• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Characterization of The Twisted Heisenberg-Virasoro Vertex Operator Algebra

    2019-07-22 07:48:10CHENGJunfangCHUYanjun

    CHENG Jun-fang,CHU Yan-jun

    (1.School of Mathematics and Statistics,Henan University,Kaifeng,475004,China;2.Institute of Contemporary Mathematics,Henan University,Kaifeng,475004,China)

    Abstract:The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one.In this paper,we first study the variety of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,which is a finite set consisting of two nontrivial elements.Based on this property,we also show that the twisted Heisenberg-Virasoro vertex operator algebra is a tensor product of two vertex operator algebras.Moreover,associating to properties of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,we charaterized twisted Heisenberg-Virasoro vertex operator algebras.This will be used to understand the classifi cation problems of vertex operator algebras whose varieties of semi-conformal vectors are finite sets.

    Key words:Twisted Heisenberg-Virasoro algebra;Vertex operator algebra;Semi-conformal vector;Semi-conformal subalgebra

    §1.Introduction

    The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one,which has been first studied by Arbarello etal,in Ref.[3].It contains the classical Heisenberg algebra and the Virasoro algebra as subalgebras.And they also have established a connection between the second cohomology of certain moduli spaces of curves and the second cohomology of the Lie algebra of differential operators of order at most one.

    The representation theory of the twisted Heisenberg-Virasoro algebra is closely related to those of other Lie algebras,such as the Virasoro algebra and toroidal Lie algebras,and has been studied in Refs.[1,4-6,14,19-20,26-27].In Ref.[4],the free field realization of the twisted Heisenberg-Virasoro algebra at level zero is given and its applications can be obtained.In Ref.[2],A.Alexandrov constructed new relations connecting Kontsevich-Witten tau-functions,Hodge integrals and Hurwitz numbers and derived linear constraints for all of them.These constraints as operators form a twisted Heisenberg-Virasoro algebra.

    It’s well known that the vertex operator algebra theory provides a rigorous mathematical foundation for two dimensional conformal field theory and string theory from the Hamiltonian point of view(Refs.[23,28]).It follows from Proposition 3.1 in Ref.[6]that the twisted Heisenberg-Virasoro vertex operator algebra has a vertex operator algebra structure which is the tensor product of a Virasoro vertex operator algebra and a Heisenberg vertex operator algebra.In Refs.[8-9],we used their semi-conformal vectors to describe Heisenberg vertex operator algebras and affine vertex operator algebras(began from Refs.[21-22]).[8,Theorem 1.1]tells that the set of all semi-conformal vectors of a vertex operator algebra V= ⊕n∈ZVnforms a Zarisk closed subset(or,an affine algebraic variety)in the weight-two subspace V2.For the twisted Heisenberg-Virasoro vertex operator algebra,we find it has only two nontrivial semiconformal vectors.Thus,we can also see easily that the twisted Heisenberg-Virasoro vertex operator algebra is a tensor product of two vertex operator algebras.Based on the variety of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,we describe such a class of vertex operator algebras.In general,for a simple CFT-type vertex operator algebra(V,ω),if its variety Sc(V,ω)of semi-conformal vectors contains only finite nontrivial elements with the some conditions,then(V,ω)is isomorphic to a twisted Heisenberg-Virasoro vertex operator algebra.Actually,this result shows a characterization of twisted Heisenberg-Virasoro vertex operator algebras.

    In further work,we shall understand the properties of some class of vertex operator algebras whose varieties of semi-conformal vectors are finite sets,which will lead to classifying vertex operator algebras by properties of their varieties of semi-conformal vectors from a geometric viewpoint.

    Notation:C is the complex number field;R is the real number field;Z is the set of all integer numbers;N is the set of all non-negative integer numbers;Z+is the set of all positive integer numbers.

    §2.The Vertex Operator Algebra Associated to the Twisted Heisenberg-Virasoro Algebra

    In the section,we shall review the vertex operator algebra associated to the twisted Heisenberg-Virasoro algebra.You can refer to the Refs.[3,4,6]for more details.

    Let C[t±1]be the ring of Laurent polynomials with the variable t.Denoted the Lie algebra of derivations on C[t±]by Der(C[t±1]).Let Ln=-,n ∈ Z.Then Der(C[t±1])has a basis{Ln|n ∈ Z}.Let A be the universal central extension of abelian Lie algebra C[t±]with a basis{tn,Ch|∈Z}.The twisted Heisenberg-Virasoro algebra is the universal central extension of the semi-direct product Lie algebra Der(C[t±1])A,denoted by HV.The Lie algebra HV has a basis

    The non-trivial Lie bracket relations are as follows

    where m,n∈Z.

    For convenience,we write tnas bn,HV has a Z-graded structure

    where for n/=0,HV(n)=CLn⊕Cbnfor n/=0 and HV(0)=SpanC{L0,b0,Cv,Ch,C}.So HV has a triangle decomposition

    where HV+= ⊕n>0HV(n);HV-= ⊕n>0HV(-n).

    Let C be a 1-dimensional HV+⊕ HV(′)-module as follows

    Then we get the induced HV-module

    M(h,h1,cv,ch,c)is Z-graded by eigenvalues of the operator

    with M(h,h1,cv,ch,c)n={v∈M(h,h1,cv,ch,c)|L(0)v=(n+h)v}.

    Lemma 2.1[2]Let ch=0,and c/=0.

    Denoted by V(cv,ch,c)=M(0,0,cv,ch,c).Denoted by 1=1?1.Let I be the HV-submodule of V(cv,ch,c)generated by L-11.Then we consider the quotient module V(cv,ch,c)=V(cv,ch,c)/I.And it has a basis

    V(cv,ch,c)has a unique maximal proper submodule,so it has an unique irreducible quotient which is denoted by L(cv,ch,c).We can defines a N-graded structure on V(cv,ch,c)as follows

    From above the relations,we have the OPE relations

    Corollary 2.2 There are the following OPE relations

    Theorem 2.3[4]V(cv,ch,c)is a N-graded vertex operator algebra with the conformal vector L-21 and the central charge cvand are generated strongly by{1,L(z),b(z)}.

    According to the Lemma 2.1(b),we have the following results

    Corollary 2.4 For ch=0,c/=0,the HV-module M(0,0,ch,0,c)possesses a singular vector L(-1)1 in M(0,0,cv,0,c)1.So the factor-module

    is a simple vertex operator algebra.

    Let Hchbe the Heisenberg vertex operator algebra with the level chgenerated by{bn,Ch|n∈Z{0}}.It follows from Proposition 3.1 in Ref.[6]that

    Proposition 2.5 If ch/=0,the vertex operator algebra V(cv,ch,c)is isomorphic to the tensor product V(c′v,0)? Hchof a Virasoro vertex operator algebras V(c′v,0)with the central charge c′vand Hch,whereis the conformal vector of Hch.

    §3.Semi-conformal Vectors of the Vertex Operator Algebra V(cv,ch,c)

    In this section,let(V,Y,1,ω)(Abbrev.(V,ω))be a Z-graded vertex operator algebra(Refs.[15,23,28]for details).We shall review basic notions and results associated with semi-conformal vectors for a vertex operator algebra V.This content can be seen in Refs.[14-15]

    3.1 First,we review the commutant of a vertex algebra.It’s well-known as the coset construction in conformal field theory(Refs.[17-18]).

    Definition 3.1[7,18,23,25]Let W be a vertex algebra,and U be any subset of W.The commutant of U in W is defined by

    Remark 3.2 Obviously,1∈CW(U).Furthermore,CW(U)is a vertex subalgebra of W.And we also have CW(U)=CW(

    Remark 3.3 In a VOA(V,ω),let(U,ω′)be a subalgebra of V.If CV(Cv(U))=U,we say(U,CV(U))forms a Howe pair in V(Refs.[7,25]).According to the conclusions in Refs.[18,23],a subalgebra U can be realized as a commutant subalgebra of V if and only if(U,CV(U))forms a Howe pair in V.

    3.2 For two given vertex algebras(V,YV)and(W,YW)a homomorphism f:V→W of vertex algebras satisfies

    If(V,ωV)and(W,ωW)are two VOAs with conformal vectors ωVand ωW,respectively,then f is said to be conformal if f(ωV)= ωW.We say f is semi-conformal if f?LV(n)=LW(n)?f,for all n ≥ -1.Let(V,ωV)be a VOA and a vertex subalgebra of(W,ωW).We say V is a conformal subalgebra(or subVOA)if ωW= ωV,i.e,they have the same conformal vector.If the inclusion from V to W is semi-conformal,then V is called a semi-conformal subalgebra of W and ωVis called a semi-conformal vector of W.

    For a VOA(W,ωW)with the conformal vector ωW,let

    Lemma 3.4[8]A vector ω′∈ W is a semi-conformal vector of(W,ωW)if and only if it satisfies the following conditions

    Let(W,ωW)be a general Z-graded vertex operator algebra.The set Sc(W,ωW)forms an affine algebraic variety([8,Theorem 1.1]).In fact,a semi-conformal vector ω′∈ W can be characterized by algebraic equations of degree at most 2 as described in[8,Proposition 2.2].The algebraic variety Sc(W,ωW)has also a partial order(See[8,definition 2.7]),and this partial order can be characterized by algebraic equations in[8,Proposition 2.8].

    Proposition 3.5 If ch/=0,then Sc(V(c,ch,cv),ω)={0,ω′,ω - ω′,ω},where ω′=Moreover,there are two longest partial order chain in Sc(V(c,ch,cv),ω)such as follows

    Proof Note that the weight-two subspace of V(c,ch,cv)is spanned by{ω=L(-2)1,b(-1)21,b(-2)1}.Set ω′=xb(-1)21+yb(-2)1+zL(-2)1,where x,y,z ∈ C.According to the Lemma 3.4,we have ω′∈ Sc(V(c,ch,cv),ω)if and only if x,y,z satisfy that

    Equivalently,

    So we have nontrival solutions:xthere are only two nontrival semi-conformal vectors

    With respect to the partial orderof[8,definition 2.7],we have two longest partial order chain in Sc(V(c,ch,cv),ω)such as follows

    Remark 3.6 For each ω′∈ Sc(W,ωW),it determines a unique dual pair(CW(CW(< ω′>)),CW(< ω′>))as semi-conformal subalgebras of(W,ωW)in the sense of Howe duality in VOA theory.Let(V,ωV)be a semi-conformal subalgebra of(W,ωW).Then(V,ωV)has a unique maximal conformal extension(CW(CW(V)),ωV)in(W,ωW)in the sense that if(V,ωV) ?(U,ωV),then(U,ωV)? (CW(CW(V)),ωV)(see[23,Corollary 3.11.14]).

    Lemma 3.7 Let(V,ω)be a N-graded vertex operator algebra with V0=C1 and the conformal vector ω.If ω′∈ Sc(V,ω),then CV(< ω′>)? CV(CV(< ω′>))is a conformal subalgbra of V,where< ω′> is the Virasoro VOA generated by ω′in V.

    Proof We know that L′(n)=0 on CV(< ω′>)and L(n)=L′(n)on CV(CV(< ω′>))for n ≥ -1,then CV(< ω′>)∩CV(CV(< ω′>))=C1.So CV(< ω′>)?CV(CV(< ω′>))is a conformal subalgebra of V.

    Theorem 3.8 For ch/=0,the Heisenberg-Virasoro vertex operator algebra V(cv,ch,c)is isomorphic to the tensor product V(c′v,0)? Hchof the simple Virasoro VOA V(c′v,0)and the Heisenberg VOA Hchwith the conformal vector

    Proof By Remark 3.6,we note that the maximal semi-conformal subalgebra with the conformal vector ω′is the Heisenberg VOA Hchin V(cv,ch,c),i.e.,CV(cv,ch,c)(CV(cv,ch,c)(< ω′>))Hch.By Lemma 3.7,we know that CV(cv,ch,c)(< ω′>))? Hchis a subVOA of V(cv,ch,c).And since< ω-ω′> ?Hch? CV(cv,ch,c)(< ω′>))?Hch,then CV(cv,ch,c)(< ω′>))?Hchas a subVOA of V(cv,ch,c)has at less two generators{ω - ω′,b(-1)1},where b(-1)1 generates Hch.We know V(cv,ch,c)is also generated by two vectors{b(-1)1,ω}and CV(cv,ch,c)(< ω′>))∩ Hch=C1,then CV(cv,ch,c)(< ω′>))=< ω - ω′>=V(c′v,0)and V(cv,ch,c) ~=V(c′v,0) ? Hch,when

    Lemma 3.9[23]Let V be a simple vertex operator algebra and U be any vertex operator subalgebra(with the same conformal vector ω),for example,U=< ω >.Then the vertex subalgebra

    In particular,

    Lemma 3.10[21]Let(V′,Y′,1′,ω′),(V′′,Y′′,1′′,ω′′)be two vertex operator algebras.Then there are

    In particular,if V′is simple vertex operator algebra,then

    According to above Lemma 3.10,3.11,we have

    2)If there exists coprime integers p,q ≥ 2 such thatfor ch/=0,the vertex operator algebra V(cv,ch,c)has a unique simple quotient L(cv,ch,c)=L(c′v,0) ? Hch.

    §4.The Characterization of Twisted Heisenberg-Virasoro Vertex Operator Algebras

    In this section,according to the properties of twisted Heisenberg-Virasoro vertex operator algebras,we characterize this class of vertex operator algebras by semi-conformal vectors.

    Let V be a simple N-graded vertex operator algebra with V0=C1.Such V is also called a simple CFT type vertex operator algebra(Refs.[10-11]).If V satisfies the further condition that L(1)V1=0,it is of strong CFT type.Li has shown(Ref.[24])that such a vertex operator algebra V has a unique non-degenerate invariant bilinear form<,>up to a multiplication of a nonzero scalar.In particular,the restriction of<,>to V1endows V1with a non-degenerate symmetric invariant bilinear form

    Lemma 4.1 Let(U,ωU)and(V,ωU)be two semi-conformal subalgebras of the VOA(W,ωW).If(U,ωU)is a conformal extension of(V,ωU)in(W,ωW),then

    1)

    2)

    Proof Since(U,ωU)is a conformal extension of(V,ωU)in(W,ωW),then CW(V)is a conformal extension of CW(U)in(W,ωW)and they are both semi-conformal subalgebras with the conformal vector ωW- ωU.According to Refs.[12,16],we know that there is a unique maximal conformal extension for a semi-conformal subalgebra(S,ωS),which is realized as the double commutant(CW(CW(S)))of(S,ωS)in(W,ωW)in the sense that if(S,ωS) ?(T,ωS),then(T,ωS) ? (CW(CW(S)),ωS).So CW(CW(CW(V)))=CW(CW(CW(U))).Since CW(CW(CW(S)))=CW(S)for a general subalgebra S of W,then we have CW(V)=CW(U);

    According to the definition of semi-conformal vectors of W,the assert 2)is obvious.

    Lemma 4.2 Let(V,ω)be a Z-graded vertex operator algebra and(U,ω′)be a vertex subalgebra of V.Then ω′∈ Sc(V,ω)if and only if Sc(U,ω′)? Sc(V,ω).

    Proof Since ω′∈ Sc(V,ω),then(U,ω′)is a semi-conformal subalgebra of V.For any ω′′∈ Sc(U,ω′),we have L′′(n)=L′(n)on W for n ≥ -1,where(W,ω′′)is a semi-conformal subalgebra of U.Since ω′∈ Sc(V,ω),then we have L(n)=L′(n)on U for n ≥ -1.So we have L(n)=L′′(n)on W for n ≥ -1.Hence ω′′∈ Sc(V,ω).

    If Sc(U,ω′)? Sc(V,ω),it is obvious that ω′∈ Sc(V,ω).

    Lemma 4.3[8]Let(V,ω)be a nondegenerate simple CFT type vertex operator algebra generated by V1.Let(V′,ω′)and(V′′,ω′′)be two vertex operator subalgebras with possible different conformal vectors.Assume that(V,ω)=(V′,ω′) ? (V′′,ω′′)is a tensor product of vertex operator algebras(see[12,Section 3.12]).Then

    1)(V′,ω′)and(V′′,ω′′)are semi-conformal subalgebras and both are also non-degenerate simple CFT type;

    2)V1=V′1?1′′⊕1′?V′′1,is an orthogonal decomposition with respect to the non-degenerate

    symmetric bilinear form 〈·,·〉on V1;

    3)[V1′?1′′,1′?V1′′]=0 with the Lie bracket[·,·]on V1;

    4)Sc(V′,ω′) ? 1′′,1′? Sc(V′′,ω′′),and Sc(V′,ω′) ? 1′′+1′? Sc(V′′,ω′′)are subsets of Sc(V,ω);

    5)For each~ω′∈Sc(V′,ω′),we have

    and

    Lemma 4.4 For a simple CFT type VOA(V,ω),if V=V1? V2and(V1,ω1)and(V2,ω2)are vertex operator subalgebras of V,then

    1)CV(< ω1>)=CV(CV(<ω2>))=V2and CV(< ω2>)=CV(CV(< ω1>))=V1;

    2)When Sc(V,ω)={0,ω1,ω2,ω},we have Sc(V1,ω1)={0,ω1}and Sc(V2,ω2)={0,ω2}.

    Proof First,we note that ω = ω1+ω2.Since L1(n)=0 on V2and L2(n)=0 on V1,so L(n)=L1(n)on V1and L(n)=L2(n)on V2for n ∈ Z,that is ω1,ω2∈ Sc(V,ω).

    According to Lemma 3.10,we know that CV(V1)=CV(CV(V2))=V2and CV(V2)=CV(CV(V1))=V1.Since there exists a unique maximal semi-conformal subalgebra of V for each ω′∈ Sc(V,ω),which can be realized as the double commutant subalgebra containing ω′as the conformal vector,then we have CV(< ω1>)=CV(CV(< ω2>))=V2and CV(< ω2>)=CV(CV(<ω1>))=V1.

    When Sc(V,ω)={0,ω1,ω2,ω},since V=V1? V2,then V1,V2are both semi-conformal subalgebras of V.By Lemma 4.2,we know that Sc(V1,ω1)={0,ω1}and Sc(V2,ω2)={0,ω2}.

    For a CFT-type VOA(V,ω),we know that V1forms a Lie algebra with the bracket operation[u,v]=u(0)v for u,v∈V1.

    Lemma 4.5 For a non-degenerate CFT-type vertex operator algebra V=V1?V2,where(V1,ω1)and(V2,ω2)are subVOAs of V,if Sc(V,ω)={0,ω1,ω2,ω},then either V11=0 or V12=0.

    Proof Since V=V1?V2,by Lemma 4.3 1),we have V1=V11⊕V12and V11is orthogonal to V12in V1.If V11/=0 and V12/=0,we take h1∈V11,h2∈V12such that

    Theorem 4.6 Assume that(V,ω)is a simple non-degenerate CFT type vertex operator algebra and be generated strongly by the subspace V1⊕V2,where V1/=0 is an abelian Lie algebra as the weight-one subspace and V2is the weight-two subspace with dimV2=1.If Sc(V,ω)={0,ω′,ω′′,ω}and V=CV(< ω′>)? CV(< ω′′>),then(V,ω)is isomorphic to a simple twisted Heisenberg-Virasoro vertex operator algebra.

    Proof Assume that< ω′> and< ω′′> have central charges c′,c′′as Virasoro vertex operator algebras,respectively.At first,since V=CV(< ω′>)?CV(< ω′′>),we note that ω′′= ω-ω′and CV(< ω′′>)=CV(CV(< ω′>)).By Lemma 4.3 2),we have V1=CV(< ω′>)1⊕ CV(< ω′′>)1and CV(< ω′>)1is orthogonal to CV(< ω′′>)1in V1.By Lemma 4.5,we know that either CV(< ω′>)1=0 or CV(< ω′′>)1=0.We can assume that CV(< ω′>)1=0,then CV(< ω′′>)1=V1.

    Since V1is an abelian Lie algebra,then V1generates a simple Heisenberg VOA MV1(c′)in V and CV(< ω′′>)=MV1(c′),where c′is the central charge of MV1(c′).According to the condition Sc(V,ω)={0,ω′,ω′′,ω}and the results of Ref.[15],we know that dimV1=1.Note that V is simple,then CV(< ω′′>)and CV(< ω′>)are both simple.On the other hand,since CV(< ω′>)1=0 and dimV2=1,then CV(< ω′>)=< ω′′>,where< ω′′> is the simple Virasoro VOA with the central charge c′′.Finally,according to Theorem 3.8,we obtain that V is isomorphic to the twisted Heisenberg vertex operator algebraorfor some c∈ C as two cases in Corollary 3.12.

    The twisted Heisenberg-Virasoro vertex operator algebra has two nontrivial semi-conformal vectors and it is also a tensor product of two vertex operator algebras.Such information will lead us to study the classification of VOAs with two nontrivial semi-conformal vectors in further work.

    Remark 4.7 According to our present study,we know that some basic simple CFT type vertex operator algebras have no nontrivial semi-conformal vectors as follows

    ·M(1)(Ref.8),which is the Heisenberg vertex operator algebra with the rank 1 generated by =Ch;

    · L(?,0),which is the simple Virasoro vertex operator algebra with the central charge?/=0(Ref.[29]);

    · K(sl2,?),which is the parafermion vertex operator algebra with the level ?/=1(Refs.[12-13]).

    It is interesting problem for us that the classification of vertex operator algebras without nontrivial semi-conformal vectors.Moreover,based on Theorem 4.6,we conjecture that for a vertex operator algebra(V,ω)with two nontrivial semi-conformal vectors,it should contain a conformal vertex operator subalgebra which is a tensor product of two vertex operator algebras without nontrivial semi-conformal vectors up to isomorphism.In fact,we expect to classify vertex operator algebras with two nontrivial semi-conformal vectors by tensor decompositions of vertex operator algebras.

    www日本在线高清视频| 国产精品爽爽va在线观看网站 | 亚洲成av片中文字幕在线观看| 久久精品国产亚洲av高清一级| 99在线视频只有这里精品首页| 欧美成狂野欧美在线观看| av片东京热男人的天堂| 亚洲天堂国产精品一区在线| 亚洲自偷自拍图片 自拍| av天堂在线播放| 99热只有精品国产| 桃红色精品国产亚洲av| 亚洲在线自拍视频| 午夜福利高清视频| 久久久久久大精品| 国产精品秋霞免费鲁丝片| 精品一区二区三区av网在线观看| 亚洲成人久久性| 欧美激情 高清一区二区三区| 精品免费久久久久久久清纯| 国产亚洲欧美精品永久| 在线观看免费视频日本深夜| 美女高潮喷水抽搐中文字幕| 一区在线观看完整版| 亚洲情色 制服丝袜| 麻豆成人av在线观看| 国产又爽黄色视频| 久久久久久久精品吃奶| 在线播放国产精品三级| 一边摸一边做爽爽视频免费| 88av欧美| 久99久视频精品免费| 免费在线观看日本一区| 嫩草影视91久久| 天堂√8在线中文| 嫁个100分男人电影在线观看| 亚洲第一电影网av| 国产一级毛片七仙女欲春2 | 操出白浆在线播放| 咕卡用的链子| 99re在线观看精品视频| av超薄肉色丝袜交足视频| 亚洲精品国产一区二区精华液| 少妇熟女aⅴ在线视频| 亚洲欧美日韩无卡精品| 满18在线观看网站| 国产片内射在线| 亚洲色图av天堂| 一a级毛片在线观看| 亚洲av熟女| 成人三级做爰电影| 女同久久另类99精品国产91| 长腿黑丝高跟| 午夜老司机福利片| 久久久久精品国产欧美久久久| 在线av久久热| 国产一卡二卡三卡精品| 日韩欧美三级三区| a级毛片在线看网站| 法律面前人人平等表现在哪些方面| 欧美日韩瑟瑟在线播放| 在线免费观看的www视频| 久久九九热精品免费| 黑人欧美特级aaaaaa片| 精品电影一区二区在线| 免费高清在线观看日韩| 中出人妻视频一区二区| 欧美成人午夜精品| av有码第一页| x7x7x7水蜜桃| 超碰成人久久| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| av电影中文网址| 亚洲自拍偷在线| 亚洲av第一区精品v没综合| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲最大成人中文| 国产欧美日韩一区二区三| 日韩大码丰满熟妇| 看片在线看免费视频| 波多野结衣高清无吗| 精品久久久久久久毛片微露脸| 操美女的视频在线观看| 黄色成人免费大全| 国产一区二区在线av高清观看| 国产欧美日韩综合在线一区二区| 亚洲av成人一区二区三| 色在线成人网| 久久精品成人免费网站| 真人做人爱边吃奶动态| 97人妻精品一区二区三区麻豆 | 搡老妇女老女人老熟妇| 久久午夜综合久久蜜桃| 亚洲精品中文字幕在线视频| 久久中文字幕人妻熟女| www.熟女人妻精品国产| 一区二区三区激情视频| videosex国产| 法律面前人人平等表现在哪些方面| 黑人巨大精品欧美一区二区mp4| 午夜福利,免费看| 波多野结衣一区麻豆| 精品久久久久久久人妻蜜臀av | 精品欧美国产一区二区三| 国产99久久九九免费精品| www.自偷自拍.com| 一级片免费观看大全| 亚洲天堂国产精品一区在线| av天堂在线播放| 国产高清有码在线观看视频 | 久久天躁狠狠躁夜夜2o2o| xxx96com| 成人国产一区最新在线观看| 色播亚洲综合网| 伦理电影免费视频| 国产精品亚洲美女久久久| 国产成人啪精品午夜网站| 国产麻豆成人av免费视频| 欧美日韩亚洲国产一区二区在线观看| 国产av一区在线观看免费| 搞女人的毛片| 久久中文看片网| 男人操女人黄网站| 岛国在线观看网站| 久久精品国产清高在天天线| 精品国产一区二区久久| 国语自产精品视频在线第100页| 久久中文看片网| 日韩有码中文字幕| 成年版毛片免费区| 黄片小视频在线播放| 69精品国产乱码久久久| 不卡av一区二区三区| 午夜免费观看网址| 午夜老司机福利片| 久久香蕉精品热| 国产精品日韩av在线免费观看 | 伊人久久大香线蕉亚洲五| 午夜亚洲福利在线播放| 怎么达到女性高潮| avwww免费| 男人的好看免费观看在线视频 | 两个人看的免费小视频| 日韩成人在线观看一区二区三区| 真人一进一出gif抽搐免费| 99久久99久久久精品蜜桃| 巨乳人妻的诱惑在线观看| 国内精品久久久久精免费| 成人特级黄色片久久久久久久| 亚洲精品美女久久av网站| 亚洲成a人片在线一区二区| 色老头精品视频在线观看| 亚洲视频免费观看视频| 久99久视频精品免费| 国产成+人综合+亚洲专区| 久久亚洲精品不卡| x7x7x7水蜜桃| 麻豆成人av在线观看| 亚洲精品美女久久久久99蜜臀| 精品无人区乱码1区二区| 激情在线观看视频在线高清| 在线天堂中文资源库| 女人被狂操c到高潮| 在线观看免费视频日本深夜| 制服丝袜大香蕉在线| 亚洲第一电影网av| 亚洲美女黄片视频| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 国产成年人精品一区二区| 国产国语露脸激情在线看| 在线十欧美十亚洲十日本专区| 久久天堂一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 啦啦啦 在线观看视频| 国产成人欧美在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲av电影在线进入| 欧美中文综合在线视频| 神马国产精品三级电影在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 最近最新中文字幕大全电影3 | 久久精品aⅴ一区二区三区四区| 69精品国产乱码久久久| 国产精品免费视频内射| 丝袜美腿诱惑在线| 久久影院123| 日韩欧美国产一区二区入口| 久久久水蜜桃国产精品网| 久久精品影院6| 国产精品久久久av美女十八| 久久香蕉国产精品| 精品国产一区二区久久| 黄网站色视频无遮挡免费观看| 91成年电影在线观看| 国产激情久久老熟女| 久久久久久人人人人人| a在线观看视频网站| 精品卡一卡二卡四卡免费| av欧美777| 中文字幕人妻熟女乱码| 国语自产精品视频在线第100页| 国产三级黄色录像| 成人18禁高潮啪啪吃奶动态图| 乱人伦中国视频| 亚洲国产欧美一区二区综合| 成人精品一区二区免费| 欧美黑人欧美精品刺激| 久久伊人香网站| 97碰自拍视频| 好男人在线观看高清免费视频 | 国产精品综合久久久久久久免费 | av电影中文网址| 黄片小视频在线播放| 国产精品亚洲av一区麻豆| 亚洲 欧美 日韩 在线 免费| 高清黄色对白视频在线免费看| 免费在线观看日本一区| 国产精品,欧美在线| 十分钟在线观看高清视频www| 麻豆成人av在线观看| 日韩欧美一区二区三区在线观看| 亚洲成人免费电影在线观看| 国产男靠女视频免费网站| 亚洲第一青青草原| 一个人观看的视频www高清免费观看 | 亚洲伊人色综图| 免费高清在线观看日韩| 很黄的视频免费| netflix在线观看网站| 久久久久亚洲av毛片大全| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 真人做人爱边吃奶动态| 国产野战对白在线观看| 高清黄色对白视频在线免费看| 午夜久久久在线观看| 国产精品一区二区精品视频观看| 欧美在线黄色| 国产精品精品国产色婷婷| x7x7x7水蜜桃| 午夜精品国产一区二区电影| 嫁个100分男人电影在线观看| 99国产精品一区二区三区| 欧美日本中文国产一区发布| 黄色丝袜av网址大全| 亚洲成人精品中文字幕电影| 欧美人与性动交α欧美精品济南到| 色老头精品视频在线观看| 亚洲中文av在线| 国产精品一区二区在线不卡| 婷婷六月久久综合丁香| 午夜福利视频1000在线观看 | 一进一出好大好爽视频| 一个人观看的视频www高清免费观看 | 欧美久久黑人一区二区| 午夜福利欧美成人| 少妇的丰满在线观看| 日本免费一区二区三区高清不卡 | 成人av一区二区三区在线看| 一级片免费观看大全| 一本综合久久免费| 国产精品自产拍在线观看55亚洲| 啦啦啦观看免费观看视频高清 | 国产成人av激情在线播放| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区| 国产色视频综合| 777久久人妻少妇嫩草av网站| 国产一区二区三区在线臀色熟女| 国产成人免费无遮挡视频| 黄片小视频在线播放| 欧美另类亚洲清纯唯美| 国产xxxxx性猛交| 日本一区二区免费在线视频| 亚洲三区欧美一区| 亚洲熟妇熟女久久| 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| 精品人妻1区二区| 久久亚洲真实| 亚洲精品国产色婷婷电影| 激情在线观看视频在线高清| 啦啦啦 在线观看视频| √禁漫天堂资源中文www| 老司机午夜福利在线观看视频| 精品国产超薄肉色丝袜足j| 色播亚洲综合网| 国产熟女xx| 国产午夜精品久久久久久| 久久人妻av系列| 久久精品aⅴ一区二区三区四区| 国产成人欧美在线观看| 精品久久久久久,| 无人区码免费观看不卡| 大型黄色视频在线免费观看| 亚洲人成电影免费在线| 亚洲 欧美 日韩 在线 免费| 午夜福利视频1000在线观看 | 欧美色视频一区免费| 在线观看免费视频日本深夜| 久久久久国内视频| 国产亚洲av高清不卡| 欧美在线一区亚洲| 激情在线观看视频在线高清| 日韩av在线大香蕉| 亚洲一区中文字幕在线| 色播亚洲综合网| 亚洲va日本ⅴa欧美va伊人久久| 天天添夜夜摸| 国产亚洲精品综合一区在线观看 | 国产高清激情床上av| 狂野欧美激情性xxxx| 此物有八面人人有两片| 69精品国产乱码久久久| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 女同久久另类99精品国产91| 久久久久九九精品影院| 午夜两性在线视频| 午夜免费激情av| 亚洲专区国产一区二区| 老鸭窝网址在线观看| 国产精品国产高清国产av| 国产精品av久久久久免费| 精品卡一卡二卡四卡免费| 国产一区二区激情短视频| 淫妇啪啪啪对白视频| 久久婷婷人人爽人人干人人爱 | www.999成人在线观看| 成人18禁在线播放| 国产一卡二卡三卡精品| 久久人人爽av亚洲精品天堂| 91精品三级在线观看| 人人澡人人妻人| 欧美老熟妇乱子伦牲交| 成人国语在线视频| 妹子高潮喷水视频| 国产免费男女视频| 在线视频色国产色| 最近最新免费中文字幕在线| 免费在线观看日本一区| 精品久久久久久,| 高清毛片免费观看视频网站| 免费一级毛片在线播放高清视频 | 久9热在线精品视频| 一本综合久久免费| 88av欧美| 中出人妻视频一区二区| 亚洲国产高清在线一区二区三 | 美女高潮喷水抽搐中文字幕| 操美女的视频在线观看| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲| 91大片在线观看| 亚洲自拍偷在线| 成年人黄色毛片网站| 在线av久久热| 亚洲专区国产一区二区| 午夜免费激情av| 国产亚洲av高清不卡| 男女做爰动态图高潮gif福利片 | 久久久久久久精品吃奶| 美女国产高潮福利片在线看| 一级,二级,三级黄色视频| 国产精品99久久99久久久不卡| 国产成人精品久久二区二区91| 不卡av一区二区三区| 日日干狠狠操夜夜爽| 免费在线观看视频国产中文字幕亚洲| 欧美成人性av电影在线观看| 国产精品免费视频内射| 国产色视频综合| 999精品在线视频| 男人操女人黄网站| 自线自在国产av| 国产欧美日韩一区二区精品| 一边摸一边抽搐一进一出视频| 黄色视频不卡| 亚洲国产中文字幕在线视频| 亚洲激情在线av| 国产激情久久老熟女| 黄色 视频免费看| 久久人妻熟女aⅴ| 可以在线观看毛片的网站| 精品国产一区二区三区四区第35| 亚洲五月婷婷丁香| 搞女人的毛片| 人人妻人人爽人人添夜夜欢视频| 狂野欧美激情性xxxx| 欧美亚洲日本最大视频资源| 大型av网站在线播放| 一级毛片高清免费大全| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 国产精品久久久av美女十八| 久久伊人香网站| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 免费高清视频大片| 亚洲国产精品久久男人天堂| 久久人人精品亚洲av| 人人妻人人澡人人看| 亚洲成人免费电影在线观看| 大型av网站在线播放| 色综合婷婷激情| 亚洲第一青青草原| 欧美成人免费av一区二区三区| 一级片免费观看大全| 亚洲国产精品久久男人天堂| 纯流量卡能插随身wifi吗| 亚洲国产精品成人综合色| 精品高清国产在线一区| 国产主播在线观看一区二区| 性少妇av在线| 亚洲中文字幕一区二区三区有码在线看 | 欧美在线一区亚洲| 国产亚洲精品久久久久久毛片| 91国产中文字幕| 老熟妇仑乱视频hdxx| 久久这里只有精品19| 最好的美女福利视频网| 亚洲男人的天堂狠狠| 宅男免费午夜| 国产1区2区3区精品| 极品教师在线免费播放| 国产乱人伦免费视频| 大香蕉久久成人网| 亚洲专区中文字幕在线| 精品久久蜜臀av无| 一进一出好大好爽视频| 欧美最黄视频在线播放免费| 亚洲成人国产一区在线观看| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 黄色片一级片一级黄色片| 国产精品国产高清国产av| 久久中文字幕一级| 在线国产一区二区在线| 99国产精品免费福利视频| 色av中文字幕| 国产av在哪里看| av福利片在线| 激情视频va一区二区三区| av网站免费在线观看视频| 香蕉久久夜色| 久久人妻福利社区极品人妻图片| 女性被躁到高潮视频| www.www免费av| 国产成人欧美| 波多野结衣一区麻豆| 午夜福利一区二区在线看| 欧美另类亚洲清纯唯美| 中文字幕人妻丝袜一区二区| 精品国产乱子伦一区二区三区| 亚洲视频免费观看视频| www.精华液| 啦啦啦免费观看视频1| 欧美中文综合在线视频| 日本精品一区二区三区蜜桃| 最新美女视频免费是黄的| 婷婷六月久久综合丁香| 欧美另类亚洲清纯唯美| 99国产精品免费福利视频| 丝袜美足系列| 色播亚洲综合网| 妹子高潮喷水视频| 亚洲免费av在线视频| 欧美在线黄色| 精品日产1卡2卡| 欧美av亚洲av综合av国产av| 免费不卡黄色视频| av中文乱码字幕在线| 熟女少妇亚洲综合色aaa.| 人人妻人人爽人人添夜夜欢视频| 在线国产一区二区在线| 国产精品 国内视频| 不卡一级毛片| 欧美中文日本在线观看视频| 亚洲,欧美精品.| 麻豆一二三区av精品| 欧美成人性av电影在线观看| 999久久久精品免费观看国产| 久久这里只有精品19| 午夜a级毛片| 我的亚洲天堂| 欧美日韩亚洲综合一区二区三区_| 日韩国内少妇激情av| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 日韩三级视频一区二区三区| 窝窝影院91人妻| 成人亚洲精品一区在线观看| 91精品国产国语对白视频| 欧美黄色片欧美黄色片| 日日摸夜夜添夜夜添小说| 俄罗斯特黄特色一大片| 国产亚洲av高清不卡| 操出白浆在线播放| 精品一品国产午夜福利视频| 国产精品野战在线观看| 免费搜索国产男女视频| 18禁观看日本| 亚洲精品国产一区二区精华液| 免费高清视频大片| 国产亚洲精品一区二区www| 一级,二级,三级黄色视频| 国产成人欧美| 日本一区二区免费在线视频| 亚洲精品在线观看二区| 国产国语露脸激情在线看| 亚洲成人久久性| 一区在线观看完整版| 一级黄色大片毛片| 99riav亚洲国产免费| 精品少妇一区二区三区视频日本电影| 高清毛片免费观看视频网站| 97碰自拍视频| e午夜精品久久久久久久| 久久国产乱子伦精品免费另类| 性欧美人与动物交配| 精品久久久久久,| 欧美另类亚洲清纯唯美| 19禁男女啪啪无遮挡网站| 在线观看舔阴道视频| 18禁裸乳无遮挡免费网站照片 | 亚洲第一av免费看| 高潮久久久久久久久久久不卡| 欧美日韩乱码在线| 久久久久久免费高清国产稀缺| 国产成人欧美在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲最大成人中文| 欧美日韩福利视频一区二区| 久热这里只有精品99| 丝袜美足系列| 嫁个100分男人电影在线观看| 村上凉子中文字幕在线| 婷婷六月久久综合丁香| 国产成人av激情在线播放| 日本a在线网址| 悠悠久久av| 成人亚洲精品av一区二区| 国产一区二区在线av高清观看| 美国免费a级毛片| 欧美成人性av电影在线观看| 在线观看66精品国产| 很黄的视频免费| 国产私拍福利视频在线观看| 国产精品电影一区二区三区| 99国产综合亚洲精品| 亚洲午夜精品一区,二区,三区| 国产欧美日韩综合在线一区二区| av视频免费观看在线观看| 久久精品国产综合久久久| 午夜免费激情av| 亚洲国产毛片av蜜桃av| 国内精品久久久久精免费| 69av精品久久久久久| 大型黄色视频在线免费观看| 伦理电影免费视频| 免费观看人在逋| 亚洲成人久久性| svipshipincom国产片| 一个人免费在线观看的高清视频| 欧美成人午夜精品| 精品无人区乱码1区二区| 欧美老熟妇乱子伦牲交| 不卡av一区二区三区| 在线观看免费午夜福利视频| 他把我摸到了高潮在线观看| 亚洲专区字幕在线| 国产熟女午夜一区二区三区| 国产高清激情床上av| 欧美乱码精品一区二区三区| 精品欧美国产一区二区三| 午夜a级毛片| 黑人操中国人逼视频| 成人手机av| 午夜a级毛片| 91九色精品人成在线观看| 精品欧美国产一区二区三| 在线观看免费视频网站a站| 在线国产一区二区在线| 青草久久国产| 亚洲片人在线观看| 咕卡用的链子| 亚洲一卡2卡3卡4卡5卡精品中文| 婷婷六月久久综合丁香| 亚洲专区字幕在线| 免费看十八禁软件| 午夜精品国产一区二区电影| 久久久久国产一级毛片高清牌| 一进一出好大好爽视频| 脱女人内裤的视频| 91av网站免费观看| 变态另类成人亚洲欧美熟女 | 99re在线观看精品视频| 色播在线永久视频| 如日韩欧美国产精品一区二区三区| 在线观看免费视频网站a站| 女人爽到高潮嗷嗷叫在线视频| 久久久国产成人免费| 亚洲激情在线av| 久久久久国产精品人妻aⅴ院| 精品一区二区三区四区五区乱码| 亚洲av美国av| 天天一区二区日本电影三级 | 亚洲国产看品久久| 韩国av一区二区三区四区| 午夜精品久久久久久毛片777| 国产欧美日韩一区二区三|