• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Binaural Rendering based on Linear Differential Microphone Array and Ambisonic Reproduction

    2019-07-19 09:48:04,,
    關(guān)鍵詞:麥克風(fēng)首款全景

    , ,

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

    Abstract: Binaural recording is normally deployed on a human listening subject or a dummy head with recording devices of a similar size to the human head. However, with popularity of augmented reality systems used on mobile devices, PDA and portable visualization devices, the problem is how to achieve binaural rendering from small-sized microphone array recordings. In this work, we propose a binaural rendering system for augmented reality based on linear differential microphone array, which is compact and has small array structure. We combine differential beamforming and Ambisonic encoding for sound field decomposition, and then use the concept of virtual loudspeakers and Ambisonic decoding for rendering. From the simulation results, we select the optimal virtual loudspeaker layout. The subject experiments confirm that the proposed method achieves better effect than the standard binaural recording device on sense of orientation and out-of-head experience.

    Keywords: augmented reality; linear differential microphone array; binaural rendering; virtual loudspeaker; Ambisonics; head-related transfer function

    In recent years, Augmented Reality(AR) technology has received widespread attention and can be applied in medical treatment, education, military, game and entertainment. Generating realistic spatial audio in AR is the key to immersive communications. Spatial audio can be produced through a loudspeaker array or a pair of headphones[1]. In sound field reproduction, a large loudspeaker array is normally required for an immersive experience,while the headphone based rendering is particularly attractive for mobile devices, PDA and portable visualization devices. This paper mainly studies the headphone-based binaural rendering for AR applications.

    The purpose is to capture a natural sound field using recording devices and to render (that is, to recreate) the recording auditory scenes by headphone. Existing methods to solve this problem include: binaural recording,Motion-Tracked Binaural(MTB) and virtual loudspeaker method based on Ambisonics[1-2]. Binaural recording measures signals by two high fidelity microphones, which are placed on the ears of the subject or the dummy head. From these recordings, a nearly original sound field is presented at the listener’s ears, resulting in a realistic listening experience.

    MTB is developed on the basis of binaural recording. In practice, MTB uses a circular microphone array with a diameter approximating human head. During playback, the head tracker is used to determine the microphone closest to the listener’s ear, and the signal interpolation model is integrated to more efficiently acquire binaural signals.

    Ambisonics was proposed by Gerzon in the 1970s. It is a sound reproduction technology based on spherical harmonic decomposition and reconstruction. The core idea is to use sound field microphone to capture an acoustic scene and reproduce it through loudspeakers around the audience. To realize Ambisonic system by headphone, we need an appropriate layout of the virtual loudspeakers and to use corresponding HRTFs for rendering.

    One problem in binaural recording is that the size and shape of the recording devices, which are roughly the same size as human head, for a realistic playback. This, however, significantly limits its practicability and portability. In order to realize the miniaturization of recording device, we propose a binaural rendering system based on Linear Differential Microphone Array(LDMA).

    1 Background

    In this paper, differential beamforming and traditional sound field decomposition method are combined to decompose the sound field.

    1.1 LDMA and differential beamforming

    The spacing of LDMA elements is small, so thatNth-order differential can be approximated by theNth-order differences between microphone signals. However, the traditional LDMA has a small whitenoise gain and its order is hard to increase. To this end, Benesty et al. proposed a zero-point constrained differential beamforming based onM(M>N) elements of LDMA[3].

    TheNth-order LDMA can be designed as follows:

    D(ω,α)h(ω)=β,

    (1)

    where,

    (2)

    (3)

    (4)

    (5)

    We design a minimum-norm filter and the vector of filter coefficients is:

    (6)

    Then, the beampattern of minimum-norm filter is:

    B[h(ω,α,β),θ]=dH(ω,cosθ)h(ω,α,β)=

    (7)

    We setαandβto design different beampattern. And the filter coefficients can be calculated according to equation (6).

    1.2 Circular harmonic decomposition

    Sound field can be decomposed into infinite order spherical harmonic (3D) or circular harmonic (2D) superposition. Here, we take the truncation orderNsolvingeto approximate a 2D sound field, which requires at least 2N+1 microphone recording signals. Because the microphone array is far away from the sound source, the signals can be treated as plane wave and can be written into the following decomposed form:

    (8)

    wherepis sound pressure at the microphone positionx,kis wave number, andφxis the azimuth corresponding to the microphone.

    The decomposition components can be obtained by solving equations (8). We get the first order componentsW,XandYto approximate the 2D sound field, whereWis the omnidirectional component, andX,Yare figure-of-eight pointing components, respectively, directing to the front and right. That is,

    W+Xcosφ+Ysinφ,

    (9)

    where, [·]Rrepresents the real part of components and [·]Irepresents the imaginary part. For linear microphone array, onlyWandYcomponents can be obtained to recreate the half-plane sound field.

    (10)

    By solving equation (10),WandYequal as followed:

    (11)

    2 Ambisonics based binaural rendering

    2.1 Encoding for LDMA

    Ambisonics can obtain two kinds of signals called A-format and B-format. A-format contains the output signals of four cardioid microphones. B-format is the standard audio format and is composed byW,X,YandZcomponents.Wcomponent is the 0th-order information corresponding to the output of omnidirectional microphone.X,YandZcomponents are the 1-st order information corresponding the output of figure-of-eight microphone pointing to the front, left, and up.

    (12)

    Thus, we can obtainWandYcomponents:

    (13)

    Besides its small size, DMA can achieve the frequency-invariant beampattern, so that it is more suitable to process the broadband speech signal. Therefore, we choose the equation (13) to encode the audio scene.

    2.2 Decoding for virtual loudspeakers

    We select the Regular Polygon decoder[4]to obtain the virtual loudspeaker driving signals. The loudspeakers are equidistant far from the listener and are placed equally in angle. The simplest Regular Polygon decoder is a square layout with the listener in the center and four loudspeakers are required at least. When using the 1-st order Ambisonics to reconstruct a 2D sound field, theZcomponent is ignored. That is,

    Pl=W+Xcosφl+Ysinφl,

    (14)

    where,Plis the driving signal andφlis the azimuth of thel-th loudspeaker.

    We set the azimuth of four loudspeakersasφ=45°,135°,225° and 315°, denoted asLF,LB,RBandRF. This layout can equally reproduce the entire sound field. We can use equation (15) to calculate the loudspeaker driving signals:

    (15)

    LDMA cannot distinguish front and back, so theXcomponent is zero:LF=LB,RF=RB. Therefore, we have three virtual loudspeaker layouts, usingLF&RF&LB&RB,LF&RFandLB&RBrespectively.

    Since human ears have different perception of front and back, the effects of three virtual loudspeaker layouts will be different. In the following, the above three virtual loudspeaker layouts will be compared to select the optimal one.

    2.3 Binaural rendering

    Ambisonic technology is a kind of loudspeaker reproduction. But in order to realize headphone playback, we should use Head-related Transfer Function(HRTF) to filter the virtual loudspeaker driving signals.

    HRTF is a function of source direction in frequency domain, and it is generally assumed independent of distance when the source is in the far field[5]. From Section 2.2, we can get the virtual loudspeaker positions and the corresponding driving signals required for sound field reproduction. Suppose there areLsources in total, each location is denoted as (θl,φl) and the signal isSl(ω). The binaural signals are the sum of multiple sources:

    (16)

    where,Hleft(θl,φl,ω) andHright(θl,φl,ω) are the left and right ear HRTF of direction (θl,φl).

    Finally, we can get the binaural signals in time domain by solving inverse Fourier transform ofPleft(ω) andPright(ω).

    3 Simulation and experiment

    3.1 Simulation

    The Image Source Method is used to simulate the room impulse response of a rectangle room, so that we can get the microphone signals. We set a 5m×4m×3m room and 0.4 reflecting coefficient. Source and LDMA are all located at the planez=1.5m, and the 8-elements LDMA is placed in the center of room. We choose the speech as the test signal and its sampling rate is 16kHz. The source rotates counterclockwise from the front and each position is 7.5° apart in total of 48 positions.

    We use two important binaural cues for objective evaluation, Interaural Time Difference(ITD) and Interaural Level Differerence(ILD). Fig.1 shows the ITD and ILD results of the binaural signals generated using the proposed method.

    Fig.1 Results of different virtual loudspeaker layouts

    From Fig.1(a), the ITD ofLB&RBis the highest and most smooth, the ILD of three virtual loudspeaker layouts has a small difference, so we can draw a conclusion thatLB&RBis the optimal layout.

    Because the size of LDMA is smaller than the human head, ITD of the binaural signals generated using the proposed method is smaller than that from normal binaural recordings. From Fig.1, we can see that the ITD result is only 200μs and need to be compensated for more realistic rendering.

    The compensation method can be summarized into three parts: 1) Calculate the difference between ITD of Bell HRTF database and the binaural signals generated using the proposed method in Ref.[6]; 2) Truncate the shifted sinc function to design a fractional time delay filter[6]; 3) Convolute the binaural signals with the filter to obtain compensation signals.

    Fig.2 shows the ITD and ILD results of signals with compensation and without compensation.

    Fig.2 Results of signals without compensation and with compensation

    We can see that in Fig.2: 1) The compensated ITD result approximates that of binaural recordings on a dummy head; 2) The ILD results with and without compensation is roughly equal because the time delay filter does not change signal amplitude.

    3.2 Experiment

    The recording devices as shown in Fig.3 include Sabine panorama microphone[7]and an 8-elements LDMA, spacing 0.011m. The Sabine recording device uses the artificial ear design and the distance between ears is 0.16 m. Binaural recording is used to obtain binaural signals directly, so that we select it as the benchmark device.

    Fig.3 Recording devices

    We use a 48-elements loudspeaker array to play source audio in a reverberant environment. The recording devices are placed at the center of the loudspeaker array and meet far field condition of the recording. 48 loudspeakers play speech signal one by one in a clockwise direction.

    From Fig.4, we can see that: 1) The ITD result of binaural audio with compensation is higher than Sabine; 2) The ILD of Sabine and binaural audio with compensation are not smooth. This is because actual system background is quite noisy.

    Fig.4 Results of experiments

    We choose 10 testers to score random audio: Sabine, the proposed method without compensation and with compensation. In the testing process, the computer for playing audio, sound volume and headphone are consistent and unchanged. Each tester scores all audio in the following two aspects: sense of orientation and out-of-head experience. And testers are told about the following rating rules:

    Sense of orientation: 0—10 point, 0 represents the worst sense of orientation and 10 is optimal. 0—4, 5—7, 8—10 indicate that the sound source distribution is not consistent and the motion track is not smooth, the distribution and the track are relatively smooth, the distribution and the track are smooth, respectively.

    Out-of-head experience: 0—10 point, 0 is the weakest and 10 is the strongest. 0—4, 5—7, 8—10 respectively indicate that the sound source is located in the head, on the surface of head, outside the head, respectively, and the motion radius of sound source is smaller than, close to and larger than the size of head. The smaller radius, the lower score.

    Testing results are shown in Tab.1. We can see that: 1) For out-of-head performance, binaural audio with compensation is better than Sabine; 2) Binaural audio with compensation can improve the sense of orientation and its source image directions are more accurate; 3) Testers’ perception shows that the source images of Sabine are higher than horizontal plane.

    Tab.1 Test results from 10 testers subjective

    4 Conclusion

    This paper proposes a binaural rendering algorithm using small-sized linear differential microphone array for recording and Ambisonic-based virtual loudspeakers and HRTF knowledge for rendering. It can be demonstrated through experiments that this method realizes immersive binaural rendering and is better than the binaural recording device Sabine in terms of sense of orientation and out-of-head experience.

    References:

    [1] ZHANG W, PRASANGA S, CHEN H C, et al. Surround by sound: A review of spatial audio recording andreproduction [J].AppliedSciences, 2017,7(5): 532.

    [2] ALGAZI V R, DUDA R O. Headphone-based spatial sound [J].SignalProcessingMagazineIEEE, 2011,28(1): 33-42.

    [3] BENESTY J, CHEN J D. Study and design of differential microphone arrays [M]. New York,USA: Springer, 2012: 1-31,115-144.

    [4] HELLER A, LEE R, BENJAMIN E. Is my decoder Ambisonic[C]∥125th Audio Engineering Society Convention. London, UK: AES, 2008: 1-21.

    [5] CHENG C I, WAKEFIELD G H. Introduction to Head-Related Transfer Functions(HRTFs): Representations of HRTFs in time, frequency, and space [J].JournalofAudioEngineeringSociety, 2001,49(4): 231-249.

    [6] VALIMAKI V. Discrete-time modeling of acoustic tubes using fractional delay filters [M]. Helsinki, Finland: Helsinki University of Technology, 1995: 65-81.

    [7] SABINETEK Inc.全球首款3D全景麥克風(fēng)[EB/OL].[2018-09-15].http:∥www.sabinetek.com/l,4,0.html.

    猜你喜歡
    麥克風(fēng)首款全景
    GRAS發(fā)布新12Bx系列、支持TEDS的測量麥克風(fēng)電源模塊
    電子測試(2022年3期)2023-01-14 18:06:36
    我國新一代首款固液捆綁運載火箭長征六號甲成功首飛
    上海航天(2022年2期)2022-04-28 11:58:46
    首款斬獲THX Dominus認(rèn)證的低音炮 Perlisten D212s
    戴上耳機,享受全景聲 JVC EXOFIELD XP-EXT1
    基于數(shù)字麥克風(fēng)的WIFI語音發(fā)射機
    電子測試(2018年23期)2018-12-29 11:11:24
    第五個“首款”
    全景敞視主義與偵探小說中的“看”
    從5.1到全景聲就這么簡單 FOCAL SIB EVO DOLBY ATMOS
    麥克風(fēng)的藝術(shù)
    全景搜索
    特別文摘(2016年21期)2016-12-05 17:53:36
    亚洲在久久综合| 亚洲国产精品一区二区三区在线| 久久久久精品久久久久真实原创| 综合色丁香网| 色播在线永久视频| 老司机影院成人| 美女视频免费永久观看网站| 97在线人人人人妻| 国产精品av久久久久免费| 哪个播放器可以免费观看大片| 国产视频首页在线观看| 亚洲国产色片| 精品一区二区三卡| 天堂中文最新版在线下载| 精品国产一区二区久久| 午夜老司机福利剧场| 女的被弄到高潮叫床怎么办| 在线天堂中文资源库| 最新的欧美精品一区二区| 一级片'在线观看视频| 热re99久久国产66热| 欧美 日韩 精品 国产| 国产不卡av网站在线观看| 纵有疾风起免费观看全集完整版| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 国产毛片在线视频| 欧美亚洲 丝袜 人妻 在线| 高清av免费在线| 欧美 亚洲 国产 日韩一| 老女人水多毛片| 午夜福利在线免费观看网站| 美女国产视频在线观看| 欧美日韩国产mv在线观看视频| 午夜精品国产一区二区电影| 久久鲁丝午夜福利片| freevideosex欧美| 久久久久久久久免费视频了| 欧美日韩亚洲高清精品| 亚洲经典国产精华液单| 一级毛片 在线播放| 亚洲成人手机| 亚洲伊人色综图| 久久久国产精品麻豆| 免费在线观看黄色视频的| 久久精品久久精品一区二区三区| 晚上一个人看的免费电影| 宅男免费午夜| 哪个播放器可以免费观看大片| 人人妻人人添人人爽欧美一区卜| 在线亚洲精品国产二区图片欧美| 99国产综合亚洲精品| 日韩一卡2卡3卡4卡2021年| 丝袜美足系列| 国产亚洲精品第一综合不卡| 国产免费福利视频在线观看| 久久久精品94久久精品| 妹子高潮喷水视频| 亚洲中文av在线| 99热国产这里只有精品6| 日本爱情动作片www.在线观看| 激情视频va一区二区三区| 考比视频在线观看| 国产精品无大码| 观看美女的网站| 美女视频免费永久观看网站| 国产av精品麻豆| 女人精品久久久久毛片| 一本大道久久a久久精品| 国产野战对白在线观看| 日本免费在线观看一区| 色哟哟·www| 国产精品99久久99久久久不卡 | 国产成人精品无人区| 精品午夜福利在线看| 午夜福利影视在线免费观看| av视频免费观看在线观看| 1024视频免费在线观看| 午夜免费鲁丝| 十八禁高潮呻吟视频| 国产有黄有色有爽视频| 多毛熟女@视频| 亚洲精品成人av观看孕妇| 1024香蕉在线观看| 免费在线观看黄色视频的| 热re99久久国产66热| 伊人久久国产一区二区| 大陆偷拍与自拍| 一本—道久久a久久精品蜜桃钙片| 久久国内精品自在自线图片| 国产又色又爽无遮挡免| 久久精品久久久久久噜噜老黄| 99久久综合免费| 亚洲少妇的诱惑av| 制服丝袜香蕉在线| 成人18禁高潮啪啪吃奶动态图| 另类精品久久| 婷婷成人精品国产| 成人亚洲欧美一区二区av| 日日撸夜夜添| 久久久久国产精品人妻一区二区| 久久久久精品人妻al黑| 欧美日韩视频精品一区| 日韩欧美精品免费久久| 久热这里只有精品99| 亚洲人成电影观看| 美女福利国产在线| 青春草视频在线免费观看| 精品人妻偷拍中文字幕| 国产综合精华液| 久久久久久久大尺度免费视频| av有码第一页| 日韩av免费高清视频| 少妇 在线观看| 国产毛片在线视频| 最近最新中文字幕免费大全7| 99久久精品国产国产毛片| 国产淫语在线视频| 一级,二级,三级黄色视频| 中国国产av一级| 国产精品蜜桃在线观看| 免费观看av网站的网址| 男女高潮啪啪啪动态图| 韩国精品一区二区三区| 日韩人妻精品一区2区三区| 在线观看国产h片| 国产精品久久久久久久久免| 日本免费在线观看一区| 国产精品女同一区二区软件| 一个人免费看片子| 久久精品亚洲av国产电影网| 99九九在线精品视频| 精品一区二区三卡| 欧美bdsm另类| a 毛片基地| 亚洲欧美成人精品一区二区| 免费观看a级毛片全部| 毛片一级片免费看久久久久| 精品人妻在线不人妻| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| 国产av一区二区精品久久| 两性夫妻黄色片| 久久 成人 亚洲| 在线观看人妻少妇| freevideosex欧美| 一二三四中文在线观看免费高清| 男女无遮挡免费网站观看| 国产精品偷伦视频观看了| 免费观看无遮挡的男女| 日韩精品免费视频一区二区三区| 男人操女人黄网站| 色婷婷久久久亚洲欧美| 黄色一级大片看看| 国产激情久久老熟女| 久久久精品区二区三区| 国产免费福利视频在线观看| 久久精品久久精品一区二区三区| 久久久国产欧美日韩av| 麻豆av在线久日| 91在线精品国自产拍蜜月| 亚洲伊人色综图| 熟女电影av网| 在线观看国产h片| 亚洲美女搞黄在线观看| 91午夜精品亚洲一区二区三区| 观看美女的网站| 国产野战对白在线观看| 91aial.com中文字幕在线观看| 嫩草影院入口| 黄片小视频在线播放| 少妇人妻 视频| 女性被躁到高潮视频| 宅男免费午夜| 爱豆传媒免费全集在线观看| 国产精品蜜桃在线观看| 男女啪啪激烈高潮av片| 日韩欧美精品免费久久| 亚洲久久久国产精品| 国产成人免费观看mmmm| 超碰97精品在线观看| 最近中文字幕2019免费版| 色哟哟·www| 如何舔出高潮| 国产免费福利视频在线观看| 国产免费视频播放在线视频| 久久久欧美国产精品| 亚洲欧洲国产日韩| 久久人人爽人人片av| 五月开心婷婷网| 国产男人的电影天堂91| 日韩制服丝袜自拍偷拍| 汤姆久久久久久久影院中文字幕| 我要看黄色一级片免费的| 亚洲精品一二三| 亚洲av成人精品一二三区| 亚洲精品日本国产第一区| 精品人妻熟女毛片av久久网站| 成人国产av品久久久| 国产爽快片一区二区三区| 久久99一区二区三区| 久久久久久久久免费视频了| h视频一区二区三区| 观看av在线不卡| 在线 av 中文字幕| 波野结衣二区三区在线| 黑人欧美特级aaaaaa片| 国产淫语在线视频| 桃花免费在线播放| 欧美 日韩 精品 国产| 永久免费av网站大全| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 亚洲国产最新在线播放| 精品人妻一区二区三区麻豆| 丝瓜视频免费看黄片| 男女午夜视频在线观看| 亚洲av电影在线进入| 亚洲一区二区三区欧美精品| 国产精品亚洲av一区麻豆 | 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 日日啪夜夜爽| 女人久久www免费人成看片| 丝袜人妻中文字幕| 日日爽夜夜爽网站| av在线app专区| 午夜福利在线观看免费完整高清在| 亚洲精品国产色婷婷电影| a级毛片黄视频| 另类亚洲欧美激情| 欧美bdsm另类| 久久精品国产综合久久久| 国产一区有黄有色的免费视频| 在线天堂最新版资源| 色婷婷av一区二区三区视频| 高清欧美精品videossex| 在线观看人妻少妇| 最近中文字幕2019免费版| 一级毛片 在线播放| 国产精品熟女久久久久浪| 一区二区日韩欧美中文字幕| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 久久影院123| 日韩制服丝袜自拍偷拍| 欧美精品一区二区大全| 成年女人毛片免费观看观看9 | 男女国产视频网站| 狠狠精品人妻久久久久久综合| 老鸭窝网址在线观看| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| 成人漫画全彩无遮挡| 久久久a久久爽久久v久久| 欧美人与性动交α欧美精品济南到 | 性色avwww在线观看| 国产毛片在线视频| www.精华液| 涩涩av久久男人的天堂| av福利片在线| 国产一级毛片在线| 亚洲美女黄色视频免费看| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99| 国产人伦9x9x在线观看 | 久久影院123| 精品一区二区三卡| 成人国产av品久久久| 另类亚洲欧美激情| 色哟哟·www| 日本91视频免费播放| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 欧美xxⅹ黑人| 欧美人与性动交α欧美软件| 成人免费观看视频高清| 国产一区二区 视频在线| 另类精品久久| 人成视频在线观看免费观看| 亚洲综合精品二区| 国产午夜精品一二区理论片| 精品国产一区二区久久| 久久人人97超碰香蕉20202| 国产黄频视频在线观看| 欧美成人午夜精品| 男的添女的下面高潮视频| 亚洲欧美清纯卡通| 老司机影院毛片| 亚洲 欧美一区二区三区| 日韩一区二区视频免费看| 七月丁香在线播放| 伊人久久国产一区二区| 亚洲国产av新网站| 久久人人97超碰香蕉20202| 香蕉国产在线看| 日韩 亚洲 欧美在线| 香蕉丝袜av| 少妇猛男粗大的猛烈进出视频| 欧美黄色片欧美黄色片| 久久影院123| 日韩欧美一区视频在线观看| 国产精品三级大全| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| 男女午夜视频在线观看| 国产成人免费观看mmmm| 国产野战对白在线观看| 国产97色在线日韩免费| 日日啪夜夜爽| 七月丁香在线播放| 久久久a久久爽久久v久久| 日韩制服骚丝袜av| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 在线观看人妻少妇| 爱豆传媒免费全集在线观看| 一级爰片在线观看| 成年女人毛片免费观看观看9 | 久久久久网色| 久久99一区二区三区| 亚洲精品国产av成人精品| 性高湖久久久久久久久免费观看| 久久精品久久精品一区二区三区| 尾随美女入室| 日韩成人av中文字幕在线观看| 亚洲欧美成人精品一区二区| 国产一区二区 视频在线| 国产精品国产av在线观看| 熟女少妇亚洲综合色aaa.| 午夜影院在线不卡| 大片电影免费在线观看免费| 青春草视频在线免费观看| 日韩中文字幕视频在线看片| 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 伊人久久国产一区二区| 十分钟在线观看高清视频www| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 熟妇人妻不卡中文字幕| 美女主播在线视频| 在线亚洲精品国产二区图片欧美| 成人国产麻豆网| 午夜精品国产一区二区电影| 国产精品秋霞免费鲁丝片| 中文字幕亚洲精品专区| 免费播放大片免费观看视频在线观看| 18禁观看日本| 亚洲伊人久久精品综合| videos熟女内射| 桃花免费在线播放| 亚洲欧美色中文字幕在线| 国产97色在线日韩免费| 女人高潮潮喷娇喘18禁视频| 国产成人免费观看mmmm| 天天影视国产精品| 色哟哟·www| 日韩电影二区| 亚洲综合色惰| 亚洲第一av免费看| 国产亚洲午夜精品一区二区久久| 日韩欧美一区视频在线观看| 搡老乐熟女国产| 国产成人午夜福利电影在线观看| 久久影院123| 国产伦理片在线播放av一区| 校园人妻丝袜中文字幕| 久久鲁丝午夜福利片| 久久97久久精品| 捣出白浆h1v1| 亚洲成人手机| 免费女性裸体啪啪无遮挡网站| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃| 久久久久网色| 国产黄色免费在线视频| av不卡在线播放| 黄色一级大片看看| kizo精华| 日韩不卡一区二区三区视频在线| 欧美 亚洲 国产 日韩一| 久久av网站| 十分钟在线观看高清视频www| 9热在线视频观看99| 久久国产精品大桥未久av| 成人漫画全彩无遮挡| 男女无遮挡免费网站观看| 美女国产视频在线观看| 欧美日韩亚洲高清精品| 国产极品天堂在线| www日本在线高清视频| 精品酒店卫生间| 国产日韩一区二区三区精品不卡| 欧美在线黄色| 亚洲国产av影院在线观看| 蜜桃国产av成人99| 最新的欧美精品一区二区| 成年人午夜在线观看视频| 国产一区二区激情短视频 | 国产精品免费视频内射| 天堂中文最新版在线下载| 久久午夜福利片| 日韩精品免费视频一区二区三区| 亚洲欧美成人综合另类久久久| 国产无遮挡羞羞视频在线观看| 日日爽夜夜爽网站| 美女午夜性视频免费| 人人妻人人澡人人看| 亚洲精品成人av观看孕妇| 九草在线视频观看| 国产视频首页在线观看| 精品一区二区三卡| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的| 大陆偷拍与自拍| 高清不卡的av网站| 亚洲第一青青草原| 免费观看无遮挡的男女| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| av网站免费在线观看视频| 日韩一区二区三区影片| 69精品国产乱码久久久| 国产亚洲精品第一综合不卡| 有码 亚洲区| 亚洲,欧美精品.| 国精品久久久久久国模美| 久久久国产精品麻豆| 夜夜骑夜夜射夜夜干| 国产免费福利视频在线观看| 久久人人爽人人片av| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃| 在线观看三级黄色| 日韩在线高清观看一区二区三区| 久久97久久精品| 最近中文字幕2019免费版| 色婷婷久久久亚洲欧美| 欧美日韩成人在线一区二区| 熟妇人妻不卡中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 久久久精品免费免费高清| 久久人人爽av亚洲精品天堂| videosex国产| www日本在线高清视频| 亚洲精品视频女| 久久久久久免费高清国产稀缺| 日韩精品有码人妻一区| tube8黄色片| 色哟哟·www| 高清视频免费观看一区二区| 欧美日韩国产mv在线观看视频| 寂寞人妻少妇视频99o| 一级a爱视频在线免费观看| 国产精品成人在线| 久久精品国产a三级三级三级| 亚洲一级一片aⅴ在线观看| 久久久精品免费免费高清| 国产成人av激情在线播放| 日韩熟女老妇一区二区性免费视频| 婷婷色综合www| 男女啪啪激烈高潮av片| 亚洲av成人精品一二三区| 精品亚洲乱码少妇综合久久| 国产亚洲午夜精品一区二区久久| 久久久久精品人妻al黑| 最近手机中文字幕大全| a级毛片在线看网站| 美女视频免费永久观看网站| 中国三级夫妇交换| 国产不卡av网站在线观看| 日日爽夜夜爽网站| 亚洲av日韩在线播放| 秋霞在线观看毛片| 久久这里只有精品19| 日韩电影二区| 最近中文字幕高清免费大全6| 国产精品av久久久久免费| 九色亚洲精品在线播放| 免费在线观看黄色视频的| 在线观看一区二区三区激情| 亚洲av电影在线观看一区二区三区| 伦理电影大哥的女人| 国产在视频线精品| 亚洲av中文av极速乱| 久热久热在线精品观看| 日韩中文字幕视频在线看片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久国产欧美日韩av| 成人影院久久| videosex国产| 97人妻天天添夜夜摸| 波多野结衣一区麻豆| 丝袜喷水一区| 亚洲国产精品一区三区| 最近中文字幕2019免费版| 一二三四在线观看免费中文在| 少妇被粗大猛烈的视频| 久久狼人影院| xxxhd国产人妻xxx| av.在线天堂| 麻豆精品久久久久久蜜桃| 精品一区二区免费观看| 80岁老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 国产福利在线免费观看视频| 黄色 视频免费看| 国产97色在线日韩免费| 1024香蕉在线观看| 日韩欧美精品免费久久| 超色免费av| 伊人久久国产一区二区| 国产高清国产精品国产三级| 久久国产精品大桥未久av| 久久久久国产精品人妻一区二区| 日韩不卡一区二区三区视频在线| 一区二区日韩欧美中文字幕| 91精品伊人久久大香线蕉| 男的添女的下面高潮视频| 久久久久久久大尺度免费视频| 777米奇影视久久| 久久精品国产亚洲av涩爱| 2021少妇久久久久久久久久久| 只有这里有精品99| 丝袜喷水一区| 观看美女的网站| 午夜福利在线观看免费完整高清在| 在线观看www视频免费| 中国三级夫妇交换| 欧美人与善性xxx| 久久国内精品自在自线图片| 如日韩欧美国产精品一区二区三区| 91成人精品电影| 两个人看的免费小视频| 免费女性裸体啪啪无遮挡网站| 亚洲精品在线美女| 日韩中文字幕视频在线看片| 久久久久精品人妻al黑| 美女国产高潮福利片在线看| 又大又黄又爽视频免费| 成年动漫av网址| 在线观看免费高清a一片| 天天躁夜夜躁狠狠久久av| 成年av动漫网址| 多毛熟女@视频| 国产精品一区二区在线观看99| 少妇人妻精品综合一区二区| 极品人妻少妇av视频| 久久毛片免费看一区二区三区| 大片免费播放器 马上看| 亚洲av国产av综合av卡| 亚洲国产精品国产精品| 国产精品一区二区在线不卡| 精品国产露脸久久av麻豆| 建设人人有责人人尽责人人享有的| 成人国产av品久久久| 纵有疾风起免费观看全集完整版| 午夜精品国产一区二区电影| 97在线视频观看| 久久精品人人爽人人爽视色| 99热全是精品| 久久久久视频综合| 亚洲精品美女久久久久99蜜臀 | 午夜老司机福利剧场| 青草久久国产| 精品一区二区三卡| 国产成人a∨麻豆精品| 亚洲精品视频女| 国产亚洲av片在线观看秒播厂| 在线观看美女被高潮喷水网站| 欧美xxⅹ黑人| 天天躁夜夜躁狠狠躁躁| 国产人伦9x9x在线观看 | 青春草国产在线视频| 中国三级夫妇交换| 欧美日本中文国产一区发布| 欧美精品亚洲一区二区| 精品一区二区三区四区五区乱码 | 黄色 视频免费看| 日本猛色少妇xxxxx猛交久久| 久久女婷五月综合色啪小说| 激情视频va一区二区三区| 亚洲综合色网址| 国产精品.久久久| 麻豆乱淫一区二区| 精品午夜福利在线看| 日韩熟女老妇一区二区性免费视频| 亚洲五月色婷婷综合| 少妇的丰满在线观看| 国产一区二区三区综合在线观看| 欧美日韩av久久| 亚洲综合色惰| 十八禁网站网址无遮挡| 国产成人aa在线观看| 日本vs欧美在线观看视频| 91精品三级在线观看| 九色亚洲精品在线播放| 最近最新中文字幕免费大全7| 欧美日本中文国产一区发布| 久久精品夜色国产| 爱豆传媒免费全集在线观看| 伦理电影大哥的女人| 亚洲三区欧美一区| 国产亚洲欧美精品永久| 亚洲成色77777| 亚洲av综合色区一区| 免费av中文字幕在线| 中文字幕人妻丝袜制服| 女人被躁到高潮嗷嗷叫费观| 国产高清国产精品国产三级| 男女免费视频国产| 亚洲av在线观看美女高潮| 精品少妇久久久久久888优播|