• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    n-tilting Torsion Classes and n-cotilting Torsion-free Classes

    2019-07-22 07:48:22HEDonglinLIYuyan

    HE Dong-lin,LI Yu-yan

    (Department of Mathematics,Longnan Teachers College,Longnan,742500,China)

    Abstract:In this paper,we consider some generalizations of tilting torsion classes and cotilting torsion-free classes,give the definition and characterizations of n-tilting torsion classes and n-cotilting torsion-free classes,and study n-tilting preenvelopes and n-cotilting precovers.

    Key words:n-tilting torsion classes;n-cotilting torsion-free classes;preenvelopes;precovers

    §1.Introduction

    Tilting theory plays an important role in the representation of Artin algebra.The classical tilting modules were first considered in the early eighties by Brenner-Bulter[1],Bongartz[2]and Happle and Ringel[3]etc.Beginning with Miyashita[4],the defining conditions for a classical tilting module were extented to arbitary rings or Abel categories by many authors,Wakamatsu[5],Colby and Fuller[6],Colpi and Trifaj[7],and recently,Angeleri Hgel and coelho[8],Bazzoni[9],Wei[10],Colpi and Fuller[11],and Di et al[12].Among them,Miyashita[4]considered finitely generated tilting modules of finite projective dimension,while generalizations of tilting modules of projective dimension one over arbitary rings.In[7]an(not necessarily finitely generated)module T is said to be tilting(simplely,1-tilting module)if GenT=T⊥1,where GenT is the class of modules which are epimorphic images of direct sums of copies of T and T⊥1is the class of modules M such that Ext1R(T,M)=0.And it is proved that t? R-Mod is a tilting class if and only if t=GenP for a faithful, fi nendo,and t-projective module P.Angeleri and Trlifaj[13]discussed tilting preenvelopes and cotilting precovers.Meanwhile,tilting torsion classes(resp,cotilting torsion-free classes)were characterized as those pretorsion classes(resp,pretorsion-free classes)which provided special preenvelopes(resp,special precovers)for all modules.Bazzoin[9]considered(not necessarily finitely generated)tilting modules of projective dimension≤n(simply n-tilting modules),and proved that T is n-tilting module if and only if PresnT=T⊥i≥1.Dually,U is n-cotilting module if and only if CopresnT=⊥i≥1T.It is nutural to consider n-tilting torsion classes and n-cotilting torsion-free classes,and to investigate ntilting preenvelopes and n-cotilting precovers which are generalizations of tilting preenvelopes and cotilting precovers in[7].

    The contents of this paper are summarized as follows.In section 2,we collect some known notions and results.In section 3,we introduce n-tilting torsion classes and discuss n-tilting preenvelopes.Furthermore,we give some characterizations of n-tilting torsion classes,and prove that:if t is n-tilting torsion classes,then t is envelope class.Section 4 is devoted to n-cotilting torsion-free classes and n-cotilting precovers.

    §2.Preliminaries

    Throughout this paper,R will be an associative ring with nonzero identity and all modules are unitary.Let R-Mod be the category of left R-modules and T∈R-Mod.We denote by T⊥1≤i≤n:={M ∈ R-Mod|ExtiR(T,M)=0 for all 1 ≤ i≤ n},T⊥i≥1:={M ∈ R-Mod(T,M)=0 for all i≥ 1},and T⊥1:={M ∈ R-Mod|Ext1R(T,M)=0}.Dually,⊥1≤i≤nT,⊥i≥1T,and⊥1T are defined similarly.Denote by AddT the class of modules isomorphic to direct summands of direct sums of copies of T and by PresnT:={M∈R-Mod|there exists an exact sequence Tn→ ···→T2→T1→M →0 with Ti∈AddT for all 1≤i≤n}.It is clear that Presn+1TPresnT and Pres1T=GenT,where GenT denotes the class of all left R-modules generated by T.Dually,denote by ProdT the class of modules isomorphic to direct summands of direct products of copies of T,and by CopresnT:={M∈R-Mod|there exists an exact sequence 0→M →C1→C2→ ···→Cnwith Ci∈ProdT for all 1≤i≤n}.It is clear that Copresn+1TCopresnT and Copres1T=CogenT,where CogenT denotes the class of all left R-modules cogenerated by T.T is a tilting module[7]provided that GenT=T⊥1.T is a cotilting module[14]provided that CogenT=⊥1T.Let xR-Mod,then x is a pretorsion class provided that x is closed under direct sums and factors.Moreover,x is a tilting torsion class provided that x=GenT for a tilting module T.Dually,x is pretorsion-free class provided that x is closed under direct products and submodules.x is a cotilting torsion-free class provided that x=CogenU for a cotilting module U.

    Precovers and preenvelopes were first defined in[15]in the following manner:if y is a class of modules(closed under isomorphisms),a y-precover of R-module M is a morphism φ from Y(Y ∈ y)to M,such that HomR(Y′,φ)is surjective for every Y′∈ y.If in addition,any morphism α :Y → Y verifying φ ?α = φ is automorphism,then φ is said to be an y-cover.y is a precover(resp,cover)class provided that each R-module has a y-precover(resp,y-cover).y-preenvelope and y-envelope,preenvelope class and envelope class can be defined dually.An R-module M is y-projective(resp,y-injective)provided that the functor HomR(M,-)(resp,HomR(-,M))is exact on short exact sequence of the form 0→U→V→W→0,where U,V,W∈y.Denote by y⊥={M∈R-Mod|Ext1R(Y,M)=0 for any Y∈y.⊥y is defined dually.

    definition 2.1[9]An R-module T is said to be n-tilting module if the following conditions are satis fi ed:

    (1)pdRT≤n(here pdRT denotes the projective dimension of T).

    (2)ExtiR(T,T(λ))=0 for all i≥ 1 and all cardinal λ.

    (3)There is a long exact sequence 0→R→T0→T1→···→Tr→0 with Ti∈AddT for every 0≤i≤r.

    Dually,an R-module U is said to be n-cotilting module if it satisfy the following conditions:

    (1)idRU≤n(here idRU denotes the injective dimension of U).

    (2)ExtiR(Uλ,U)=0 for all i≥ 1 and all cardinal λ.

    (3)There is a long exact sequence 0→Ur→···→U1→U0→E→0 with Ui∈ProdT for every 0≤i≤r.

    Lemma 2.1[9]An R-module T is said to be n-tilting module if and only if PresnT=T⊥i≥1.Dually,an R-module Uis said to be n-cotilting module if and only if CopresU=⊥i≥1U.

    Remark 2.1[9]Tilting modules in[7]are exactly 1-tilting modules,cotilting modules in[7]are exactly 1-cotilting modules.

    Proposition 2.1 The following conditions are hold:

    (1)If T is n-tilting module,then T is m-tilting module for any non-negative integer m≥n.

    (2)If T is n-tilting module,then PresnT=Presn+1T=Presn+2T= ···.

    Proof (1)Asumme that T is n-tilting module,then PresnT=T⊥i≥1by lemma 2.1.It is sufficient to prove that PresnT=PresmT for any non-negative integer m≥n.If m=n,then it is clear that PresnT=PresmT.If m>n,then PresmT?PresnT and PresnT=Presn+1T by[16,theorem 4.3].For any M∈PresnT=Presn+1T,there exists an exact sequence

    with Ti∈AddT for all 1≤i≤n+1.Note that K1=Kerf1∈PresnT,we can get M∈Presn+2T.Repeat the process,and so on,it is easy to get PresnT=PresmT.Therefore,if T is n-tilting module,then T is m-tilting module for any non-negative integer m≥n.

    (2)It is obvious following(1).

    We can obtain the following proposition dually.

    Proposition 2.2 For any R-module U and any non-negative integer n,the following conditions are hold:

    (1)If U is n-cotilting module,then U is m-cotilting module for any non-negative integer m≥n.

    (2)If U is n-cotilting module,then CopresnU=Copresn+1U=Copresn+2U=....

    §3.n-tilting Torsion Classes and n-tilting Preenvelopes

    We start with the following definition.

    definition 3.1 Let y?R-Mod.y is said to be an n-tilting torsion class,if there exists an n-tilting module T∈R-Mod,such that y=PresnT.

    y is a 1-tilting torsion class,if and only if there exists a 1-tilting module T such that y=Pres1T=GenT.It is clear that 1-tilting torsion classes are exactly tilting torsion classes in[7],1-tilting torsion classes are n-tilting torsion classes.n-tilting torsion classes are generalizations of tilting torsion classes.According to[13,theorem2.1],tilting torsion classes are characterized as follows.

    Lemma 3.1 Let R be a ring and y?R-Mod be a pretorsion class.Then the followings are equivalent:

    (1)y is tilting torsion class;

    (2)every module has a special y-preenvelope;

    (3)there is a special y-preenvelope of R;

    (4)there is a y-preenvelope of R,b:R→B,such that b is injective and B is y-projective.

    We now can state one of our main results by lemma 3.1 as follows.

    Theorem 3.1 Let y?R-Mod be a pretorsion class.Then the followings are equivalent:

    (1)y is n-tilting torsion class;

    (2)for any R-module M,there is an exact sequence

    with Ti∈y and Imdi∈⊥y(i=1,2,...,n);

    (3)there exists an exact sequence

    with Ti∈ y and Imdi∈⊥y(i=1,2,...,n);

    (4)there exists an exact sequence

    with Ti∈y and Imd1∈⊥y and Tiis y-projective(i=1,2,...,n).

    Proof (1)?(2)Suppose y is n-tilting torsion class,then there exists an n-tilting module T ∈ R-Mod,such that y=PresnT=T⊥i≥1.For any cardinal k,we have ExtiR(T,T(k))=0 by Tk∈PresnT.According to[17,lemma6.8],for any module M,there is a y-torsion resolution of M of the form 0→ M → T1→ T(λ1)→ 0,where T1∈ y,λ1is a cardinal,ExtiR(T(λ1),N)=0 for all N ∈ y.Repeat the process of M for T(λ1),and so on,we can get an exact sequence

    in which Ti∈y and Imdi∈⊥y(i=1,2,...,n).

    (2)?(3)It is obvious.

    (3)?(4)Assume that there exists an exact sequence

    with Ti∈ y and Imdi∈⊥y(i=1,2,...,n).It is only to prove Tiis y-projective(i=1,2,...,n).Consider the short exact sequence 0→Imdn-1→Tn→I→0,since I~=Imdn∈⊥y and Imdn-1∈⊥y,We can get Tn∈⊥y,which shows that HomR(Tn,-)is exact on any epimorphism with kernal in y.In particular,Tnis y-projective.Repeat the process to the short exact sequence 0→Imdn-2→Tn-1→Imdn-1→0,and so on,it is not difficult to obtain that Tiis y-projective(i=1,2,...,n).

    (4)?(1)Assume that there exists an exact sequence

    with Ti∈y and Imdi∈⊥y(i=1,2,...,n).Consider the short exact sequence 0→R→T1→Imd1→0,since Imd1∈⊥y,so R→T1is a y-preenvelope of R.Note that T1is y-projective and R→T1is injective,we can obtain that y is 1-tilting torsion class by lemma 3.1.Therefore,y is n-tilting torsion class.

    Theorem 3.2 Suppose y is an n-tilting torsion class in R-Mod.If there exists x?R-Mod which is closed under extensions,such that AddPx? x?⊥y and Px⊥1=y for some Px∈y.Then is an envelope class.

    Proof Assume that there exists x?R-Mod which is closed under extensions,such that Px⊥1=y and AddPx?x?⊥y for some Px∈y.For any M∈R-Mod,since y is an n-tilting torsion class,we have y=PresnT for some n-tilting module T.Note that PresnT is closed under direct sums and Px⊥1=y,so Pxλ∈y and Ext1R(Px,P(xλ))=0 for all cardinals λ.Therefore,we obtain an exact sequence ε:0→ M → Y → Px(α)→ 0 by[17,lemma 6.8],where Y ∈ y,α is a cardinal.Then ε is a generator for Ext1R(Y,M)in the sense of[18,proposition2.2.1].According to our assumption and[18,theorem2.2.6],we know that M has an x⊥-envelope.Since y=(⊥y)⊥? x⊥? (AddPx)⊥? P⊥x1=y,Then the conclusion is proved.

    §4.n-cotilting Torsion-free Classes and n-cotilting Precovers

    We start with the following definition.

    definition 4.1 Let w?R-Mod.w is said to be an n-cotilting torsion-free class,if there exists an n-cotilting module U∈R-Mod,such that w=CopresnU.

    w is a 1-cotilting torsion-free class,if and only if there exists a 1-cotilting module U such that w=Copres1U=CogenU.It is clear that 1-cotilting torsion-free classes are exactly cotilting torsion-free classes in[7],1-cotilting torsion-free classes are n-cotilting torsion-free classes.ncotilting torsion-free classes are generalizations of cotilting torsion-free classes.According to[13,theorem2.5],cotilting torsion-free classes are characterized as follows.

    Lemma 4.1 Let R be a ring and w?R-Mod be a pretorsion-free class.Then the followings are equivalent:

    (1)w is cotilting torsion-free class;

    (2)every module has a special w-precover;

    (3)there is a special w-precover of an injective cogenerator of R-Mod;

    (4)there is a w-precover,π :P → E,of an injective cogenerator E of R-Mod such that π is surjective and P is faithful and w-injective.

    We now can state one of our main results by lemma 4.1 as follows.

    Theorem 4.1 Let w?R-Mod be a pretorsion-free class.Then the followings are equivalent:

    (1)w is n-cotilting torsion-free class;

    (2)for any R-module M,there is an exact sequence

    with Wi∈w and Kerfi∈w⊥(i=1,2,...,n);

    (3)there exists an exact sequence

    with Wi∈w and Kerfi∈w⊥(i=1,2,...,n),where E is an injective cogenerator of R-Mod;

    (4)there exists an exact sequence

    with Wi∈ w and Kerf1∈ w⊥,W1is faithful and Wiis w-injective(i=1,2,...,n),where E is an injective cogenerator of R-Mod;

    Proof (1)?(2)Suppose w is n-cotilting torsion-free class,then there exists an ncotilting module U ∈ R-Mod,such that w=CopresnU=⊥i≥1U.By[19,lemma 2.14],for any module M,there is a w-torsion-free resolution of M of the form 0→Uλ1→W1→M→0,where W1∈ w,λ1is a cardinal,Ext1R(N,Uλ1)=0 for all N ∈ w.

    Repeat the process of M for Uλ1,and so on,we can get an exact sequence

    with Wi∈ w and Kerfi=Uλi∈ w⊥(i=1,2,...,n).

    (2)?(3)It is clear.

    (3)?(4)Assume that there exists an exact sequence

    with Wi∈w and Kerfi∈w⊥(i=1,2,...,n),where E is an injective cogenerator of R-Mod.Consider the short exact sequence 0→K→Wn→Kerfn-1→0,since KKerfn∈w⊥and Kerfn-1∈ w⊥,We can get Wn∈ w⊥,which shows that HomR(-,Wn)is exact on any monomorphism with cokernal in w.In particular,Wnis w-injective.Repeat the process to the short exact sequence 0→ Kerfn-1→ Wn-1→Kerfn-2→ 0,and so on,it is not difficult to obtain that Wiis w-injective(i=1,2,...,n).Meanwhile.According to our assumption and lemma 4.1,we can get Wiis faithful.

    (4)?(1)Assume that there exists an exact sequence

    with Wi∈w and Kerf1∈w⊥,W1is faithful and Wiis w-injective(i=1,2,...,n),where E is an injective cogenerator of R-Mod.Consider the short exact sequence 0→Kerf1→W1→E→0,since Kerf1∈w⊥,so W1→E is a w-precover of R.Note that W1is w-injective and faithful,and W1→E is surjective,we can obtain that w is 1-cotilting torsion-free class by lemma 4.1.Therefore,w is n-cotilting torsion-free class.

    Theorem 4.2 Suppose w is an n-cotilting torsion-free class in R-Mod.If w is closed under direct limits.Then w is an cover class.

    Proof It is easy to prove by theorem 2.5 and[18,theorem 2.2.8].

    国产麻豆成人av免费视频| 免费观看的影片在线观看| 亚洲婷婷狠狠爱综合网| 女的被弄到高潮叫床怎么办| 97超碰精品成人国产| 国产熟女欧美一区二区| 丰满的人妻完整版| 好男人视频免费观看在线| 特大巨黑吊av在线直播| 日韩,欧美,国产一区二区三区 | 亚洲国产精品sss在线观看| 久久精品综合一区二区三区| 国产精品嫩草影院av在线观看| 99久久成人亚洲精品观看| 免费看光身美女| 国产免费一级a男人的天堂| 亚洲综合色惰| 美女cb高潮喷水在线观看| 久久精品国产亚洲av天美| 国产精品人妻久久久久久| 久久热精品热| 久久久精品欧美日韩精品| 成人性生交大片免费视频hd| 欧美变态另类bdsm刘玥| 欧美精品一区二区大全| 久久久久久大精品| 啦啦啦啦在线视频资源| 欧美日韩国产亚洲二区| www日本黄色视频网| 成人漫画全彩无遮挡| 国产麻豆成人av免费视频| 国产探花在线观看一区二区| 91久久精品电影网| 我要看日韩黄色一级片| 久久人人爽人人片av| 国产伦精品一区二区三区四那| 不卡一级毛片| 久久精品综合一区二区三区| 啦啦啦啦在线视频资源| 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 97热精品久久久久久| 亚洲精品乱码久久久v下载方式| 久久鲁丝午夜福利片| 成人三级黄色视频| 日日摸夜夜添夜夜爱| 91精品国产九色| 国产成人freesex在线| 久久99蜜桃精品久久| 激情 狠狠 欧美| 51国产日韩欧美| 一级毛片aaaaaa免费看小| 国产精品一区二区性色av| 国产高清视频在线观看网站| 亚洲人与动物交配视频| 国产伦在线观看视频一区| 国产精品久久久久久亚洲av鲁大| 久久久久久久午夜电影| 成人性生交大片免费视频hd| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 97在线视频观看| 能在线免费看毛片的网站| 国产片特级美女逼逼视频| 久久精品国产亚洲网站| 亚洲av不卡在线观看| 一卡2卡三卡四卡精品乱码亚洲| 如何舔出高潮| 精品久久久久久久久久久久久| 啦啦啦韩国在线观看视频| 久久这里有精品视频免费| www.av在线官网国产| 国产亚洲精品久久久久久毛片| 永久网站在线| 国产精品无大码| 国产精品人妻久久久影院| 一级毛片电影观看 | 亚洲18禁久久av| 一区二区三区四区激情视频 | 深夜精品福利| 国产麻豆成人av免费视频| 97超碰精品成人国产| 只有这里有精品99| 亚洲欧美日韩卡通动漫| 国产大屁股一区二区在线视频| 亚洲电影在线观看av| 五月玫瑰六月丁香| 免费在线观看成人毛片| 色综合色国产| 国产精品国产三级国产av玫瑰| 午夜福利视频1000在线观看| 看黄色毛片网站| 国产三级中文精品| 久久综合国产亚洲精品| 免费观看在线日韩| 美女国产视频在线观看| 在线免费十八禁| 成人综合一区亚洲| 国产午夜精品久久久久久一区二区三区| 一个人免费在线观看电影| 国产精品久久久久久久久免| 熟女电影av网| 综合色av麻豆| 成人亚洲精品av一区二区| 中国美白少妇内射xxxbb| 国产午夜精品久久久久久一区二区三区| 一夜夜www| 精品日产1卡2卡| av福利片在线观看| 色综合站精品国产| 成人亚洲精品av一区二区| 在线观看66精品国产| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区 | 嫩草影院入口| 精品国内亚洲2022精品成人| 国产精品无大码| 一个人观看的视频www高清免费观看| 在线播放国产精品三级| 91久久精品电影网| 欧美zozozo另类| 色尼玛亚洲综合影院| 国产精品久久久久久久电影| 亚洲无线在线观看| 久久精品国产鲁丝片午夜精品| 在线天堂最新版资源| 国产男人的电影天堂91| 婷婷色av中文字幕| 亚洲中文字幕日韩| 99九九线精品视频在线观看视频| 直男gayav资源| 免费观看在线日韩| 免费观看人在逋| 中文字幕免费在线视频6| 中文亚洲av片在线观看爽| 亚洲熟妇中文字幕五十中出| 99久国产av精品| av天堂中文字幕网| 一边亲一边摸免费视频| 特大巨黑吊av在线直播| 国产女主播在线喷水免费视频网站 | 久久人妻av系列| 12—13女人毛片做爰片一| 国产一区二区三区在线臀色熟女| 精品99又大又爽又粗少妇毛片| 国产老妇女一区| 有码 亚洲区| 亚洲一区高清亚洲精品| 国产一级毛片七仙女欲春2| 国产高清视频在线观看网站| 国产日本99.免费观看| 岛国毛片在线播放| 97在线视频观看| 国产精品久久久久久久久免| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线av高清观看| 夜夜夜夜夜久久久久| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产av玫瑰| 一进一出抽搐动态| 少妇熟女aⅴ在线视频| 美女黄网站色视频| 中出人妻视频一区二区| 亚洲成人久久性| 偷拍熟女少妇极品色| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品日韩在线中文字幕 | 亚洲欧美精品自产自拍| 欧美日韩乱码在线| 中文字幕久久专区| 日韩精品有码人妻一区| 51国产日韩欧美| 久久久久国产网址| 床上黄色一级片| 欧美丝袜亚洲另类| 少妇高潮的动态图| 激情 狠狠 欧美| 日本在线视频免费播放| 男人舔奶头视频| 99国产精品一区二区蜜桃av| 午夜视频国产福利| 国产伦精品一区二区三区视频9| 精品欧美国产一区二区三| 国产亚洲精品av在线| 国产蜜桃级精品一区二区三区| 熟女人妻精品中文字幕| 99视频精品全部免费 在线| 色综合站精品国产| 十八禁国产超污无遮挡网站| 五月伊人婷婷丁香| 一级黄片播放器| 国产精品乱码一区二三区的特点| 爱豆传媒免费全集在线观看| 成熟少妇高潮喷水视频| av天堂在线播放| 一区二区三区免费毛片| 欧美+日韩+精品| 亚洲av.av天堂| 99热全是精品| 成人亚洲欧美一区二区av| 国产精品日韩av在线免费观看| 晚上一个人看的免费电影| 精品熟女少妇av免费看| 女人十人毛片免费观看3o分钟| 国产日韩欧美在线精品| eeuss影院久久| 久久久久网色| 免费av不卡在线播放| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区| 久久韩国三级中文字幕| 亚洲,欧美,日韩| 男女做爰动态图高潮gif福利片| 熟女人妻精品中文字幕| 免费观看在线日韩| 亚洲五月天丁香| 看片在线看免费视频| 久久这里只有精品中国| 婷婷色av中文字幕| 99久久久亚洲精品蜜臀av| 69人妻影院| 国产 一区 欧美 日韩| 天堂中文最新版在线下载 | 日韩av不卡免费在线播放| 淫秽高清视频在线观看| 久久人人爽人人片av| 国产精品不卡视频一区二区| 久久国产乱子免费精品| 欧美成人a在线观看| 国产色婷婷99| 日韩欧美 国产精品| 国产黄a三级三级三级人| 三级毛片av免费| 久久久久国产网址| 丰满的人妻完整版| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 欧美又色又爽又黄视频| 国产一级毛片在线| 联通29元200g的流量卡| 欧美三级亚洲精品| 波多野结衣高清作品| 国产亚洲精品久久久com| 国产大屁股一区二区在线视频| 少妇高潮的动态图| 免费av毛片视频| 最近手机中文字幕大全| 国产男人的电影天堂91| 精品人妻熟女av久视频| 日韩欧美在线乱码| 亚洲国产精品sss在线观看| 国产男人的电影天堂91| 12—13女人毛片做爰片一| 26uuu在线亚洲综合色| 久久人人爽人人爽人人片va| 亚洲欧美清纯卡通| 精品久久久久久久久久久久久| 不卡一级毛片| 一级毛片电影观看 | 亚洲成人精品中文字幕电影| av在线播放精品| 免费黄网站久久成人精品| 国产成人精品久久久久久| 国产成人精品婷婷| 日韩三级伦理在线观看| 18禁在线播放成人免费| 嘟嘟电影网在线观看| 国产精品国产高清国产av| 精品国产三级普通话版| 日韩欧美精品免费久久| 欧美变态另类bdsm刘玥| 国产av在哪里看| 卡戴珊不雅视频在线播放| 在线播放国产精品三级| 全区人妻精品视频| 久久久久久久久久黄片| 亚洲成人久久爱视频| 亚洲av中文字字幕乱码综合| 99国产极品粉嫩在线观看| 欧美成人a在线观看| 高清毛片免费看| 大香蕉久久网| 免费电影在线观看免费观看| 久久久国产成人免费| 小蜜桃在线观看免费完整版高清| 国产av在哪里看| 99在线人妻在线中文字幕| 成人性生交大片免费视频hd| 小蜜桃在线观看免费完整版高清| 国产三级在线视频| 我要搜黄色片| 人妻久久中文字幕网| 久久久久国产网址| 国产精品久久久久久精品电影| 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 精品一区二区三区人妻视频| 九九热线精品视视频播放| 国产乱人偷精品视频| 免费看a级黄色片| 亚洲av免费高清在线观看| 内射极品少妇av片p| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 波多野结衣高清无吗| 国产成人影院久久av| 精品少妇黑人巨大在线播放 | 国产黄片视频在线免费观看| 十八禁国产超污无遮挡网站| 婷婷色综合大香蕉| 可以在线观看的亚洲视频| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 国内揄拍国产精品人妻在线| 美女 人体艺术 gogo| 日本黄色视频三级网站网址| 亚洲av熟女| 少妇的逼水好多| 美女黄网站色视频| 久久久色成人| 国产成人一区二区在线| 婷婷六月久久综合丁香| 高清毛片免费观看视频网站| 看黄色毛片网站| 丰满的人妻完整版| 乱系列少妇在线播放| 麻豆成人av视频| 美女国产视频在线观看| 给我免费播放毛片高清在线观看| 99精品在免费线老司机午夜| 日本色播在线视频| 免费人成视频x8x8入口观看| 日韩大尺度精品在线看网址| 2022亚洲国产成人精品| 亚洲国产精品成人综合色| 午夜久久久久精精品| 男的添女的下面高潮视频| 国产精品精品国产色婷婷| 美女高潮的动态| 一个人看的www免费观看视频| 久久99热这里只有精品18| 一本久久中文字幕| 欧美变态另类bdsm刘玥| 久久久久久久久久黄片| 国产麻豆成人av免费视频| 老熟妇乱子伦视频在线观看| 久久久成人免费电影| 久久久久网色| 国产成人午夜福利电影在线观看| 日本与韩国留学比较| 97在线视频观看| 亚洲av不卡在线观看| 精品熟女少妇av免费看| 亚洲国产欧美在线一区| 精品一区二区三区视频在线| 91狼人影院| 美女国产视频在线观看| 成年免费大片在线观看| 一区二区三区高清视频在线| 能在线免费看毛片的网站| 亚洲在久久综合| 噜噜噜噜噜久久久久久91| 亚洲丝袜综合中文字幕| 99久久中文字幕三级久久日本| 亚洲av不卡在线观看| 中文欧美无线码| 久久久久性生活片| 欧美一区二区精品小视频在线| 黄片wwwwww| 亚洲四区av| 日本熟妇午夜| 美女黄网站色视频| 美女 人体艺术 gogo| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 国产精品麻豆人妻色哟哟久久 | 插逼视频在线观看| 久久99热这里只有精品18| 最后的刺客免费高清国语| 日韩视频在线欧美| 美女大奶头视频| 国产淫片久久久久久久久| 国产精品乱码一区二三区的特点| 久久精品国产自在天天线| 狂野欧美白嫩少妇大欣赏| 在线天堂最新版资源| 国产高清视频在线观看网站| 噜噜噜噜噜久久久久久91| 嘟嘟电影网在线观看| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 99在线视频只有这里精品首页| 91精品一卡2卡3卡4卡| 91av网一区二区| 久久久久网色| 欧美日韩国产亚洲二区| 丰满人妻一区二区三区视频av| 国产单亲对白刺激| 亚洲精品日韩在线中文字幕 | 99热这里只有是精品50| 一进一出抽搐gif免费好疼| 女人十人毛片免费观看3o分钟| 国产在线男女| 久久中文看片网| 亚洲高清免费不卡视频| av在线亚洲专区| 99在线人妻在线中文字幕| 亚洲美女搞黄在线观看| 日产精品乱码卡一卡2卡三| 国产亚洲精品久久久com| 白带黄色成豆腐渣| 丝袜美腿在线中文| 国产精品人妻久久久久久| 亚洲18禁久久av| 九九爱精品视频在线观看| 久久久午夜欧美精品| 国内精品宾馆在线| 亚洲av二区三区四区| 高清日韩中文字幕在线| 一边亲一边摸免费视频| 最后的刺客免费高清国语| 欧美+日韩+精品| 国产av不卡久久| 国产精品永久免费网站| 欧美日韩在线观看h| 国产成人aa在线观看| 寂寞人妻少妇视频99o| 久久午夜福利片| 国产精品一区二区三区四区免费观看| 欧美一区二区亚洲| 国产成人午夜福利电影在线观看| 国产成人福利小说| 久久久a久久爽久久v久久| 国产伦精品一区二区三区视频9| 如何舔出高潮| av在线观看视频网站免费| 九九久久精品国产亚洲av麻豆| 免费av毛片视频| 女的被弄到高潮叫床怎么办| 午夜福利在线在线| 毛片女人毛片| av天堂中文字幕网| av视频在线观看入口| 国产伦在线观看视频一区| АⅤ资源中文在线天堂| 亚洲不卡免费看| 亚洲成人av在线免费| av福利片在线观看| 久久久精品欧美日韩精品| 精品久久久噜噜| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| av免费观看日本| 女人被狂操c到高潮| 一进一出抽搐gif免费好疼| 欧美xxxx黑人xx丫x性爽| 国产在线男女| 国产精品三级大全| 黄色欧美视频在线观看| 亚洲国产欧美在线一区| 一夜夜www| АⅤ资源中文在线天堂| 国产亚洲av片在线观看秒播厂 | 中国美女看黄片| av在线蜜桃| 久久久久性生活片| 婷婷六月久久综合丁香| 中文字幕久久专区| 免费看美女性在线毛片视频| 国产精品1区2区在线观看.| 99久久精品国产国产毛片| 夫妻性生交免费视频一级片| 在线免费十八禁| 中文欧美无线码| 久久精品国产鲁丝片午夜精品| 国产国拍精品亚洲av在线观看| 中文资源天堂在线| 在线观看午夜福利视频| 国产乱人视频| 特大巨黑吊av在线直播| 国产精品一区二区三区四区久久| 91精品一卡2卡3卡4卡| 一个人观看的视频www高清免费观看| 亚洲欧美精品自产自拍| 欧美丝袜亚洲另类| 男女下面进入的视频免费午夜| 国产成人a区在线观看| 欧美性猛交╳xxx乱大交人| 黄色日韩在线| 精品一区二区三区视频在线| 91av网一区二区| 真实男女啪啪啪动态图| 一级二级三级毛片免费看| 两性午夜刺激爽爽歪歪视频在线观看| 日本一二三区视频观看| 国产极品天堂在线| 高清在线视频一区二区三区 | 69人妻影院| 亚洲电影在线观看av| 欧美色欧美亚洲另类二区| 久久精品国产亚洲av香蕉五月| 可以在线观看毛片的网站| 91在线精品国自产拍蜜月| 国产极品精品免费视频能看的| 成人av在线播放网站| 男的添女的下面高潮视频| 在线免费十八禁| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品久久国产高清桃花| 亚洲中文字幕日韩| 免费观看的影片在线观看| 亚洲人成网站在线播放欧美日韩| 99久国产av精品国产电影| 亚洲国产高清在线一区二区三| 亚洲欧美清纯卡通| 精品一区二区三区人妻视频| 在线免费十八禁| 久久久午夜欧美精品| 99热这里只有是精品在线观看| 蜜臀久久99精品久久宅男| 免费看日本二区| 久久精品国产亚洲网站| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久中文| 男女边吃奶边做爰视频| 久久精品夜色国产| 国产成人精品一,二区 | 日韩欧美精品免费久久| 欧美日韩一区二区视频在线观看视频在线 | 成人特级黄色片久久久久久久| 天天躁日日操中文字幕| av福利片在线观看| 免费观看的影片在线观看| 欧美精品一区二区大全| 少妇裸体淫交视频免费看高清| 日韩欧美在线乱码| 亚洲最大成人av| 午夜视频国产福利| 亚洲国产欧美人成| a级一级毛片免费在线观看| 一级毛片电影观看 | 午夜福利成人在线免费观看| av免费观看日本| 亚洲人成网站在线播| 久久99热这里只有精品18| 久久久a久久爽久久v久久| 亚洲熟妇中文字幕五十中出| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 国产免费男女视频| 免费搜索国产男女视频| 插逼视频在线观看| 在现免费观看毛片| 天天躁夜夜躁狠狠久久av| 亚洲成a人片在线一区二区| 国产 一区精品| 精品久久久久久成人av| 美女国产视频在线观看| 国产成人a区在线观看| 男女边吃奶边做爰视频| 中国美白少妇内射xxxbb| 日日干狠狠操夜夜爽| 一级黄色大片毛片| 精品欧美国产一区二区三| 人妻夜夜爽99麻豆av| 欧美成人精品欧美一级黄| 有码 亚洲区| 波野结衣二区三区在线| 欧美色欧美亚洲另类二区| 亚州av有码| 黄色配什么色好看| 非洲黑人性xxxx精品又粗又长| 久久久久久久久大av| 中文资源天堂在线| 在现免费观看毛片| 精品国产三级普通话版| 国产亚洲精品av在线| 国内精品宾馆在线| 最新中文字幕久久久久| 久久久欧美国产精品| 日韩高清综合在线| 91aial.com中文字幕在线观看| 青春草视频在线免费观看| 91久久精品国产一区二区成人| 久久欧美精品欧美久久欧美| 国产在线精品亚洲第一网站| а√天堂www在线а√下载| 日韩人妻高清精品专区| 亚洲国产精品久久男人天堂| 国产精品爽爽va在线观看网站| 日本黄色视频三级网站网址| 人妻久久中文字幕网| a级毛片a级免费在线| 插逼视频在线观看| 亚洲欧美精品综合久久99| 国产精品三级大全| 国产亚洲精品久久久久久毛片| 国产v大片淫在线免费观看| 久久久精品94久久精品| 国产老妇女一区| 99久国产av精品| 国产精品日韩av在线免费观看| 高清午夜精品一区二区三区 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲18禁久久av| 国产白丝娇喘喷水9色精品| 免费在线观看成人毛片| 欧美精品国产亚洲| 欧美最新免费一区二区三区| 一级av片app| 一级毛片电影观看 |