• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intermediate Energy Reactions Versus Heavy-Ion Fusion:Light Particle Emission and Post-Saddle Friction in the Presence of Deformation effects?

    2019-07-16 12:29:34NaChen陳娜andWeiYe葉巍
    Communications in Theoretical Physics 2019年6期

    Na Chen(陳娜) and Wei Ye(葉巍)

    1School of Applied Mathematics,Nanjing University of Finance&Economics,Nanjing 210023,China

    2Department of Physics,Southeast University,Nanjing 210096,China

    AbstractA decaying nucleus undergoes a change in deformation when it fi ssions.This a ffects the particle emission in the fi ssion process.Using the dynamical Langevin model,we investigate the role of deformation in the sensitivity of post-saddle neutrons and light charged particles(LCPs)to the post-saddle friction strength(β)for heavy nuclei240Am produced with different initial conditions:(i)a low excitation energy E? and a large spin ?(provided via a fusion mechanism)and(ii)a high E? and a large ? as well as a higher E? but a small ?(provided in peripheral and near-central intermediate energy heavy-ion reactions,respectively).It is shown that deformation obviously enhances the sensitivity of post-saddle neutrons to β at intermediate-energy peripheral collisions and that for case(i),the drop of LCPs emission due to deformation makes post-saddle LCPs to be almost insensitive to β,but for case(ii)LCPs still have a signi fi cant change with β.Furthermore,we find that post-saddle LCPs display a greater sensitivity to β for near-central collisions than for peripheral collisions.These results suggest that given the deformation effects,to better probe post-saddle dissipation properties with neutrons(LCPs)in experiments,it is best to choose those excited heavy nuclear systems populated in peripheral(near-central)collisions at intermediate energies.

    Key words:post-saddle friction,deformation,excitation energy,light particles,stochastic model

    1 Introduction

    Nuclear dissipation plays an important role in the large-scale collective motion,like fusion and quasiif ssion.[1?3]Its critical influence on the fi ssion process of hot nuclei has recently attracted much attention.[4]Dissipation hinders fi ssion and hence increases pre-scission particle multiplicities with respect to the predictions by standard statistical models.[5?6]It has been demonstrated that stochastic approaches based on Langevin models[7?9]have been successfully applied to address dissipation effects in nuclear fi ssion and provided a satisfactory description of different types of fi ssion data.

    When applying the Langevin model to handle fi ssion,a key ingredient in it is the deformation dependence of nuclear friction.[10]Currently,a number of works have been made to constrain pre-saddle friction by using evaporation residue cross sections,[11]the first-chance fi ssion probability,[12?13]the widths of fi ssion-fragment charge distributions,[14]etc. As a result,the strength of pre-saddle friction is severely limited.[15]However,these observables only depend on the pre-saddle friction and thereby they are not suited for exploring the postsaddle dissipation effects.Moreover,till now,less e ff ort has been invested to constrain the post-saddle friction strength.[7,16]

    different from previously mentioned observables,light particles are evaporated along the entire fi ssion path.They are thus a ffected by post-saddle friction.Also,postsaddle multiplicities are an increasing function of size of the decaying system.So,the particle emission from heavy fi ssioning nuclei is usually used to obtain information of post-saddle dissipation properties.[17?20]Further,when a fi ssioning nucleus evolves from ground state to the scission point,it experiences the change of deformations along the fi ssion trajectory.This a ffects various particle emissions.[21?23]

    The nuclear systems formed in intermediate energy heavy-ion collisions and fusion reactions have different excitation energies and angular momenta.However,to date,few have studied the effect of deformation on the evolution of post-saddle neutrons and light charged particles(LCPs)with the post-saddle friction strength for heavy fi ssioning nuclei populated under these different initial conditions.The present work is devoted to this issue.

    Our aim is to exploit the favorable experimental condition through which the post-saddle dissipation effects can be better revealed with the particle multiplicity;that is,which experimental approach is more optimal for probing post-saddle dissipation with light particle multiplicity in the presence of deformation effects.To this end,the Langevin model[7?9,22?25]is employed here and it is successfully used to reproduce a volume of fi ssion data for many compound systems over a broad range of the excitation energy,angular momentum,and fi ssility.

    2 Theoretical Framework

    In the Langevin description of a fi ssion process,the crucial quantity is free energy,which contains a thermodynamic correction.[26]We use the following one-dimensional Langevin equation to perform the fully dynamical trajectory calculations:

    Here q is the dimensionless fi ssion coordinate and is deif ned as half the distance between the center of mass of the future fi ssion fragments divided by the radius of the compound nucleus,and p is the conjugate momentum.β and T denote the dissipation strength and temperature,respectively.The inertia parameter m is obtained under the Werner-Wheeler approximation of an incompressible irrotational flow.[27]Γ(t)is a fl uctuating force satisfying?Γ(t)?=0 and ?Γ(t)Γ(t′)?=2δ(t? t′).

    The free energy is constructed from the Fermi gas expression of the level density parameter together with a finite-range liquid-drop potential V(q)[28]that contains qdependent surface,Coulomb,and rotation energy terms;that is,

    In Eq.(2),the coefficients proposed in Ref.[29]are used to calculate the deformation-dependent level density parameter,which reads as follows:

    where A is the mass number of the compound nucleus and Bsis the dimensionless surface area of the nucleus.[30]

    In our calculation,prescission particle evaporation along Langevin fi ssion trajectories from their ground state to their scission point has been taken into account using a Monte Carlo simulation technique.The emission width of a particle of kind ν(=n,p,α)is evaluated by Blann’s parametrization[31]

    where sνis the spin of the emitted particle ν,and mνits reduced mass with respect to the residual nucleus.The level densities of the compound and residual nuclei are denoted by ρc(E?)and ρR(E?? Bν? εν).Bνare the liquid-drop binding energies.ε is the kinetic energy of the emitted particle.The inverse cross section is given by[31]

    with

    where Aνis the mass number of emitted particle ν =n,p,α.

    The barriers for the charged particles are[31]

    with Kν=1.32 for α,and 1.15 for proton.

    The massformula[32]containsthedeformationdependent surface and Coulomb energy terms.The particle binding energy Bi(i=n,p,α)is thus a function of deformation[21?22]and it can be written as

    where Mi(i=n,p,α)is the mass of the emitted particles.Mp(q)and Md(q)are the masses of the mother and daughter nuclei,respectively.

    We use the formula suggested by Fr?brich and Gontchar[7]to calculate the deformation-dependent chargedparticle emission barriers:

    Here the Coulomb energy Bc(q)is evaluated using the method in Refs.[30,33].

    When a dynamic trajectory reaches the scission point,it is counted as a fi ssion event.Prescission particles are insensitive to the definition of the scission point(i.e.,zero or a finite neck radius),as they can be emitted along the entire fi ssion trajectory.In our calculation,multiple emissions of light particles and higher-chance fi ssion are taken into account.Prescission particle multiplicities are calculated by counting the number of corresponding evaporated particle events.To accumulate sufficient statistics,107Langevin trajectories are simulated.

    3 Results and Discussion

    Due to the competition from quasi- fi ssion channels,which become stronger with increasing bombarding energy,heavy compound nuclei(CNs)populated by fusion reaction channels generally have a low excitation energy(<80 MeV)and a high angular momentum(around 40~).However,intermediate-energy(around Fermi energy domain)heavy-ion collisions can deposit more energy into the nuclear systems and yield a variety of fi ssioning nuclei with a different excitation energy and angular momentum.

    For example,in near-central collisions the generated nuclear systems have a high excitation energy(~250 MeV)and a low spin(near 10~).However,in peripheral collisions,the produced fi ssioning systems have an excitation energy over 200 MeV and a large angular momentum(~ 40~).[34?35]

    In the present work,calculations under these three different initial conditions mentioned above for the produced heavy fi ssioning system are carried out and their sensitivities to nuclear friction are compared in the presence of deformation effects.Towards that goal,a heavy240Am was chosen here to investigate post-saddle dissipation characteristics by using light particle multiplicity.To better reveal post-saddle dissipation effects,the presaddle friction strength is set to 4 × 1021s?1,in consistent with recent theoretical estimates and experimental analyses,[8,14,36?37]and dynamical calculations of postsaddle emission are performed considering different values of the post-saddle friction strength(β).

    Shown in Fig.1 are the evolution of post-saddle neutrons with β at three different initial conditions of excitation energy and angular momentum for the fi ssioning nucleus240Am with and without deformation effects.

    Fig.1(Color online)Post-saddle neutrons versus the postsaddle friction strength β in the absence(a)and in the presence(b)of deformation effects for heavy system240Am calculated for case(i)E? =80 MeV and ?=40~,case(ii)E?=250 MeV and ?=10~,and case(iii)E?=200 MeV and ?=40~.

    We first compare the results of case(i)and case(ii);that is,fusion reactions vs. intermediate-energy nearcentral collisions. Two typical features are observed.First,the calculated post-scission neutrons Mnare larger in case(ii)than in case(i),indicating a stronger effect of dissipation on Mnunder the condition of case(ii).

    Another feature is that after incorporating deformation effects into the model calculations(Fig.1(b)),Mnrises,exhibiting a larger influence of dissipation on postsaddle neutrons.A larger Mndue to deformation is that neutron binding energies drop with increasing deformation(Fig.2(a)),enhancing the neutron emission.

    A comparison on charged-particle emission(i.e.,protons and α-particles)for case(i)and case(ii)is displayed in Fig.3.First,accounting for the deformation effects decreases Mpand Mαin both cases.The reason is that though deformation lowers emission barriers of LCPs(Fig.2(b)),it increases their binding energies(Fig.2(a)),which is unfavorable for their emissions.As a result of the two opposite factors,the LCPs multiplicity decreases.

    Fig.2 (Color online)(a)A change in neutron,proton,and α-particle binding energies of240Am due to deformation with respect to their values at a spherical shape.(b)Emission barriers of protons and α particles of240Am as a function of deformation coordinate q.

    Secondly,when deformation effects are ignored(see triangles connected by blue lines in Figs.3(a)and 3(c)),a variation in Mpand Mαis still discernible as β changes from 0.5×1021s?1to 20×1021s?1,meaning a sensitivity of LCPs to β,though it is quite weak.However,in case(i),as a consequence of a reduced Mpand Mαin the presence of the deformation effects(see triangles in Figs.3(b)and 3(d)),LCPs almost do not vary with a change in β;that is,their sensitivity to friction disappears.In contrast,while deformation effects decrease Mpand Mαin case(ii)(see circles connected by red lines in Figs.3(b)and 3(d)),the LCPs multiplicity shows a signi fi cant sensitivity to the friction strength.

    This comparison clearly shows the role of excitation energy in exploring the post-saddle dissipation properties after considering the deformation effects.Further,it suggests that when using LCPs to place a stricter constraint on the post-saddle friction strength,case(ii)is a more optimal experimental condition than case(i).

    Unlike fusion reactions which form a CN,intermediate energy collisions generate a variety of excited nuclear systems having a different excitation energy and angular momentum,depending on the collision centralities.Further, fi ssion events and the corresponding information on A,Z,E?,etc.of fi ssioning sources coming from nearcentral or peripheral collisions can be identi fi ed and obtained experimentally.[34?35,38?39]In these experiments,the folding angle technique was used to measure the correlation angle of the two fi ssion fragments.

    Fig.3 (Color online)Post-saddle protons(top panel)and α particles(bottom panel)versus the post-saddle friction strength β in the absence((a)and(c))and in the presence((b)and(d))of deformation effects for heavy system240Am calculated for case(i)E? =80 MeV and ?=40~,case(ii)E?=250 MeV and ?=10~,and case(iii)E?=200 MeV and ?=40~.

    Previously,we compared the calculation concerning post-saddle particles as a function of β for case(i)and case(ii),which represents the conditions provided via fusion and near-central collisions at intermediate energy,respectively.To better employ intermediate energy reactions as a way to probe the post-saddle friction strength,we make a further calculation at E?=200 MeV and ?=40~(case(iii)),which corresponds to conditions available in peripheral collisions which generate a fi ssioning nucleus with a lower E?and a higher ? than that generated in near-central collisions.The calculated results for case(iii)are also plotted in Figs.1 and 3,which are shown by squares connected by green lines.

    We note that in the presence of deformation effects,Mndemonstrates an obvious quicker rise with increasing β in case(iii)than in case(ii).This is because while case(iii)contains a lower E?than case(ii),a higher ?in case(iii)decreases the fi ssion barrier,which shortens the transient time.Consequently,pre-saddle neutrons are decreased,and more energy is left for post-saddle evaporation,leading to a greater post-saddle multiplicity.This means that case(iii),i.e.,peripheral collisions could provide a more favorable condition to probe β using neutrons than near-central collisions.In addition,we also notice from Fig.1(b)that Mnrises more rapidly with β in case(iii)than in case(i),illustrating the effect of deformation on neutrons as an observable of the post-saddle friction strength.

    However,a picture different from neutrons is seen for LCPs;that is,LCPs have a larger value in case(ii)than in case(iii),showing that dissipation has a larger effect on LCPs in case(ii).The reason is as follows.There exists a competition among different decaying channels.A strong neutron evaporation(compare squares and circles connected by the blue and red line in Fig.1(b),respectively)suppresses charged-particle evaporation.While a higher ? in case(iii)than in case(ii)raises the multiplicity of post-saddle particles including that of LCPs,the magnitude of excitation energy has a stronger effect than that of angular momentum.This further reveals the important role of E?in using light charged particles as a tool of the post-saddle friction strength.It implies that when one uses LCPs to better limit β,it is best to choose heavy fi ssioning nuclei populated in near-central collisions.

    Putting together all the results calculated for the three cases,as shown in Figs.1 and 3,one can find that intermediate energy reactions are a more preferable experimental approach than heavy-ion fusion,which is mostly adopted in the current experiments,to explore post-saddle dissipation properties with light particle emission,in particular in the presence of deformation effects.

    4 Conclusions

    In conclusion,we have studied the influence of deformation on probing the post-saddle friction strength(β)with light particle multiplicities of heavy240Am under different excitation energies and angular momenta.It has been found that compared to the fusion approach,the high excitation energy condition provided in intermediate energy reactions apparently enhances the sensitivity of light particles(particularly for LCPs for the case with deformation effects)to β.Furthermore,it has been shown that when using neutrons to constrain β, fi ssioning systems generated in peripheral collisions at intermediate energies are more suitable than those generated in near-central collisions.For LCPs whose emission depends on excitation energy more strongly than on angular momentum,choosing those heavy fi ssioning nuclei from near-central collisions are favorable in experiments for more precisely determining the post-saddle friction strength.

    99热这里只有是精品50| 最新中文字幕久久久久| 久久精品综合一区二区三区| 国模一区二区三区四区视频| 亚洲av电影不卡..在线观看| 麻豆成人av视频| 国产免费一级a男人的天堂| 亚洲综合色惰| 18禁在线无遮挡免费观看视频| 国产精品国产三级国产专区5o| 国产免费又黄又爽又色| 国产免费一级a男人的天堂| 亚洲精品乱久久久久久| 午夜老司机福利剧场| 亚洲久久久久久中文字幕| 搞女人的毛片| 国产一区二区三区av在线| 男女边吃奶边做爰视频| 久99久视频精品免费| 黄色欧美视频在线观看| 亚洲第一区二区三区不卡| 男女下面进入的视频免费午夜| 国产精品女同一区二区软件| 成人性生交大片免费视频hd| 国产又色又爽无遮挡免| 日韩人妻高清精品专区| 噜噜噜噜噜久久久久久91| 亚洲国产色片| 精品久久久久久久人妻蜜臀av| 国内精品美女久久久久久| 搡女人真爽免费视频火全软件| 欧美性感艳星| 极品教师在线视频| 免费看光身美女| 人人妻人人澡欧美一区二区| av在线天堂中文字幕| 成人性生交大片免费视频hd| 亚洲欧美成人精品一区二区| 91aial.com中文字幕在线观看| 日韩国内少妇激情av| 黄色日韩在线| 97超视频在线观看视频| 能在线免费观看的黄片| 欧美潮喷喷水| 神马国产精品三级电影在线观看| 日本免费a在线| 青春草国产在线视频| 国产激情偷乱视频一区二区| 亚洲av国产av综合av卡| 日本爱情动作片www.在线观看| 女人被狂操c到高潮| 亚洲性久久影院| 汤姆久久久久久久影院中文字幕 | 成年av动漫网址| 日本熟妇午夜| 搡女人真爽免费视频火全软件| 一个人观看的视频www高清免费观看| 极品教师在线视频| 免费av不卡在线播放| 亚洲国产精品sss在线观看| 美女xxoo啪啪120秒动态图| 少妇熟女欧美另类| 亚洲,欧美,日韩| 免费高清在线观看视频在线观看| 淫秽高清视频在线观看| 免费黄色在线免费观看| 日韩国内少妇激情av| 亚洲精品成人久久久久久| 国精品久久久久久国模美| 蜜桃亚洲精品一区二区三区| 国产精品一区二区在线观看99 | 国产乱来视频区| 精品久久久久久久人妻蜜臀av| 亚洲精品乱码久久久久久按摩| 男女边吃奶边做爰视频| 国产精品国产三级国产专区5o| 日日摸夜夜添夜夜添av毛片| 在线观看一区二区三区| 亚洲精品国产av成人精品| 国产综合懂色| 国产女主播在线喷水免费视频网站 | 国产成人a∨麻豆精品| 亚洲一区高清亚洲精品| 十八禁网站网址无遮挡 | 国产精品美女特级片免费视频播放器| 中文字幕av在线有码专区| 国产乱人视频| 激情五月婷婷亚洲| 久热久热在线精品观看| 成人亚洲欧美一区二区av| 久久这里只有精品中国| 国产精品久久久久久精品电影小说 | 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站| 国产熟女欧美一区二区| 日韩大片免费观看网站| 在线免费十八禁| 午夜免费观看性视频| 男女啪啪激烈高潮av片| 国产黄片视频在线免费观看| 亚洲天堂国产精品一区在线| 国产永久视频网站| 青春草亚洲视频在线观看| 国产黄色视频一区二区在线观看| 搞女人的毛片| 丰满人妻一区二区三区视频av| 大香蕉97超碰在线| 人人妻人人看人人澡| 2022亚洲国产成人精品| av卡一久久| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 国产高清国产精品国产三级 | 好男人在线观看高清免费视频| 日韩视频在线欧美| 日本与韩国留学比较| 日韩成人av中文字幕在线观看| 国产91av在线免费观看| 国产成人精品久久久久久| 国产精品人妻久久久影院| 国产精品精品国产色婷婷| 在线观看免费高清a一片| 在线免费观看不下载黄p国产| 亚洲精品一二三| 亚洲精品久久久久久婷婷小说| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片| 大香蕉久久网| 日韩三级伦理在线观看| 男人狂女人下面高潮的视频| 在线天堂最新版资源| 久久久久久久久大av| av免费在线看不卡| 99久国产av精品国产电影| 国产欧美日韩精品一区二区| 久久99蜜桃精品久久| 69人妻影院| 中文字幕免费在线视频6| 免费av不卡在线播放| 国产男人的电影天堂91| 久99久视频精品免费| 国产伦在线观看视频一区| 欧美日韩精品成人综合77777| 嫩草影院入口| 欧美一级a爱片免费观看看| 国产永久视频网站| 天天躁日日操中文字幕| 国产探花在线观看一区二区| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 国产精品99久久久久久久久| 丰满人妻一区二区三区视频av| 熟女人妻精品中文字幕| 亚洲经典国产精华液单| 九色成人免费人妻av| a级毛色黄片| 黄色配什么色好看| 在线免费观看的www视频| 麻豆成人午夜福利视频| 看免费成人av毛片| 亚洲欧洲日产国产| 18禁动态无遮挡网站| 99视频精品全部免费 在线| 777米奇影视久久| 日韩一区二区三区影片| 欧美日韩综合久久久久久| 国产亚洲91精品色在线| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人爽人人夜夜 | 色尼玛亚洲综合影院| 少妇熟女aⅴ在线视频| 99热网站在线观看| 婷婷色av中文字幕| 国产精品一区二区性色av| 国产视频首页在线观看| 在线观看人妻少妇| 亚洲激情五月婷婷啪啪| 一区二区三区四区激情视频| 联通29元200g的流量卡| 哪个播放器可以免费观看大片| 卡戴珊不雅视频在线播放| 一级爰片在线观看| 国产极品天堂在线| 欧美xxxx黑人xx丫x性爽| av专区在线播放| 亚洲自拍偷在线| 亚洲婷婷狠狠爱综合网| 人妻一区二区av| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 亚洲在线自拍视频| 亚洲成人精品中文字幕电影| 日韩亚洲欧美综合| 国产午夜精品论理片| 久久这里只有精品中国| 亚洲成人久久爱视频| 久久鲁丝午夜福利片| 日日撸夜夜添| 麻豆av噜噜一区二区三区| h日本视频在线播放| 国产一区二区亚洲精品在线观看| 秋霞在线观看毛片| 欧美最新免费一区二区三区| 色综合站精品国产| 久久久久久久亚洲中文字幕| 看非洲黑人一级黄片| 亚洲欧美清纯卡通| 欧美不卡视频在线免费观看| or卡值多少钱| 联通29元200g的流量卡| 免费av毛片视频| 日韩一区二区三区影片| av天堂中文字幕网| 搡老乐熟女国产| 国产在视频线在精品| 久久精品人妻少妇| 欧美成人一区二区免费高清观看| 国产伦在线观看视频一区| 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式| 国产女主播在线喷水免费视频网站 | 免费少妇av软件| av播播在线观看一区| 国产亚洲精品久久久com| av在线亚洲专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产亚洲av天美| 一区二区三区高清视频在线| 国产成人a∨麻豆精品| 赤兔流量卡办理| 久久精品夜夜夜夜夜久久蜜豆| 国产麻豆成人av免费视频| 亚洲色图av天堂| 国产视频首页在线观看| 青春草视频在线免费观看| 3wmmmm亚洲av在线观看| 99热这里只有是精品在线观看| 亚洲国产高清在线一区二区三| av在线天堂中文字幕| av在线老鸭窝| 精品久久久久久电影网| 免费看日本二区| 欧美三级亚洲精品| 国产av国产精品国产| 亚洲av中文字字幕乱码综合| 免费不卡的大黄色大毛片视频在线观看 | 国产黄片美女视频| 嫩草影院新地址| 天堂网av新在线| 国产黄色免费在线视频| 国产黄片视频在线免费观看| 一级毛片我不卡| 22中文网久久字幕| 在线观看一区二区三区| 日本av手机在线免费观看| 如何舔出高潮| 国产成人精品福利久久| 日韩欧美精品v在线| 女人十人毛片免费观看3o分钟| 亚洲国产成人一精品久久久| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 亚洲综合精品二区| 国产亚洲av片在线观看秒播厂 | 蜜臀久久99精品久久宅男| 最近中文字幕高清免费大全6| 国产91av在线免费观看| 人体艺术视频欧美日本| 精品午夜福利在线看| 久99久视频精品免费| 色5月婷婷丁香| 国产伦精品一区二区三区视频9| 久久99热这里只频精品6学生| 男女那种视频在线观看| 少妇被粗大猛烈的视频| 亚洲精品中文字幕在线视频 | 高清欧美精品videossex| 欧美人与善性xxx| 少妇的逼好多水| 亚洲精品一区蜜桃| 男人舔女人下体高潮全视频| 国产精品一二三区在线看| 欧美xxⅹ黑人| 性色avwww在线观看| 黄色配什么色好看| av一本久久久久| av在线老鸭窝| 亚洲av.av天堂| 亚洲精品中文字幕在线视频 | 午夜精品在线福利| 精品国产露脸久久av麻豆 | 久久这里有精品视频免费| 搡女人真爽免费视频火全软件| 啦啦啦啦在线视频资源| 亚洲av国产av综合av卡| 国产精品美女特级片免费视频播放器| av在线蜜桃| 好男人视频免费观看在线| 尾随美女入室| 我要看日韩黄色一级片| 成人午夜精彩视频在线观看| 国产av不卡久久| 亚洲国产精品国产精品| 日韩不卡一区二区三区视频在线| 男人狂女人下面高潮的视频| 国产精品无大码| 成年人午夜在线观看视频 | 天美传媒精品一区二区| 国产成人一区二区在线| 中国国产av一级| a级一级毛片免费在线观看| 最近最新中文字幕免费大全7| 特大巨黑吊av在线直播| 美女大奶头视频| 亚洲精品成人av观看孕妇| 纵有疾风起免费观看全集完整版 | 久久精品国产亚洲av涩爱| 国产成人福利小说| 亚洲av成人精品一区久久| 亚洲婷婷狠狠爱综合网| 伊人久久精品亚洲午夜| 免费大片18禁| 国产成人一区二区在线| 观看美女的网站| 91精品一卡2卡3卡4卡| 亚洲av福利一区| 别揉我奶头 嗯啊视频| 亚洲精品久久久久久婷婷小说| 亚洲精品色激情综合| 性插视频无遮挡在线免费观看| 青春草视频在线免费观看| ponron亚洲| 国产亚洲av嫩草精品影院| 欧美日韩综合久久久久久| 欧美zozozo另类| 日韩成人伦理影院| 噜噜噜噜噜久久久久久91| 亚洲丝袜综合中文字幕| 亚洲18禁久久av| 日本三级黄在线观看| 日韩伦理黄色片| 一级av片app| 亚洲真实伦在线观看| 国产在视频线精品| 精品少妇黑人巨大在线播放| 国产欧美另类精品又又久久亚洲欧美| 成年人午夜在线观看视频 | 免费看a级黄色片| 少妇裸体淫交视频免费看高清| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 久久久久久伊人网av| 一二三四中文在线观看免费高清| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕 | 尤物成人国产欧美一区二区三区| 插逼视频在线观看| 亚洲av免费在线观看| 久久草成人影院| 三级经典国产精品| 国产一区二区亚洲精品在线观看| 女的被弄到高潮叫床怎么办| 欧美区成人在线视频| 色哟哟·www| 久久精品久久久久久久性| 免费观看在线日韩| 男女国产视频网站| 国产精品一二三区在线看| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区| 性色avwww在线观看| 女人久久www免费人成看片| 嫩草影院新地址| 亚洲,欧美,日韩| 嫩草影院精品99| 久久久久久久久中文| 久久久久久国产a免费观看| a级一级毛片免费在线观看| 欧美精品国产亚洲| 国产一区有黄有色的免费视频 | av卡一久久| 欧美不卡视频在线免费观看| 六月丁香七月| 亚洲国产高清在线一区二区三| 国语对白做爰xxxⅹ性视频网站| 熟女电影av网| 禁无遮挡网站| 我的老师免费观看完整版| 午夜福利视频1000在线观看| 成人毛片60女人毛片免费| 美女cb高潮喷水在线观看| 亚洲欧美精品自产自拍| 亚洲国产色片| 国产亚洲5aaaaa淫片| 国产麻豆成人av免费视频| 久久久午夜欧美精品| 秋霞在线观看毛片| 哪个播放器可以免费观看大片| 欧美日韩亚洲高清精品| 在线观看一区二区三区| 老女人水多毛片| 久久久久久久久久黄片| 精品99又大又爽又粗少妇毛片| 日韩精品有码人妻一区| av在线老鸭窝| 精品久久久久久久久av| 亚洲性久久影院| 午夜亚洲福利在线播放| 人人妻人人澡人人爽人人夜夜 | 国产成人午夜福利电影在线观看| 99久久中文字幕三级久久日本| 国产成人a区在线观看| 777米奇影视久久| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 日日摸夜夜添夜夜添av毛片| 免费观看性生交大片5| 国产精品.久久久| 性插视频无遮挡在线免费观看| 国产高清不卡午夜福利| 亚洲av免费高清在线观看| av网站免费在线观看视频 | 免费观看在线日韩| 麻豆成人午夜福利视频| 亚洲精品久久久久久婷婷小说| 国产黄色视频一区二区在线观看| 日本与韩国留学比较| 美女高潮的动态| 亚洲成人中文字幕在线播放| 久久精品国产亚洲av天美| av在线观看视频网站免费| 乱系列少妇在线播放| 亚洲精品视频女| 免费看av在线观看网站| 精品久久久久久久久亚洲| 精品99又大又爽又粗少妇毛片| 婷婷六月久久综合丁香| 久久久久久久亚洲中文字幕| 97在线视频观看| 国产伦在线观看视频一区| 免费观看性生交大片5| 欧美最新免费一区二区三区| 午夜精品在线福利| 日产精品乱码卡一卡2卡三| 韩国高清视频一区二区三区| 男人舔女人下体高潮全视频| 国产大屁股一区二区在线视频| 一级片'在线观看视频| 精品久久久久久久人妻蜜臀av| 青青草视频在线视频观看| 黄色配什么色好看| 性色avwww在线观看| 三级国产精品欧美在线观看| 国产视频内射| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| 精品一区二区免费观看| 国产成人精品一,二区| 国产一区二区亚洲精品在线观看| 伦精品一区二区三区| 国产免费视频播放在线视频 | 51国产日韩欧美| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的 | 亚洲人成网站在线播| 亚洲av.av天堂| 青春草视频在线免费观看| 欧美性猛交╳xxx乱大交人| 赤兔流量卡办理| 亚洲欧美日韩卡通动漫| 肉色欧美久久久久久久蜜桃 | 波多野结衣巨乳人妻| 美女xxoo啪啪120秒动态图| 一个人看的www免费观看视频| 日本一二三区视频观看| 日产精品乱码卡一卡2卡三| 免费看日本二区| 久久久久久久久大av| 国产色爽女视频免费观看| av一本久久久久| 日本熟妇午夜| 亚洲av免费高清在线观看| 亚洲精品自拍成人| 最近2019中文字幕mv第一页| 亚洲自拍偷在线| 久久精品国产亚洲av天美| 综合色av麻豆| 久久久久久久久久久免费av| 成人性生交大片免费视频hd| 日本午夜av视频| 国产在线一区二区三区精| 国产成年人精品一区二区| 黄色欧美视频在线观看| 欧美另类一区| 国产黄片美女视频| 水蜜桃什么品种好| 婷婷色综合大香蕉| 欧美97在线视频| 青春草亚洲视频在线观看| h日本视频在线播放| 国产精品熟女久久久久浪| 成人毛片60女人毛片免费| 久久久久性生活片| 热99在线观看视频| 久久久久久久亚洲中文字幕| 国产综合精华液| 国产精品一区二区在线观看99 | 九草在线视频观看| 久久国内精品自在自线图片| 国产av在哪里看| 日日啪夜夜爽| 最近视频中文字幕2019在线8| 免费无遮挡裸体视频| 久久久色成人| 自拍偷自拍亚洲精品老妇| 亚洲国产精品国产精品| 久久久久久久午夜电影| 色综合色国产| 亚洲人与动物交配视频| 国内揄拍国产精品人妻在线| a级一级毛片免费在线观看| 两个人视频免费观看高清| av在线蜜桃| 欧美成人精品欧美一级黄| 高清日韩中文字幕在线| 尾随美女入室| 18禁裸乳无遮挡免费网站照片| 日日啪夜夜撸| 精品久久久久久久久久久久久| 国产视频首页在线观看| 波野结衣二区三区在线| 国产中年淑女户外野战色| 精品国产三级普通话版| 99久久精品一区二区三区| 卡戴珊不雅视频在线播放| 精品一区二区三区人妻视频| 亚洲国产成人一精品久久久| 亚洲自偷自拍三级| 伊人久久精品亚洲午夜| 一本久久精品| 黄片无遮挡物在线观看| 免费黄频网站在线观看国产| 成人漫画全彩无遮挡| 国产av码专区亚洲av| 狂野欧美白嫩少妇大欣赏| 九九久久精品国产亚洲av麻豆| 天堂av国产一区二区熟女人妻| 亚洲av一区综合| 三级男女做爰猛烈吃奶摸视频| 一级黄片播放器| 一级毛片 在线播放| 在线播放无遮挡| 婷婷色综合www| 亚洲乱码一区二区免费版| 一级爰片在线观看| 一夜夜www| 一区二区三区高清视频在线| 亚洲人成网站在线播| 国产成人福利小说| 亚洲色图av天堂| 国产精品熟女久久久久浪| 哪个播放器可以免费观看大片| 欧美一级a爱片免费观看看| 久久97久久精品| 国产成人精品久久久久久| 蜜桃亚洲精品一区二区三区| 国产国拍精品亚洲av在线观看| 精品少妇黑人巨大在线播放| 久久久久精品性色| 在线观看一区二区三区| 国产成人午夜福利电影在线观看| 亚洲精品国产av成人精品| 亚洲自拍偷在线| 一级爰片在线观看| 综合色丁香网| 成人毛片a级毛片在线播放| av线在线观看网站| 久久久精品欧美日韩精品| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利视频1000在线观看| 国产一区二区三区av在线| 亚洲在线自拍视频| 亚洲国产精品成人综合色| 男女边摸边吃奶| 又爽又黄a免费视频| 日本免费a在线| 我的老师免费观看完整版| 国产久久久一区二区三区| 国产高清国产精品国产三级 | 在线a可以看的网站| 国产精品一二三区在线看| 国产亚洲91精品色在线| 白带黄色成豆腐渣| 麻豆乱淫一区二区| 在线免费观看的www视频| 天天一区二区日本电影三级| 51国产日韩欧美| 久久久久久久久大av| 国产成人freesex在线| 成人性生交大片免费视频hd| 亚洲国产av新网站| 特级一级黄色大片| 亚洲国产色片| 日日撸夜夜添| 免费大片黄手机在线观看| 最近的中文字幕免费完整| 久久久久久久久久黄片| 免费无遮挡裸体视频| 久久久久精品性色| 亚洲成人中文字幕在线播放| 中文在线观看免费www的网站| 久久综合国产亚洲精品| 人妻夜夜爽99麻豆av|