• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dyons of Unit Topological Charges in Gauged Skyrme Model

    2019-07-22 07:48:14WUZhonglinLIDongya

    WU Zhong-lin,LI Dong-ya

    (School of Mathematics and Statistics,Huanghuai University,Zhumadian,Henan,463000,China)

    Abstract:Dyons are an important family of topological solitons carrying both electric and magnetic charges and the presence of a nontrivial temporal component of the gauge field essential for the existence of electricity often makes the analysis of the underlying nonlinear equations rather challenging since the governing action functional assumes an indefinite form.In this work,developing a constrained variational technique,We establish an existence theorem for the dyon solitons in a Skyrme model coupled with SO(3)-gauge fields,formulated by Brihaye,Kleihaus,and Tchrakian.These solutions carry unit monopole and Skyrme charges.

    Key words:Skyrme model;gauge fields;dyons;calculus of variations for indefinite action functionals;weak convergence

    §1.Introduction

    Physical Background and Origins.Dyon is a hypothetical particle carrying both electric and magnetic charges.In contemporary physics,dyons and monopoles are relevant theoretical constructs for an interpretation of quark confinement[20,23].As early as in 1894,P.Curie[13]first formulated the concept of a magnetic monopole,a particle with only one magnetic pole,whose existence was widely suspected.In 1931,Dirac[15]explored the electromagnetic duality in the Maxwell equations and obtained a mathematical formalism of magnetic monopoles.It is sophisticated and highly challenging to obtain the existence of monopole and dyons in the Yang—Mills theory by mathematical methods.

    As is well known,the Skyrme model is important for baryon physics[1,9,21]and gauge fields are often introduced to investigate inter-particle forces[2,6-7,11,14,16].Motivated by these applications,here we are interested in the combined system consisting of the Skyrme model coupled with SO(3)gauge fields originally presented by Brihaye,Kleihaus,and Tchrakian[6].We may mention that dyons of the Georgi—Glashow model[22]and the SO(3)gauged Skyrme model[7,18]have been obtained recently.Combining these two models,we encounter a new system.The numerical study of the Skyrme dyon solution conducted in[6]provides us evidence of existence of the dyons.The purpose of this paper is to give an analytic proof for the existence of such solutions.The difficulty of the indefinite action functional still appears as stated.To overcome this,we need to obtain suitable uniform estimates for a minimizing sequence at singular boundary points and achieve strong convergence for the sequence of the negative terms as seen in Gao and Yang[18].

    Mathematical Problem.Let a,f,g,h be real-valued functions of variable x∈ [0,∞)and satisfying the two-point boundary condition

    where θ0and q are some parameters.Consider the energy density functions E1and E2given by

    where λ,κ ≥ 0 and ξ> 0 are constants.We shall aim at obtaining a critical point of the indefinite action functional

    subject to the boundary condition(1.1)and the finite-energy condition

    Such a critical point is a spherically symmetric particle-like solution,of the equations of motion of the classical Skyrme model coupled with gauge fields taking values in the Lie algebra of the orthogonal group SO(3),carrying unit topological charge and coined as‘dyon’in quantum field theory.

    The rest of the paper is organized as follows.In Section 2,we review the SO(3)gauged Skyrme model of Brihaye—Kleihaus—Tchrakian[6].In the subsequent three sections,we establish our main existence theorem.Specifically,in Section 3,we prove the existence of a finiteenergy critical point of the indefinite action functional by formulating and solving a constrained minimization problem as in[18].In Section 4,we show that the critical point obtained in the previous section for the constrained minimization problem solves the original equations of motion by proving that the constraint does not give rise to an unwanted Lagrange multiplier problem.In Section 5,we study the properties of the solutions.In particular,we obtain some uniform decay estimates which allow us to describe the dependence of the(’t Hooft)electric charge on the asymptotic value of the electric potential function at infinity.

    §2.Dyons in The Combined Skyrme Model

    The field-theoretical model under consideration is an elegant combination of the classical Georgi—Glashow model and of the semi-locally gauged Skyrme model investigated previously in[3,8].In the model,the matter field is an R3-valued Higgs field,Φα(α =1,2,3)over the(3+1)-dimensional Minkowski spacetime R3,1of signature(+---),of coordinates denoted by xμ(μ =0,1,2,3).Thus,usingto denote the real-valued gauge fields in a fixed representation of the gauge group SO(3).We can express the induced gauge-covariant derivatives and gauge field strength tensors as

    where the late Greek letters μ,ν,...=0,1,2,3 label the Minkowski spacetime indices,while the early Greek letters α,β,···=1,2,3 label the indices of the algebra of the gauge group SO(3).With the above notation,the Lagrangian density of the Georgi—Glashow model is given by

    The finite-energy condition implies that Φ =(Φα)maps the 2-sphere at the infinity of the space R3into the 2-sphere|Φ|2= η2(η > 0)which naturally associated Φ with an integer class in π2(S2)=Z.Such an integer is called the monopole number of the model and is denoted by QM,which is also referred to as the monopole charge.

    In the classical Skyrme model,one is concerned with a map φ =(φa)where a=(α,4)from the Minkowski spacetime into the standard 3-sphere so that(a=1,2,3,4)may also be expressed as(φα,φ4)(α =1,2,3).Our gauged Skyrme model is so gauged that there is the usual global O(4)symmetry but there is a local SO(3)symmetry imposed on the φαpart.Therefore the gauge-covariant derivatives are semi-local and defined by

    As a consequence,the semi-local gauged Skyrme model is governed by the Lagrangian density

    Following[3,8],we shall consider also the equations of motion coming from the coupled model resulting from(2.2)and(2.4)given by the Lagrangian density

    Interestingly,the non-Abelian Higgs field Φ and the Skyrme scalar field φ are now elegantly coupled through a single Lie algebra so(3)-valued gauge field,Aμ=(Aαμ).

    Restricting to spherically symmetric static field configurations,we have

    which should not be confused with that denoting a point in R3before.

    Substituting the Ansatze(2.6)—(2.8)into the static version of the equations of motion of the Lagrangian density(2.5),we arrive at following one-dimensional(radial)Lagrangian density,which is still denoted by the same letter L,defined by

    where

    and′denotes the differentiation,ξ> 0,λ ≥ 0 and κ ≥ 0,such that the associated Hamiltonian(energy)density is given by

    It should be noted that,although there are six free coupling constants, λ0,λ1,λ2,and κ0,κ1,κ3in the original Lagrangian action density(2.5),the radially symmetrically reduced action density(2.10)as seen in(2.11)and(2.12)contains only three free coupling constants,ξ,λ,κ,after some appropriate rescaling formulation.See[3,8]for details.

    The equations of motion of the original Lagrangian density(2.10)now become the variational equation

    of the static action

    which is indefinite.Explicitly,the equation(2.14)may be expressed in terms of the unknowns a,f,h,g as

    We are to solve these equations under suitable boundary conditions.First we observe in view of the ansatz(2.6)—(2.8)that the regularity of the fields φ and Aμimposes at x=0 the boundary condition

    Furthermore,the finite-energy condition

    the non-triviality of the g-sector lead us to the boundary condition at x=∞,given as

    where 0<θ0<,q>0(say)is a parameter,to be specified later,which defined the asymptotic value of the electric potential at infinity.

    Note that QMis a topological charge,in fact a homotopy invariant defined from the Higgs scalar,which should not be confused with the magnetic charge Qm,to be addressed below,arising from the underlying electromagnetism.

    It can be directly checked that the above radially symmetric ansatz leads to the unit monopole charge,QM=1.There is another topological quantity,however,called the Skyrme charge,that needs to be elaborated upon in some detail.Recall that φ maps R3into S3.In the classical situation without local symmetry,φ has a limiting position at infinity of R3which enables us to compactify R3into S3so that φ defines a map from S3into itself and is thus characterized by an integer called the Skyrme charge,QSin the homotopy group π3(S3).In the semi-locally gauged situation,however,the gauge coupling complicates the asymptotic behavior at infinity in such a way that the aforementioned compactification breaks down due to a spontaneous symmetry breaking effect caused by gauge fields which makes the topological characterization of the field configuration much more sophisticated.Nevertheless,formally,the same integral formula that defines the Skyrme charge has the same expression[18]:

    In our case,QSis no longer an integer.In fact,applying the boundary condition(2.20)and(2.22)in(2.23),we obtain

    which is strictly decreasing for θ0∈ [0,π/2].

    Finally,the associated magnetic and electric charges of the solutions following the’t Hooft electromagnetism as calculated in[18]are given by Qm=1 and

    respectively.

    We can now state our main result regarding the existence of dyon solitons in the coupled George—Glashow and the gauged Skyrme model[6]as follows.

    Theorem 2.1 For any parameters θ0and q satisfying

    the equations of motion of the minimally gauged Skyrme model defined by the Lagrangian density(2.10),have a static finite-energy spherically symmetric solution described by the ansatz(2.6)—(2.8)so that(a,f,h,g)satisfies the boundary conditions(2.20)and(2.22).Furthermore,such a solution enjoys the property that f(x),g(x)are strictly increasing,and a(x)>0,0

    which may assume any value in the interval(-,0),a unit magnetic charge Qm=1,and an electric charge given by the integral

    which depends on q and approaches zero as q→0.

    The above theorem will be established in the subsequent sections.

    §3.Constrained Minimization Problem

    In this section,we will prove the theorem 2.1 by using a indefinite variational process.In functional(2.15),the difficulty arises from the negative terms and it will be overcomed by solving a constrained minimization problem.And we will show the solution solve the equations(2.16)—(2.19)in next section.

    To proceed,we introduce the admissible space for our variational problem as follows

    A={(a,f,h,g)|a,f,h,g are continuous functions over[0,∞)which are absolutely continuous on any compact subinterval of(0,∞),satisfy the boundary conditions a(0)=1,a(∞)=0,f(0)=0,f(∞)= θ0,h(∞)=1,g(∞)=q,and of finite-energy E(a,f,h,g)<∞}.

    It is hard to find a critical point of the indefinite functional L directly in A.Then we can deal with the negative term with respect to g independently,and then consider a,f,h for fixed g.Following this,we need a further restriction:we assume that(a,f,h,g)satisfies the constraint

    where G is an arbitrary test function satisfying G(∞)=0 and

    The constrained class C is defined to be

    In the rest of this section,we shall focus on the following constrained minimization problem

    Here we emphasize that the constraint(3.1)partially freezes the temporal component of the gauge field,which,in view of the’t Hooft electromagnetic formalism(?)of non-Abelian gauge field theory,partially freezes the electric sector of the system of equations of motion.By doing so,we are able to tackle the negative component arising in the indefinite Lagrangian action functional.We then show that the minimizer of the full(indefinite)Lagrangian action(but not the positive definite energy functional)subject to the constraint(3.1)will be a finite-energy critical point of the Lagrangian action,which is a classical solution of the original equations of motion.

    Lemma 3.1 Assume 0< θ0< π/2.For the problem(3.4),we may always restrict our attention to functions f satisfying 0≤f≤π/2.

    Proof It is easy to see that L(a,f,h,g)=L(a,|f|,h,g).Hence we may assume f≥0 in the minimization problem.Noting f(∞)= θ0<,if there is some x0>0 such that f(x0)>,we see that there is an interval(x1,x2)with 0≤x1

    Lemma 3.2 The constrained admissible class C defined in(3.3)is non-empty.Furthermore,if q>0 and(a,f,h,g)∈C,we have 0

    Proof To proceed,we rewrite the action functional as

    Then any element(a,f,h,g)∈C may be obtained by first choosing suitable a,f,h such that F(a,f,h)< ∞ and then choosing a unique g such that g(∞)=q and g solves the problem(3.5).

    In fact,the Schwartz inequality gives us the asymptotic estimate

    which indicates that the limiting behavior G(∞)=q can be preserved for any minimizing sequence of the problem(3.5).Hence(3.5)is solvable.In fact,it has a unique solution,say g,for any given function a,in view of the functional J(a,·)is strictly convex.Since J(a,·)is even,we have g≥0.By the maximum principle in(2.19),we conclude with 0

    Lemma 3.3 For any(a,f,h,g)∈C,g(x)is nondecreasing for x>0 and g(0)=0.

    Proof Lemma 3.2 shows that 0

    Assume otherwise,then there are ∈0,δ> 0,such that x2|g′(x)| ≥ ∈0for 0

    Then(3.7)implies that there is a sequence{xk},such that xk→ 0 and x|g′(xk)|→ 0,as k→∞.Noting this fact and(2.19),we obtain

    Therefore g′(x)≥ 0 and g(x)is nondecreasing.As a result,we see that there is number g0≥ 0 such that

    It is necessary to prove g0=0.Otherwise,if g0> 0,we use the fact a(0)=1,x2g′(x)→ 0(x → 0)(see(3.7)),and L’Hopital’s rule to obtain

    Then,there is a δ> 0,such that

    Integrating(3.10),we obtain

    which contradicts the existence of limit stated in(3.9).Then g0=0,and the lemma is proved.

    Lemma 3.4 For any 0< θ0<π/2,0

    where C1,C2>0 are constants depending on q only.

    Proof For any(a,f,h,g)∈ C,set g1=qh.Then g1satisfies g1(∞)=q.As a result,we have

    and thus,

    which implies the lower estimate(3.11).

    Lemma 3.5 Under the conditions stated in Theorem 2.1,the constrained minimization problem(3.4)has a solution.

    Proof Using Lemma 3.4,we see that

    is well defined.Let{(an,fn,hn,gn)}be any minimizing sequence of(3.4).That is,(an,fn,hn,gn)∈C and L(an,fn,hn,gn)→η0as n→∞.Without loss of generality,we may assume L(an,fn,hn,gn)≤η0+1(say)for all n.Applying(3.11)and the Schwartz inequality,we obtain

    where C>0 is a constant independent of n.In particular,an(x)→1 uniformly as x→0,fn(x)→θ0and hn(x)→1 uniformly as x→∞.

    For any(an,fn,hn,gn),the function Gn=qhnsatisfies Gn(∞)=q.Then,by the definition of gnand(3.11),we have

    where C>0 is a constant,which shows that J(an,gn)is bounded as well.

    With the above preparation,we are now ready to study the limit of the sequence{(an,fn,hn,gn)}.We introduce the Hilbert space(X,(·,·)),where the functions in X are all continuously defined in x ≥ 0 and vanish at x=0 and the inner product(·,·)is defined by

    Since{an-1}is bounded in(X,(·,·)),we may assume without loss of generality that{an}has a weak limit,say,a,in the same space,

    as n→∞.

    Similarly,we consider the Hilbert space(Y,(·,·))where the functions in Y are all continuously defined in x > 0 and vanish at infinity with the inner product(·,·)defined by

    Noting that{fn- θ0},hn-1 and{gn-q}are bounded in(Y,(·,·)),we may assume that there are functions f,h,g with f(∞)= θ0,h(∞)=1,g(∞)=q,and f- θ0,h-1,g-q ∈ (Y,(·,·)),such that

    as n → ∞,for Wn=fn-θ0,ω =f-θ0,Wn=hn-1,ω =h-1,and Wn=gn-q,ω =g-q,respectively.

    In the sequel,we need to prove that the weak limit(a,f,h,g)of the minimizing sequence{(an,fn,hn,gn)}obtained above actually lies in C.In other words,we need to show that(a,f,h,g)satisfies the boundary conditions and the constraint(3.1).Using the uniform estimates(3.6),(3.15)-(3.17),we conclude that a(0)=1,f(∞)= θ0,h(∞)=1,g(∞)=q.Moreover,by Lemma 3.4,we see that a ∈ W1,2(0,∞).Therefore a(∞)=0.To show f(0)=0,we use(3.15)to get a δ> 0 such that

    Then,by(3.21),we obtain

    Noting 0≤fn≤,we invert(3.22)to get the uniform estimate

    where C>0 is independent of n.Letting n→∞in(3.23),we obtain f(0)=0 as desired.Then the total boundary conditions are verified.

    Then,the next thing is to verify(3.1).To this end,it is sufficient to establish the following results,

    for any test function G satisfying(3.2)and G(∞)=0,as n→∞.

    Using the fact G∈Y and(3.20),we conclude that(**)is valid.

    To get(3.24),we rewrite

    for some positive constants 0< δ1< δ2< ∞,and we begin with

    Noting(3.15)and(3.18),we see that there is a small δ> 0 such that gn∈ L2(0,δ)and there holds the uniform bound

    for some constant K > 0.Therefore,we may assume gn→ g weakly in L2(0,δ)as n→ ∞.In particular,g ∈ L2(0,δ)and ‖g‖L2(0,δ)≤ K.Besides,since in(3.2),the function a satisfies a(0)=1,we have G ∈ L2(0,δ)when δ> 0 is chosen suitable small.Then,using(3.15)and taking δ1≤ δ,we have

    where C > 0 is a constant independent of n.Therefore,for any ε> 0,we can take δ1> 0 sufficiently small to assure|I11|< ε.On the other hand,since gn→ g weakly in L2(0,δ)and G∈L2(0,δ),we have I12→0 as n→∞.

    Since{an}and{gn}are bounded sequences in W1,2(δ1,δ2),using the compact embedding W1,2(δ1,δ2)C[δ1,δ2],we see that an→ a and gn→ g uniformly over[δ1,δ2]as n → ∞.Thus I2→0 as n→∞.

    To estimate I3,we recall that{J(an,gn)}is bounded by(3.18),gn(x)→q uniformly as n→∞by(3.6),and G(x)=O()as x→∞by(3.2).In particular,since q>0,we may choose x0> 0 sufficiently large so that

    From the above,we arrive at

    where x≥x0(cf.(3.30))and C>0 is a constant.From(3.18),we see that for any ε>0 we may choose δ2large enough to get|I3|< ε.

    Summarizing the above discussion,we see that

    which proves the desired conclusion(*).Thus,the claim(a,f,h,g)∈C follows.

    To show that(a,f,h,g)is a solution of(3.4),we need to establish

    It is difficult to get this fact due to the negative terms in the functional L.To overcome this,we may rewrite the Lagrange density(2.10)as

    where

    Therefore,to establish(3.33),we need to show that

    We first prove(3.38).Since both(an,gn)and(a,g)satisfy(3.1),i.e.,

    letting G=g-gnin the above equations and subtracting them,we obtain

    where 0< δ1< δ2< ∞.

    To estimate I1,we need to get some uniform estimate for the sequence{gn}as x→0.Using(3.15),we see that for any 0<γ<(say)there is a δ> 0 such that

    We consider the comparison function of the form

    Then

    Since gnsolve(3.5)in Lemma 3.2,we have

    Choose C > 0 in(3.42)large enough so that Cδ1-γ≥ q.Noting gn

    Which implies that the weak limit g of{gn}satisfies the same estimate.Thus,from the uniform estimates(3.15)and(3.45),we see that for any ε> 0 there is some δ1> 0(δ1< δ)such that|I1|<ε.

    Moreover,from(3.6)and(3.30),we get

    which may be made small than ε when δ2> 0 is large enough due to(3.18).

    Furthermore,since an→ a and gn→ g in C[δ1,δ2],we see that I2→ 0 as n → ∞.

    From the above results regarding I1,I2,I3in(3.40),we obtain the strong convergence

    In particular,we obtain

    We can also prove that

    In fact,we have the fact that{(an,fn,hn,gn)}is bounded in(0,∞).Therefore the sequence is convergent in C[α,β]for any pair of numbers,0< α < β < ∞.Noting that an(x)→ 1 and gn(x)→ 0 as x → 0 uniformly,with respect to n=1,2,···,we see that an→ a and gn→ g uniformly over any interval[0,β](0< β< ∞).Hence,using this result and the uniform estimate(3.6),we get(3.49).

    Then(3.38)follows from(3.48)and(3.49).

    On the other hand,using the uniform estimate(3.17),we also have

    Finally,using(3.50),and the condition q<1,i.e.,1-q2>0,we get(3.37)and the proof of the lemma is complete.

    §4.Ful fi llment of The Governing Equations

    Let(a,f,h,g)be the solution of(3.4)obtained in the previous section.Due to the negative terms in L,it is not obvious say(a,f,h,g)satisfies the governing equations(2.16)—(2.19).Since we have solved a constrained minimization problem,we need to prove that the Lagrange multiplier problem does not arise as a result of the constraint,which would otherwise alter the original equations of motion.In fact,since the constraint(3.1)involves a and g only and(3.1)immediately gives rise to(2.19),we see that all we have to do is to verify the validity of(2.16)because(2.17)and(2.18)are the f-equation and h-equation respectively(3.1)does not involve f and h explicitly.

    It is clear that the vanishing of I1implies(2.16)so that it suffices to prove that I2vanishes.To this end,from(3.1),we only need to show that~G satisfies the same conditions required of G in(3.1).

    In(3.1),using the replacementswe have

    Or,with gt=g+,we have

    Applying the bounds 0≤g,gt≤q and the relation=gt-g in(4.5),we have

    As a consequence,we get

    Letting t→0 in(4.7)and(4.8),we obtain J(a,<∞and)=O()(for x large).In particular,)=0 andindeed satisfies all conditions required in(3.1)for G.Hence I2vanishes in(4.2).Therefore,the equation(2.16)has been fulfilled.

    §5.Properties of The Solution Obtained

    In this section,we investigate the properties of the solution(a,f,h,g).

    Lemma 5.1 The solution(a,f,h,g)enjoys the properties a(x)>0,h(x)>0,0

    Proof From Lemmas 3.1 and 3.2,we see that 0≤g≤q and 0≤f≤.Besides,it is obvious that a≥0 since both(2.11)and(2.12)are even in a.

    If a(x0)=0 for some x0> 0,then x0is a minimizing point and a′(x0)=0.Using the uniqueness of the solution to the initial value problem consisting of(2.16)and a(x0)=a′(x0)=0,we get a≡0 which contradicts a(0)=1.Thus,a(x)>0 for all x>0.Similarly,we can prove that f(x)>0,g(x)>0 for all x>0.Since(3.8)is valid,we see that g(x)is strictly increasing.In particular,g(x)

    Lemma 3.1 already gives us f≤.We now strengthen it to f<θ0.First it is easy to see that f ≤ θ0.Otherwise there is a point x0> 0 such that f(x0)> θ0.Thus,we can find two points x1,x2,with 0≤x1

    To see that f is non-decreasing,we assume otherwise that there are 0

    The proof of the lemma is complete.

    Lemma 5.2 For the solution(a,f,h,g),we have the asymptotic estimates

    as x→∞,where ε∈(0,1)is arbitrarily small and

    Proof To obtain the asymptotic estimate of a,we introduce a comparison function η,

    From(2.16)and the obtained asymptotic behavior of a,f,h,g,we see that there is a suffi-ciently large xε> 0 so that

    Take the coefficient C in(5.4)large enough to make a(xε)-b(xε)<0.Since a-b vanishes at infinity,applying the maximum principle in the above inequality,we derive the bound a

    To get the estimate for g,from(3.8)we see that

    which leads to

    for x>0 large,since a(x)vanishes exponentially fast at x=∞.

    Similarly,we obtain the asymptotic estimate of f.

    Set H=x(h-1),using the fact h(∞)=1 and the estimate of a in(decay),we have

    Let c(x)=Ce-β(1-ε)xbe a comparison function.Then there is a sufficiently large xε> 0 so that

    For fixed xε,we take the constant C in c large enough to make H(xε)+c(xε) > 0.From the finite-energy condition we get that there exist a sequence{xj}:xj→∞(j→∞),such that H(xj)→0.Furthermore,we have H(xj)+c(xj)→0(j→∞).Applying the maximum principle in(5.7),we derive that H+c> 0,i.e.0

    Lemma 5.3 For the solution(a,f,h,g)with fixed θ0∈ (0,π/2),the electric charge

    enjoys the property Qe(q)→0 as q→0.

    Proof For fixed θ0,since a vanishes exponentially fast at infinity uniformly with respect to q∈(0,1)and 0

    国产精品.久久久| 欧美午夜高清在线| 18禁观看日本| 国产老妇伦熟女老妇高清| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av国产精品国产| 久久99热这里只频精品6学生| 日日摸夜夜添夜夜添小说| 9191精品国产免费久久| 五月天丁香电影| 久久久久久久大尺度免费视频| 女人高潮潮喷娇喘18禁视频| 黄片小视频在线播放| 久久精品国产亚洲av高清一级| 99热网站在线观看| 久久精品亚洲精品国产色婷小说| tube8黄色片| 黑丝袜美女国产一区| bbb黄色大片| 怎么达到女性高潮| 少妇粗大呻吟视频| 亚洲av日韩精品久久久久久密| 男人操女人黄网站| 欧美久久黑人一区二区| 成人av一区二区三区在线看| 国产精品.久久久| 99精品久久久久人妻精品| 青青草视频在线视频观看| 亚洲专区国产一区二区| 亚洲精品久久成人aⅴ小说| av有码第一页| 香蕉丝袜av| 中国美女看黄片| 少妇 在线观看| 国产精品1区2区在线观看. | 91老司机精品| av不卡在线播放| 老熟女久久久| 国产av一区二区精品久久| 欧美老熟妇乱子伦牲交| 免费高清在线观看日韩| 日韩大码丰满熟妇| 国产单亲对白刺激| 亚洲国产中文字幕在线视频| 99九九在线精品视频| 亚洲欧美激情在线| 在线永久观看黄色视频| 免费观看av网站的网址| 热99re8久久精品国产| 最新美女视频免费是黄的| 精品国产国语对白av| 妹子高潮喷水视频| 久热这里只有精品99| 精品国产乱码久久久久久男人| 日本av免费视频播放| 免费av中文字幕在线| 99九九在线精品视频| 欧美日韩亚洲高清精品| 欧美激情 高清一区二区三区| 成人亚洲精品一区在线观看| 欧美亚洲 丝袜 人妻 在线| 99热网站在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美精品av麻豆av| 久久久久网色| 人人妻,人人澡人人爽秒播| 美女高潮喷水抽搐中文字幕| 狠狠婷婷综合久久久久久88av| 国产精品偷伦视频观看了| 久久久国产一区二区| 午夜福利视频精品| 国产精品99久久99久久久不卡| 久久精品国产a三级三级三级| 丁香欧美五月| 精品久久久久久久毛片微露脸| 成年人黄色毛片网站| 国产精品亚洲av一区麻豆| 两个人看的免费小视频| 色老头精品视频在线观看| 一边摸一边做爽爽视频免费| 精品一区二区三卡| 午夜福利免费观看在线| 亚洲人成电影观看| 日韩大片免费观看网站| 亚洲精品国产一区二区精华液| 我的亚洲天堂| 精品福利观看| 欧美成人午夜精品| 丝瓜视频免费看黄片| 日本欧美视频一区| 国产精品二区激情视频| 午夜福利在线免费观看网站| 亚洲精品自拍成人| 制服诱惑二区| av网站在线播放免费| 国产免费视频播放在线视频| 一级黄色大片毛片| videos熟女内射| 深夜精品福利| 电影成人av| 日本撒尿小便嘘嘘汇集6| 久久影院123| 免费日韩欧美在线观看| 国产深夜福利视频在线观看| 国产精品国产av在线观看| 国产免费福利视频在线观看| 99久久精品国产亚洲精品| 看免费av毛片| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区大全| 久久久国产一区二区| 侵犯人妻中文字幕一二三四区| 国产精品免费一区二区三区在线 | 欧美精品一区二区大全| 国产精品电影一区二区三区 | 人人妻人人澡人人爽人人夜夜| 老司机午夜十八禁免费视频| 亚洲一区中文字幕在线| 国产一卡二卡三卡精品| 美女主播在线视频| 亚洲中文日韩欧美视频| 日韩成人在线观看一区二区三区| 18在线观看网站| 我的亚洲天堂| 日本欧美视频一区| 久久性视频一级片| 9色porny在线观看| 男人舔女人的私密视频| 纵有疾风起免费观看全集完整版| 精品国内亚洲2022精品成人 | 一区二区日韩欧美中文字幕| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| 亚洲视频免费观看视频| 久久久国产成人免费| 大片免费播放器 马上看| 色在线成人网| 久久99一区二区三区| 成人18禁高潮啪啪吃奶动态图| 12—13女人毛片做爰片一| av有码第一页| 欧美日韩亚洲国产一区二区在线观看 | 精品少妇久久久久久888优播| 成人国产一区最新在线观看| 日韩人妻精品一区2区三区| 久久影院123| 大型黄色视频在线免费观看| 叶爱在线成人免费视频播放| 久久久久久久久免费视频了| 波多野结衣av一区二区av| 夜夜爽天天搞| 久久久久久久久免费视频了| 午夜福利视频在线观看免费| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 国产淫语在线视频| 欧美亚洲 丝袜 人妻 在线| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 国产精品成人在线| 中文字幕精品免费在线观看视频| 十八禁网站免费在线| 无人区码免费观看不卡 | 电影成人av| xxxhd国产人妻xxx| 亚洲 国产 在线| 免费高清在线观看日韩| 亚洲欧洲精品一区二区精品久久久| 老熟妇仑乱视频hdxx| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看 | 制服诱惑二区| 精品久久久精品久久久| 人妻 亚洲 视频| 国产欧美日韩一区二区精品| 色老头精品视频在线观看| 深夜精品福利| 国产男女内射视频| 久久人人97超碰香蕉20202| 51午夜福利影视在线观看| 亚洲欧洲精品一区二区精品久久久| 狠狠精品人妻久久久久久综合| 日本a在线网址| 久久人妻av系列| 丝瓜视频免费看黄片| 国产精品久久久久久人妻精品电影 | av线在线观看网站| 啪啪无遮挡十八禁网站| 亚洲av成人一区二区三| 欧美黑人精品巨大| 日韩一卡2卡3卡4卡2021年| 国产精品国产高清国产av | 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 他把我摸到了高潮在线观看 | 午夜福利视频在线观看免费| 美女主播在线视频| 在线观看66精品国产| 久久精品人人爽人人爽视色| 久久ye,这里只有精品| 18禁观看日本| 母亲3免费完整高清在线观看| 怎么达到女性高潮| 日韩欧美一区视频在线观看| 99热网站在线观看| 欧美 日韩 精品 国产| 免费高清在线观看日韩| 人人妻人人添人人爽欧美一区卜| 精品人妻在线不人妻| 久久久国产成人免费| 757午夜福利合集在线观看| 深夜精品福利| 国产精品欧美亚洲77777| 午夜视频精品福利| 99riav亚洲国产免费| 香蕉久久夜色| 日韩三级视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久人人97超碰香蕉20202| 纵有疾风起免费观看全集完整版| 亚洲欧美一区二区三区久久| 十八禁网站免费在线| 一级片'在线观看视频| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 人妻 亚洲 视频| 菩萨蛮人人尽说江南好唐韦庄| 变态另类成人亚洲欧美熟女 | 女性被躁到高潮视频| 精品亚洲成国产av| av在线播放免费不卡| 高清欧美精品videossex| 日日爽夜夜爽网站| 12—13女人毛片做爰片一| 80岁老熟妇乱子伦牲交| 久久亚洲真实| 欧美日韩亚洲国产一区二区在线观看 | 日韩 欧美 亚洲 中文字幕| 夜夜爽天天搞| 老司机午夜福利在线观看视频 | 久久精品熟女亚洲av麻豆精品| 男女免费视频国产| 777米奇影视久久| 国产精品久久久久久精品电影小说| 日韩成人在线观看一区二区三区| 大型av网站在线播放| 国产麻豆69| 午夜福利影视在线免费观看| 国产成人系列免费观看| 亚洲国产精品一区二区三区在线| 亚洲精品国产一区二区精华液| 九色亚洲精品在线播放| 热99久久久久精品小说推荐| cao死你这个sao货| 黑人猛操日本美女一级片| 悠悠久久av| 露出奶头的视频| 制服人妻中文乱码| 99re在线观看精品视频| 国产成人免费观看mmmm| 欧美+亚洲+日韩+国产| 国产成人影院久久av| 精品久久久精品久久久| 午夜福利一区二区在线看| 亚洲av电影在线进入| videos熟女内射| 欧美日本中文国产一区发布| 麻豆av在线久日| 国产激情久久老熟女| 天天躁日日躁夜夜躁夜夜| 亚洲av成人不卡在线观看播放网| 丝袜美腿诱惑在线| 久久久久视频综合| 免费日韩欧美在线观看| 99re在线观看精品视频| 亚洲欧美一区二区三区黑人| 国产成人一区二区三区免费视频网站| 黄色a级毛片大全视频| 午夜精品国产一区二区电影| 国产精品.久久久| 亚洲五月婷婷丁香| 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线| 露出奶头的视频| 亚洲精品乱久久久久久| 亚洲午夜精品一区,二区,三区| 亚洲精品久久成人aⅴ小说| 汤姆久久久久久久影院中文字幕| 天堂8中文在线网| 在线观看www视频免费| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人看| 热99国产精品久久久久久7| tube8黄色片| 91成年电影在线观看| 考比视频在线观看| 亚洲黑人精品在线| e午夜精品久久久久久久| 久久精品亚洲熟妇少妇任你| 国产成人系列免费观看| 天天操日日干夜夜撸| 在线av久久热| 亚洲精品久久午夜乱码| 欧美 日韩 精品 国产| 日韩视频在线欧美| 久久久国产精品麻豆| av福利片在线| 看免费av毛片| 亚洲精品在线美女| av有码第一页| 午夜精品久久久久久毛片777| 人人妻人人添人人爽欧美一区卜| 成年版毛片免费区| 国产精品香港三级国产av潘金莲| 久久久久久久精品吃奶| 亚洲第一欧美日韩一区二区三区 | 每晚都被弄得嗷嗷叫到高潮| 俄罗斯特黄特色一大片| 午夜老司机福利片| 亚洲欧美一区二区三区久久| 午夜免费成人在线视频| 国产免费福利视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久婷婷成人综合色麻豆| 天天添夜夜摸| 黑人猛操日本美女一级片| 亚洲国产欧美日韩在线播放| 色94色欧美一区二区| 久久久国产一区二区| 妹子高潮喷水视频| 中文字幕另类日韩欧美亚洲嫩草| √禁漫天堂资源中文www| 亚洲精品在线美女| 日韩视频一区二区在线观看| 国产亚洲欧美精品永久| 国产视频一区二区在线看| 91成年电影在线观看| 欧美日韩成人在线一区二区| 一夜夜www| 一本色道久久久久久精品综合| 丝袜美足系列| 无遮挡黄片免费观看| 国产精品av久久久久免费| 国产精品一区二区在线不卡| 男女午夜视频在线观看| 国产色视频综合| 国产亚洲精品一区二区www | 韩国精品一区二区三区| 成年人免费黄色播放视频| 一本—道久久a久久精品蜜桃钙片| 麻豆成人av在线观看| 一本一本久久a久久精品综合妖精| 久久久精品国产亚洲av高清涩受| 老熟妇乱子伦视频在线观看| 国产精品久久久人人做人人爽| 久久性视频一级片| 一级毛片女人18水好多| 97在线人人人人妻| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 精品国产乱码久久久久久男人| 亚洲精品国产一区二区精华液| 国产高清视频在线播放一区| 国产亚洲精品久久久久5区| 搡老乐熟女国产| 97在线人人人人妻| 久久精品91无色码中文字幕| 少妇猛男粗大的猛烈进出视频| 国产不卡av网站在线观看| 操美女的视频在线观看| 女同久久另类99精品国产91| 国产免费现黄频在线看| 美女扒开内裤让男人捅视频| 久热爱精品视频在线9| 叶爱在线成人免费视频播放| 多毛熟女@视频| 一边摸一边做爽爽视频免费| 国产在线免费精品| 国产精品亚洲av一区麻豆| 国产精品一区二区精品视频观看| 亚洲成人免费电影在线观看| 亚洲,欧美精品.| 中文欧美无线码| 男男h啪啪无遮挡| 日韩 欧美 亚洲 中文字幕| 在线观看免费日韩欧美大片| 国产av国产精品国产| 在线观看一区二区三区激情| 国产av又大| 精品国产乱子伦一区二区三区| 亚洲精品在线观看二区| 久久久久久久久久久久大奶| 女人爽到高潮嗷嗷叫在线视频| 精品视频人人做人人爽| 久9热在线精品视频| 大片免费播放器 马上看| 在线观看一区二区三区激情| 视频在线观看一区二区三区| 热re99久久国产66热| 热99久久久久精品小说推荐| 十分钟在线观看高清视频www| 悠悠久久av| 母亲3免费完整高清在线观看| 亚洲 欧美一区二区三区| 久久精品aⅴ一区二区三区四区| 精品国产一区二区久久| 一级黄色大片毛片| 午夜福利免费观看在线| 亚洲欧洲精品一区二区精品久久久| tube8黄色片| 一进一出抽搐动态| 国精品久久久久久国模美| 啦啦啦免费观看视频1| 国产精品美女特级片免费视频播放器 | 国产精品一区二区在线观看99| 欧美日韩亚洲国产一区二区在线观看 | 久9热在线精品视频| netflix在线观看网站| 国产在线一区二区三区精| 日韩大码丰满熟妇| 无限看片的www在线观看| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9 | 王馨瑶露胸无遮挡在线观看| 宅男免费午夜| 菩萨蛮人人尽说江南好唐韦庄| 飞空精品影院首页| 国产成人精品久久二区二区91| 日日夜夜操网爽| 欧美黑人精品巨大| 国产成人欧美在线观看 | 三上悠亚av全集在线观看| 少妇裸体淫交视频免费看高清 | 制服人妻中文乱码| 精品人妻1区二区| 99riav亚洲国产免费| av不卡在线播放| 岛国毛片在线播放| 一级毛片电影观看| 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人| 国产高清国产精品国产三级| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 在线观看免费高清a一片| 久久亚洲精品不卡| 999久久久精品免费观看国产| av欧美777| 亚洲综合色网址| 日韩免费av在线播放| 满18在线观看网站| 一级毛片精品| 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| 久久久久久免费高清国产稀缺| 色精品久久人妻99蜜桃| 美国免费a级毛片| 岛国毛片在线播放| 亚洲欧洲精品一区二区精品久久久| 国产xxxxx性猛交| 精品国产一区二区久久| 丝袜在线中文字幕| 夜夜爽天天搞| 亚洲专区字幕在线| 午夜福利免费观看在线| 日本av手机在线免费观看| 宅男免费午夜| www.熟女人妻精品国产| 欧美在线黄色| 亚洲国产av影院在线观看| 亚洲国产成人一精品久久久| 桃红色精品国产亚洲av| 欧美精品亚洲一区二区| 香蕉丝袜av| 久久 成人 亚洲| 精品乱码久久久久久99久播| 大片电影免费在线观看免费| 人人妻,人人澡人人爽秒播| 久久性视频一级片| 一级黄色大片毛片| 亚洲av国产av综合av卡| 精品福利观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av片天天在线观看| 岛国毛片在线播放| 高潮久久久久久久久久久不卡| 考比视频在线观看| 一级毛片电影观看| 一区福利在线观看| 大香蕉久久成人网| 午夜91福利影院| 啦啦啦 在线观看视频| 久久午夜综合久久蜜桃| 精品乱码久久久久久99久播| 亚洲国产欧美在线一区| 国产亚洲一区二区精品| 亚洲av第一区精品v没综合| 大片免费播放器 马上看| 新久久久久国产一级毛片| 免费人妻精品一区二区三区视频| 精品福利观看| 一夜夜www| 成人永久免费在线观看视频 | 久久青草综合色| 亚洲,欧美精品.| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| e午夜精品久久久久久久| 99国产极品粉嫩在线观看| 最黄视频免费看| 精品国产亚洲在线| 桃红色精品国产亚洲av| www.999成人在线观看| 国产精品免费大片| 免费看a级黄色片| 免费不卡黄色视频| 纯流量卡能插随身wifi吗| 黄片大片在线免费观看| 老司机在亚洲福利影院| 亚洲国产精品一区二区三区在线| 国产在视频线精品| 大陆偷拍与自拍| av不卡在线播放| 亚洲九九香蕉| 色播在线永久视频| 精品久久久久久久毛片微露脸| 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| 国产99久久九九免费精品| 国产精品.久久久| 中文字幕高清在线视频| 久久国产精品大桥未久av| 色播在线永久视频| 黑丝袜美女国产一区| 欧美乱码精品一区二区三区| 大陆偷拍与自拍| 国产在视频线精品| 亚洲精品中文字幕一二三四区 | 极品教师在线免费播放| 精品国产国语对白av| 99国产综合亚洲精品| 99国产精品一区二区三区| 久久99一区二区三区| 777久久人妻少妇嫩草av网站| 中国美女看黄片| 激情视频va一区二区三区| 日本av免费视频播放| 少妇粗大呻吟视频| 国产成人av教育| 在线观看人妻少妇| 亚洲综合色网址| 欧美变态另类bdsm刘玥| 久久影院123| 欧美日本中文国产一区发布| 亚洲中文日韩欧美视频| 丝袜美腿诱惑在线| 亚洲午夜精品一区,二区,三区| 亚洲精华国产精华精| 国产日韩欧美视频二区| 久久午夜亚洲精品久久| 亚洲 国产 在线| 一本色道久久久久久精品综合| 国产不卡一卡二| 久久99热这里只频精品6学生| cao死你这个sao货| 伊人久久大香线蕉亚洲五| 一级毛片电影观看| 丝袜美腿诱惑在线| 老汉色∧v一级毛片| 亚洲精品国产一区二区精华液| 欧美日韩中文字幕国产精品一区二区三区 | 国产有黄有色有爽视频| 国产片内射在线| 亚洲av美国av| 男男h啪啪无遮挡| 国产免费福利视频在线观看| a级毛片黄视频| 一级,二级,三级黄色视频| 女同久久另类99精品国产91| 日本av免费视频播放| 每晚都被弄得嗷嗷叫到高潮| 无人区码免费观看不卡 | 亚洲精品自拍成人| 久久久久久免费高清国产稀缺| 国产极品粉嫩免费观看在线| 色在线成人网| 丰满人妻熟妇乱又伦精品不卡| www.999成人在线观看| 午夜日韩欧美国产| 国产伦人伦偷精品视频| 国产精品1区2区在线观看. | 欧美激情高清一区二区三区| 97人妻天天添夜夜摸| 久久性视频一级片| av线在线观看网站| 老司机福利观看| 日韩欧美三级三区| 精品卡一卡二卡四卡免费| 男女下面插进去视频免费观看| 久久久精品区二区三区| 国产一区二区在线观看av| 亚洲第一av免费看| 两个人看的免费小视频| 午夜福利在线免费观看网站| 老熟妇乱子伦视频在线观看| 日本av免费视频播放| 女人高潮潮喷娇喘18禁视频| 欧美另类亚洲清纯唯美| 国产精品一区二区在线观看99| 超碰97精品在线观看| 免费av中文字幕在线| 天堂中文最新版在线下载|