放无| 日韩人妻高清精品专区| 免费观看人在逋| 美女高潮的动态| 亚洲一区二区三区不卡视频| 美女免费视频网站| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区免费观看 | 成年女人永久免费观看视频| aaaaa片日本免费| 色综合婷婷激情| 国产高潮美女av| 波多野结衣高清作品| 欧美色视频一区免费| 99热这里只有是精品50| 国产高潮美女av| 久久精品影院6| 毛片女人毛片| 窝窝影院91人妻| 国产高清视频在线播放一区| 在线免费观看的www视频| 中文字幕人妻熟人妻熟丝袜美 | 久久久久久久精品吃奶| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩精品中文字幕看吧| 久久99热这里只有精品18| 99久久无色码亚洲精品果冻| 亚洲av成人精品一区久久| 日本黄大片高清| 深夜精品福利| 18禁黄网站禁片午夜丰满| 日日摸夜夜添夜夜添小说| 久久久久久九九精品二区国产| 国产欧美日韩精品亚洲av| 国产精华一区二区三区| 亚洲人成网站高清观看| 国产午夜福利久久久久久| 亚洲精品色激情综合| 欧美乱妇无乱码| 国产成人av激情在线播放| 国产极品精品免费视频能看的| 88av欧美| 一级黄片播放器| 在线播放无遮挡| 国产精品影院久久| 极品教师在线免费播放| 精品久久久久久久久久久久久| 在线天堂最新版资源| 亚洲,欧美精品.| 男人和女人高潮做爰伦理| 怎么达到女性高潮| 少妇人妻一区二区三区视频| 日韩高清综合在线| 午夜免费男女啪啪视频观看 | 免费人成视频x8x8入口观看| 真实男女啪啪啪动态图| 中文字幕av成人在线电影| 国产精品女同一区二区软件 | 国产美女午夜福利| 欧美激情久久久久久爽电影| 亚洲av免费在线观看| 亚洲人成电影免费在线| 天天一区二区日本电影三级| 波多野结衣高清作品| 国产中年淑女户外野战色| 久久精品亚洲精品国产色婷小说| 中文字幕人成人乱码亚洲影| 国产成人影院久久av| 国产成人av激情在线播放| 日韩精品青青久久久久久| 亚洲欧美一区二区三区黑人| 观看免费一级毛片| 好男人电影高清在线观看| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| h日本视频在线播放| 男女下面进入的视频免费午夜| 久久久久国内视频| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 免费观看的影片在线观看| 成人欧美大片| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 欧美最黄视频在线播放免费| 亚洲国产精品999在线| 精品久久久久久久末码| 少妇的逼水好多| 亚洲精品一区av在线观看| 搡老妇女老女人老熟妇| 精品久久久久久久久久久久久| 三级国产精品欧美在线观看| 69人妻影院| 99久国产av精品| h日本视频在线播放| 亚洲精品色激情综合| 一区二区三区国产精品乱码| 欧美日韩瑟瑟在线播放| 亚洲国产欧洲综合997久久,| 最新在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 床上黄色一级片| 在线免费观看不下载黄p国产 | 午夜久久久久精精品| 欧美日韩黄片免| 亚洲熟妇熟女久久| 亚洲欧美精品综合久久99| 动漫黄色视频在线观看| 极品教师在线免费播放| 99热这里只有是精品50| 国产高清视频在线播放一区| 两个人视频免费观看高清| 久久久久精品国产欧美久久久| 久久精品亚洲精品国产色婷小说| 色综合亚洲欧美另类图片| 国产精品美女特级片免费视频播放器| 99久久99久久久精品蜜桃| avwww免费| 久久久久九九精品影院| 无限看片的www在线观看| 久久亚洲精品不卡| 男人和女人高潮做爰伦理| 国产熟女xx| 国产主播在线观看一区二区| 操出白浆在线播放| 757午夜福利合集在线观看| 丰满人妻一区二区三区视频av | 欧美日韩黄片免| 午夜亚洲福利在线播放| 天堂网av新在线| 久久国产乱子伦精品免费另类| 日韩欧美精品免费久久 | 国产精品影院久久| 亚洲av免费高清在线观看| 欧美绝顶高潮抽搐喷水| 在线免费观看的www视频| 亚洲成a人片在线一区二区| 熟女电影av网| 亚洲av熟女| 人妻丰满熟妇av一区二区三区| 在线视频色国产色| 午夜精品在线福利| 一级黄色大片毛片| 两个人视频免费观看高清| 脱女人内裤的视频| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 一区二区三区激情视频| 我要搜黄色片| 日韩欧美在线乱码| 他把我摸到了高潮在线观看| 欧美一级毛片孕妇| 亚洲真实伦在线观看| 欧美成人一区二区免费高清观看| 又黄又粗又硬又大视频| 国产一区二区在线av高清观看| 亚洲人成网站在线播| 国内少妇人妻偷人精品xxx网站| 99国产精品一区二区蜜桃av| 国产成+人综合+亚洲专区| 中文字幕人妻丝袜一区二区| 中文字幕人妻熟人妻熟丝袜美 | 中文在线观看免费www的网站| av天堂在线播放| 在线观看午夜福利视频| 国产精品国产高清国产av| 亚洲内射少妇av| 亚洲国产精品久久男人天堂| eeuss影院久久| 女警被强在线播放| 国产一区二区三区视频了| 91久久精品国产一区二区成人 | 88av欧美| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 香蕉av资源在线| 色视频www国产| 亚洲成人久久性| 一区二区三区免费毛片| 757午夜福利合集在线观看| 色综合站精品国产| 淫妇啪啪啪对白视频| 午夜a级毛片| 久久久久性生活片| 精品国产超薄肉色丝袜足j| 亚洲欧美一区二区三区黑人| 久久精品亚洲精品国产色婷小说| 最近视频中文字幕2019在线8| 真实男女啪啪啪动态图| 欧美午夜高清在线| 蜜桃久久精品国产亚洲av| 欧美又色又爽又黄视频| 成人av在线播放网站| 麻豆成人av在线观看| 偷拍熟女少妇极品色| 国产成人a区在线观看| 精品国产三级普通话版| 亚洲美女视频黄频| 国产精品亚洲av一区麻豆| 国产爱豆传媒在线观看| 嫁个100分男人电影在线观看| 久久精品国产亚洲av涩爱 | 亚洲人成电影免费在线| 老汉色∧v一级毛片| 亚洲五月天丁香| 国产探花极品一区二区| av在线天堂中文字幕| 免费人成在线观看视频色| 宅男免费午夜| 国产精品永久免费网站| eeuss影院久久| 亚洲成a人片在线一区二区| 日韩欧美 国产精品| 久久天躁狠狠躁夜夜2o2o| 欧美+日韩+精品| 国产一区二区在线av高清观看| 国产高清三级在线| 香蕉av资源在线| 亚洲人成网站在线播| 亚洲美女黄片视频| 美女高潮的动态| 97碰自拍视频| 一进一出抽搐动态| 久久久久久九九精品二区国产| 桃红色精品国产亚洲av| 亚洲中文字幕日韩| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 黄色视频,在线免费观看| 国产色婷婷99| 他把我摸到了高潮在线观看| 尤物成人国产欧美一区二区三区| 搡女人真爽免费视频火全软件 | svipshipincom国产片| 91字幕亚洲| 我要搜黄色片| 少妇的逼水好多| 国产国拍精品亚洲av在线观看 | 美女被艹到高潮喷水动态| 国产午夜精品久久久久久一区二区三区 | 亚洲av熟女| 国产亚洲精品一区二区www| 丰满人妻一区二区三区视频av | 免费一级毛片在线播放高清视频| 久久久久久久久久黄片| 桃色一区二区三区在线观看| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 中文字幕av在线有码专区| 国产精品,欧美在线| 国产69精品久久久久777片| 亚洲中文字幕一区二区三区有码在线看| 欧美在线一区亚洲| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 男女那种视频在线观看| 91麻豆精品激情在线观看国产| 很黄的视频免费| av在线蜜桃| 最后的刺客免费高清国语| 一级毛片女人18水好多| 最新中文字幕久久久久| 亚洲一区高清亚洲精品| 国产av在哪里看| 1024手机看黄色片| 国产午夜福利久久久久久| 亚洲av熟女| 看片在线看免费视频| 国产高清视频在线观看网站| 在线播放国产精品三级| 亚洲精品成人久久久久久| 夜夜夜夜夜久久久久| 999久久久精品免费观看国产| 日本a在线网址| 午夜免费男女啪啪视频观看 | 欧美中文综合在线视频| 日本免费一区二区三区高清不卡| 国产欧美日韩一区二区精品| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 久久久久精品国产欧美久久久| 在线视频色国产色| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩东京热| 免费看美女性在线毛片视频| 中文字幕高清在线视频| 天堂√8在线中文| 啦啦啦韩国在线观看视频| 国产精品久久久人人做人人爽| 国产亚洲欧美98| 91字幕亚洲| 黄片大片在线免费观看| 亚洲专区国产一区二区| 午夜福利在线观看吧| 手机成人av网站| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| 欧美在线黄色| 亚洲成a人片在线一区二区| 国产极品精品免费视频能看的| 中国美女看黄片| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人综合色| 99热这里只有是精品50| ponron亚洲| 天天躁日日操中文字幕| 又黄又粗又硬又大视频| 久久久久久国产a免费观看| 免费观看精品视频网站| 亚洲熟妇中文字幕五十中出| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| 欧美一级毛片孕妇| 午夜影院日韩av| 欧美成狂野欧美在线观看| 搞女人的毛片| 欧美bdsm另类| 热99re8久久精品国产| 午夜两性在线视频| 母亲3免费完整高清在线观看| 精品久久久久久久人妻蜜臀av| 亚洲精品色激情综合| 真实男女啪啪啪动态图| 丰满的人妻完整版| svipshipincom国产片| 亚洲激情在线av| 成熟少妇高潮喷水视频| 美女免费视频网站| 国产成人啪精品午夜网站| 美女免费视频网站| 亚洲成a人片在线一区二区| 男女午夜视频在线观看| 亚洲五月婷婷丁香| 一区二区三区国产精品乱码| 观看美女的网站| 国产熟女xx| 久久婷婷人人爽人人干人人爱| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美精品v在线| 国产精品美女特级片免费视频播放器| 亚洲 国产 在线| 国产美女午夜福利| 日韩精品青青久久久久久| 一边摸一边抽搐一进一小说| 九九在线视频观看精品| 毛片女人毛片| 日本黄色视频三级网站网址| 久久久色成人| 精品国产亚洲在线| 嫁个100分男人电影在线观看| 老汉色∧v一级毛片| 在线观看免费午夜福利视频| 国产精品影院久久| 黄色片一级片一级黄色片| 午夜福利高清视频| 午夜激情福利司机影院| 波多野结衣高清无吗| 国产成人欧美在线观看| 国产成人系列免费观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品av视频在线免费观看| 亚洲成a人片在线一区二区| 欧美日本亚洲视频在线播放| 国产69精品久久久久777片| 女人高潮潮喷娇喘18禁视频| 精品久久久久久成人av| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| 国产精品香港三级国产av潘金莲| 一级毛片高清免费大全| 国产精品久久久久久亚洲av鲁大| 日韩有码中文字幕| 大型黄色视频在线免费观看| 日本黄色片子视频| 最好的美女福利视频网| 日本撒尿小便嘘嘘汇集6| 2021天堂中文幕一二区在线观| 久久久久性生活片| 国产野战对白在线观看| 亚洲久久久久久中文字幕| 久久婷婷人人爽人人干人人爱| 欧美3d第一页| 国产免费av片在线观看野外av| 99热这里只有精品一区| 国产精品一区二区三区四区久久| 亚洲在线自拍视频| www.色视频.com| 亚洲欧美日韩高清在线视频| 99精品欧美一区二区三区四区| av专区在线播放| 久久久久久国产a免费观看| 天堂影院成人在线观看| 久久婷婷人人爽人人干人人爱| 国产久久久一区二区三区| 久久这里只有精品中国| 色视频www国产| 无遮挡黄片免费观看| 亚洲av不卡在线观看| 99久久精品热视频| av黄色大香蕉| 哪里可以看免费的av片| 韩国av一区二区三区四区| 乱人视频在线观看| 三级男女做爰猛烈吃奶摸视频| 一边摸一边抽搐一进一小说| 亚洲 欧美 日韩 在线 免费| 在线免费观看不下载黄p国产 | 国产精品美女特级片免费视频播放器| 亚洲专区中文字幕在线| 国产中年淑女户外野战色| 精品久久久久久,| 国产精品永久免费网站| 欧美黄色片欧美黄色片| 国内久久婷婷六月综合欲色啪| 国产免费av片在线观看野外av| 日本三级黄在线观看| 欧美午夜高清在线| 国内精品久久久久精免费| 美女高潮喷水抽搐中文字幕| 午夜免费男女啪啪视频观看 | 久久人妻av系列| 有码 亚洲区| 免费人成在线观看视频色| 久久精品综合一区二区三区| 在线十欧美十亚洲十日本专区| 一个人观看的视频www高清免费观看| 欧美绝顶高潮抽搐喷水| 亚洲精品久久国产高清桃花| 国产一区二区三区视频了| 欧美黄色淫秽网站| 一a级毛片在线观看| 久久久久精品国产欧美久久久| 亚洲熟妇中文字幕五十中出| 免费人成在线观看视频色| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| 欧美成狂野欧美在线观看| 亚洲美女黄片视频| 婷婷丁香在线五月| 天堂动漫精品| 国产激情欧美一区二区| 欧美zozozo另类| 亚洲成人免费电影在线观看| 一级作爱视频免费观看| 久久久久久九九精品二区国产| 午夜激情欧美在线| 老汉色∧v一级毛片| 男插女下体视频免费在线播放| 亚洲电影在线观看av| 一级黄片播放器| 在线观看一区二区三区| 国产色爽女视频免费观看| 淫秽高清视频在线观看| 国产精品一区二区三区四区免费观看 | 19禁男女啪啪无遮挡网站| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 国内精品美女久久久久久| 女警被强在线播放| 91av网一区二区| 国产色婷婷99| 有码 亚洲区| 成年版毛片免费区| tocl精华| 国产不卡一卡二| www国产在线视频色| 岛国视频午夜一区免费看| 国产伦在线观看视频一区| 色精品久久人妻99蜜桃| 人人妻,人人澡人人爽秒播| 老司机午夜福利在线观看视频| www.999成人在线观看| 亚洲最大成人中文| 俺也久久电影网| 色在线成人网| 日本三级黄在线观看| 亚洲无线在线观看| 日韩欧美精品免费久久 | 99riav亚洲国产免费| 精品人妻1区二区| 天堂影院成人在线观看| 欧美性猛交╳xxx乱大交人| 亚洲成人免费电影在线观看| 国产69精品久久久久777片| 国产成年人精品一区二区| 国产午夜精品论理片| 男插女下体视频免费在线播放| 亚洲av二区三区四区| 老司机午夜十八禁免费视频| 免费电影在线观看免费观看| 无限看片的www在线观看| 日韩亚洲欧美综合| av欧美777| 久久久久久久久中文| 日本免费a在线| 国产精品乱码一区二三区的特点| 99久久无色码亚洲精品果冻| av天堂中文字幕网| 精品人妻1区二区| 中文字幕精品亚洲无线码一区| 在线观看一区二区三区| 九色国产91popny在线| 91在线精品国自产拍蜜月 | 色综合亚洲欧美另类图片| 99久久综合精品五月天人人| 麻豆国产97在线/欧美| 黄色成人免费大全| 母亲3免费完整高清在线观看| 午夜福利在线在线| 婷婷丁香在线五月| 丰满乱子伦码专区| 日韩中文字幕欧美一区二区| 18禁黄网站禁片午夜丰满| 国产精品一及| 天堂av国产一区二区熟女人妻| 一边摸一边抽搐一进一小说| 91av网一区二区| 久久国产精品人妻蜜桃| 国产精品99久久99久久久不卡| 亚洲人成伊人成综合网2020| 91麻豆精品激情在线观看国产| 伊人久久精品亚洲午夜| 51国产日韩欧美| 午夜a级毛片| 国产伦精品一区二区三区四那| 99riav亚洲国产免费| 亚洲成人久久性| 久久伊人香网站| 一二三四社区在线视频社区8| 成人永久免费在线观看视频| 久99久视频精品免费|